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Abstract: Background: The accurate segmentation of the appendix with well-defined boundaries
is critical for diagnosing conditions such as acute appendicitis. The manual identification of the
appendix is time-consuming and highly dependent on the expertise of the radiologist. Method:
In this study, we propose a fully automated approach to the detection of the appendix using deep
learning architecture based on the U-Net with specific training parameters in CT scans. The proposed
U-Net architecture is trained on an annotated original dataset of abdominal CT scans to segment
the appendix efficiently and with high performance. In addition, to extend the training set, data
augmentation techniques are applied for the created dataset. Results: In experimental studies, the
proposed U-Net model is implemented using hyperparameter optimization and the performance of
the model is evaluated using key metrics to measure diagnostic reliability. The trained U-Net model
achieved the segmentation performance for the detection of the appendix in CT slices with a Dice
Similarity Coefficient (DSC), Volumetric Overlap Error (VOE), Average Symmetric Surface Distance
(ASSD), Hausdorff Distance 95 (HD95), Precision (PRE) and Recall (REC) of 85.94%, 23.29%, 1.24 mm,
5.43 mm, 86.83% and 86.62%, respectively. Moreover, our model outperforms other methods by
leveraging the U-Net’s ability to capture spatial context through encoder—decoder structures and
skip connections, providing a correct segmentation output. Conclusions: The proposed U-Net model
showed reliable performance in segmenting the appendix region, with some limitations in cases
where the appendix was close to other structures. These improvements highlight the potential of
deep learning to significantly improve clinical outcomes in appendix detection.

Keywords: appendix detection; deep learning; medical imaging; segmentation; U-Net architecture

1. Introduction

The integration of artificial intelligence (Al) into medical diagnostics has transformed
disease detection and treatment planning, improving both accuracy and efficiency. Al
technologies, particularly deep learning algorithms, such as convolutional neural networks
(CNN), have demonstrated remarkable potential in interpreting complex medical images
and analyzing extensive clinical data. These advances have been crucial in several medical
fields, including oncology, cardiology, and neurology, where Al systems have matched or
exceeded human diagnostic performance [1,2].

Currently, Al-based approaches proposed for medical imaging can be divided into
two subgroups: machine learning-based methods and advanced neural network-based
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methods such as deep learning [3]. Al, particularly deep learning models, has been
instrumental in transforming diagnostics in many medical fields [4]. On the other hand, the
development and application of Explainable Al (XAI) in medical diagnostics has gained
considerable momentum in recent years. By providing interpretable results, XAl systems
have been instrumental in building the trust and acceptance of Al tools among healthcare
professionals. In addition, Al-based and XAl-based decision support systems play a critical
role in these systems by providing clinicians with transparent and interpretable decision
paths [5-8]. With the increasing integration of XAl the adoption of Al systems in clinical
practice would continue to grow, driven by both improved accuracy and interpretability
of Al predictions [9]. Incorporating these advanced Al tools, such as deep learning-based
architectures for appendix detection, into diagnostic workflows holds great promise for
improving the speed, accuracy, and reliability of medical diagnoses.

Appendicitis, a common and potentially life-threatening condition, is one area where
Al-driven diagnostic tools can make a significant impact. The timely and accurate diagnosis
of appendicitis is crucial, as delays can lead to severe complications such as perforation and
sepsis. While clinical examination and imaging techniques such as computed tomography
(CT) scans are traditionally used for diagnosis, these methods are often subjective and
highly dependent on clinician expertise [10].

Deep learning has increasingly become a critical tool in the medical field, offering
advanced solutions for diagnosis, treatment planning, and patient care [4]. In recent years,
several studies have shown that Al models, including machine learning and deep learning
techniques, can improve diagnostic accuracy and support clinical decision-making [11-13].
Al, particularly deep learning, has shown promise in appendicitis diagnosis, with several
studies highlighting the advantages of CNN-based models in analyzing medical images.
Recent studies have underscored the effectiveness of Al in enhancing appendix diagno-
sis [14,15]. A systematic review by Issaiy et al. [16] highlighted the use of different Al
algorithms, including deep learning models such as CNN, in diagnosing acute appendicitis.
These models often outperform traditional diagnostic methods in identifying appendix
from medical images like CT scans. In a recent study, Liang et al. [17] developed a deep
learning model combined with radiomics to differentiate between complicated and uncom-
plicated acute appendicitis using pelvic CT scans. Their model outperformed radiologists,
suggesting improved diagnostic performance. In another study, Marcinkevics et al. [18]
focused on pediatric appendicitis and used machine learning models such as logistic regres-
sion, random forests, and generalized boosted regression models to predict the diagnosis
and severity of appendicitis. These models were trained and validated using clinical data,
demonstrating that Al can effectively aid in the diagnosis and management of pediatric
appendicitis. Rajpurkar et al. conducted a study using a 3D deep learning model to di-
agnose appendicitis. They used an approach that exploits volumetric data from CT scans
to improve diagnostic accuracy. The model demonstrated high sensitivity and specificity,
outperforming traditional diagnostic methods and representing a significant advance in au-
tomated appendicitis detection [19]. These studies and applications highlight the significant
advances and contributions of Al in the detection and diagnosis of appendicitis. However,
there remains a gap in the previous works regarding fully automated segmentation of the
appendix, particularly using deep learning architectures like U-Net.

Deep learning is extensively used in medical imaging and diagnostics, where CNNs
analyze medical images [20]. For instance, deep learning models such as U-Net are used
for image segmentation tasks in radiology, significantly enhancing diagnostic accuracy [19].
The U-Net deep learning architecture has many applications, including the detection of
brain tumors [21], segmentation of retinal layers in optical coherence tomography im-
ages [22], breast cancer detection [23], and liver segmentation [24]. These examples high-
light the versatility and effectiveness of the U-Net model in various medical imaging tasks,
underscoring its importance in enhancing diagnostic accuracy and improving patient care.
Despite these promising results, several challenges persist in optimizing deep learning
models and Al methods for appendix detection. Factors such as data quality, model com-
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plexity, and the integration of multi-modal data significantly impact the performance of
deep learning methods. Addressing these challenges through strategies like data augmen-
tation, advanced model architectures, and rigorous model optimization is essential for
maximizing the potential of deep learning in medical diagnostics [25,26].

In this study, we propose a U-Net-based architecture specifically designed for appendix
segmentation in CT scans. The U-Net model is widely known for its encoder—decoder
structure, which allows the precise localization and segmentation of complex structures
in images. In the U-Net architecture, skip connections between the encoder and decoder
layers help preserve spatial information and improve segmentation accuracy [27], which
is essential for distinguishing the appendix from surrounding tissue. Our U-Net model
has been designed with specific training parameters and data augmentation techniques to
handle variability in CT scan quality and anatomy. These features are designed to optimize
the model’s performance for the challenging task of appendix segmentation, which is often
complicated by the small size and unclear boundaries of the appendix in medical images.
To the best of our knowledge, there are almost no studies on appendix segmentation from
CT scans. This study proposes U-Net deep learning architecture using the original dataset
in appendix segmentation and discusses potential improvements to enhance diagnostic
accuracy and clinical outcomes. This study provides several important contributions to the
field of automated appendix detection and segmentation:

1.  We have developed a U-Net model specifically tailored for appendix segmentation
in CT scans, addressing a significant gap in the state-of-the-art scans. The architec-
ture builds on the strengths of U-Net, using special training parameters and data
enhancement techniques to cope with the variations in image quality and anatomy
complexity;

2. The proposed model is trained on an original annotated dataset of abdominal CT scans
and evaluated using key metrics such as DSC, VOE, ASSD, and HD95. These metrics
demonstrate the reliable performance of the model in accurately segmenting the
appendix, with a particular focus on minimizing false positives and false negatives;

3. This study employs hyperparameter optimization techniques to fine-tune the U-net
architecture to ensure the highest possible segmentation performance. In addition,
data augmentation strategies are applied to expand the training set and improve the
model’s ability to generalize across different CT scan conditions;

4. While the model demonstrates high segmentation performance, we discuss potential
limitations, particularly in cases where the appendix is close to other anatomical
structures. We suggest directions for future improvement to enhance the diagnostic
accuracy and clinical utility of the system.

The subsequent sections of the paper are organized as follows. The details of the
original dataset generated for this study, the data augmentation procedures, and the
methodology of the proposed system are described in Section 2. Section 3 deals with the
results of the experimental analyses. The evaluation of the obtained results, the comparison
with previous studies and the comparison with state-of-the-art methodology are discussed
in Section 4. The study is concluded with inferences and focused future work in the
last section.

2. Materials and Methods

The proposed model and the general structure of the study are shown in the block
diagram in Figure 1. The methodology of the proposed approach consists of three main
phases. The first phase is data collection and dataset preparation. In this phase, the
necessary data are collected and a dataset for the proposed U-Net model is created. The
second phase involves the structuring of the proposed U-Net deep learning model and the
preparation of the working environment. In this phase, the architecture of the model is
determined and the necessary software and hardware infrastructure is set up. The third
phase is the automatic segmentation of the appendix region using the best weights obtained
from the training processes. In this phase, the model is tested, the weights that give the
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Figure 1. Block diagram of the proposed detection system for the fully automated detection of

appendix region in CT scans.

A. Dataset

In this study, an original dataset was prepared for appendix detection and segmen-
tation from CT scans using the proposed U-Net-based deep learning architecture. CT
examinations were performed using a 64-MDCT scanner (multi-slice CT Aquillion 64;
Toshiba). The imaging protocol included the following parameters: a slice thickness of
2.5 mm, a reconstruction interval of 0.777 mm, a gantry rotation time of 0.6 s, a tube voltage
of 120 kV, and a tube current of 200 mA. The field of view was 40 to 50 cm. During CT
imaging, slices were obtained from the upper abdomen to the lower abdomen with the
patient in the supine position.

The original dataset consisted of CT scans of 299 patients who presented to the Bilecik
Training and Research Hospital with abdominal pain and suspected acute appendicitis.
These patients were assessed for demographic and laboratory characteristics and the
presence or absence of appendicitis. As a result of the evaluations, 140 of these patients
had a normal appendix, while the remaining 159 patients were diagnosed with acute
appendicitis. Of the patients included in the dataset, 190 were male and the remaining 109
were female, with ages ranging from 18 to 91 years. The patients’ radiological images were
obtained between July 2021 and April 2024. In addition, it was confirmed that there was no
ethical problem in conducting this study with Decision Number 13 of the 8th meeting of
Bilecik Seyh Edebali University Non-Interventional Clinical Research Ethics Committee
on 5 December 2023. In addition, patients who have been treated at Bilecik Training and
Research Hospital have agreed to provide their data for research purposes.

In the dataset, expert physicians annotated the appendix regions with ground truth
(GT) masks in these CT scans, using ITK-SNAP software [28], and the annotations were
stored in NIfTI format. During the data preparation phase, axial slices identified by the
expert physicians as containing the appendix were extracted. This process resulted in
672 slices from patients with appendicitis and 748 slices from healthy individuals, giving a
total of 1420 slices extracted. These annotated slices formed the basis of the dataset used to
train and evaluate the proposed U-Net deep learning model. Figure 2 shows sample slices
from the dataset, indicating the annotated appendix regions with GT masks. This dataset,
with its detailed annotation and diverse sample population, provided a robust approach
for training the U-Net model to accurately segment the appendix in CT images.
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Figure 2. Sample slices from the dataset indicating the annotated appendix regions with GT masks.

B.  Proposed Methodology

In this study, a deep learning model based on the U-Net architecture was proposed
for detecting appendix areas on axial CT scans. The U-Net model is widely used in
medical image processing, especially for biomedical image segmentation [29-31]. It has
demonstrated its effectiveness in various medical applications by accurately classifying
each pixel in an input image to delineate different tissues and structures. The U-Net
architecture consists of two parts. The structure of the U-Net can be summarized for
each key component in the contracting path (encoder) and the expansive path (decoder).
The first part is the contracting path, which serves as the encoder [19]. In the encoder
part, convolution, padding, and pooling operations are performed to compress the data
into feature representations [32]. For each layer Le in the encoder, the output Of" is given
Equation (1). The encoder extracts features and reduces spatial resolution while segmenting
the image.

% = ReLU(Conv (07" _,)) (1)

where Of” represents the feature maps after layer Le in the encoder.

The second part is the expanding path, which serves as the decoder. In the decoder
part, deconvolution, padding, and pooling operations are performed to expand the data,
and the output from each corresponding level of the encoder is added at each layer to bring
the data back to its original input size [33]. On the other hand, for each layer Ld, the output
Offi is shown in Equation (2). In the expansive path, the feature maps are upsampled using
deconvolution (transposed convolution).

Of; = ReLU (DeConv (0ff;_, ) ) @)

where O‘z‘; represents the feature maps after layer Ld in the decoder.

Skip connections are a key feature of the U-Net architecture, allowing information to
flow from the encoder to the decoder at corresponding levels [34]. This is a concatenation
operation between the feature maps from the encoder and the decoder at each layer [27].
The skip connection is shown in Equation (3).

0% = concat (Oig, o Le) 3)
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where nL is the number of layers in the encoder.

In U-Net architecture, the final layer performs a convolution operation to obtain the
segmented data. The final layer Oy;,, (x,y) applies a 1 x 1 convolution to map the feature
maps to the desired number of output classes, as seen in Equation (4).

Ofinar(x,y) = sigmoid (Conlel (O‘Z‘;)) 4)

In this study, the proposed U-Net architecture for automatic appendix detection and
segmentation from CT scans is shown in Figure 3. The proposed U-Net model for appendix
segmentation differs significantly from the models commonly used in the past, mainly
because it uses sigmoid output instead of softmax in the final layer. In addition, the contract-
ing path was repeated four times in the proposed U-Net model. The specific architecture
of the U-Net, designed for segmentation, features a symmetric encoder-decoder structure
with skip connections, which is particularly effective at capturing the fine details needed to
segment small anatomical structures such as the appendix [35]. In contrast, state-of-the-art
models are not as well-adapted to this task and often require additional layers or modules
to achieve a similar performance [36,37].
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Figure 3. Proposed U-Net deep learning architecture for automated detection of appendix.

C. Key Performance Metrics

In this study, the performance of the proposed deep learning model for automatic
appendix segmentation is evaluated using a number of important key metrics. The per-
formance of the proposed model was measured using overlap-based, distance-based and
pixel-based key metrics. Furthermore, these metrics were used to measure the similarity
between the segmented areas (Ag) by the proposed U-Net-based deep learning model and
the expert annotations (Ag) as a ground truth mask for the appendix. The Dice Similarity
Coefficient (DSC), in Equation (5), is commonly used to compare the predicted segmen-
tation result by the proposed method with the ground truth mask by the expert. On the
other hand, the Volumetric Overlap Error (VOE), in Equation (6), is used to evaluate the
dissimilarity between two volumes and measure how much the predicted segmentation
deviates from the ground truth segmentation. The Average Symmetric Surface Distance
(ASSD), a distance-based key metric, measures the average distance between the surfaces
of the predicted segmentation and the ground truth and is given in Equation (7). The
Hausdorff Distance (HD), given in Equations (8)—(10), is a measure of the distance between
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the predicted segmentation boundary and the ground truth segmentation boundary. Haus-
dorff Distance 95 (HD95) uses this by taking the 95th percentile of the distances between
boundary points rather than the maximum distance. Precision (PRE), in Equation (11),
refers to the ratio of correctly predicted positive pixels (true positive, TP) to the total number
of pixels predicted as positive (true positive + false positive, TP + FP) by the model in the
segmentation tasks. Recall (REC) represents the proportion of correctly predicted positive
pixels (TP) out of all true positive pixels (TP + false negative, FN) in the ground truth and
is shown in in Equation (12).

2|Ag N Ag]
DSC (Ag,Ag) = ———— x 100 5
|As N Ag| )
VOE (Ag,Ag) = (1 — x 100 6
(A, As) ( [AsI+ |Ag] — [As U Ag] ©
1
ASSD (Ag,Ag) = ————— X mind(x,y) + mind(y, x 7
( E S) ‘AE|+|AS| <x€ZASyEAE ( y) yGZASxGAE (y )) ( )
hd(Ag, Ag) = i — 8
(As, Ag) = maxmin||x —y]|, ®)
hd(Ag, As) = maxmin||x —y/|, )
xeAgyeAg
HD(As,AE) = maX(hd(As,AE>,hd(AE,As)) (10)
PRE = T L FP x 100 (11)
TP
REC = TP + EN x 100 (12)

3. Results

In this study, comprehensive experiments are conducted to evaluate the performance
of the proposed U-Net-based deep learning model for appendix segmentation on CT
scans from an original dataset. The experimental analyses reveal the performance and
challenges of the proposed model in appendix segmentation. The experimental analyses
were performed on a workstation equipped with an NVIDIA RTX 3060 GPU, 32 GB RAM,
and an Intel i5-13400T CPU. The operating system used was Ubuntu 22 and the scripts
were developed using Python with TensorFlow and Keras frameworks.

In this study, data augmentation was performed to address several key challenges in
training deep learning models for appendix segmentation in CT scans. Data augmentation
was applied to artificially increase the size and variability of the prepared dataset. This helps
to avoid overfitting [38], where the model memorizes the training data rather than learning
generalizable features. In addition, the CT scans in the dataset can vary significantly
between patients in terms of anatomical differences, scan quality, patient position and
image noise. The data augmentation enables the proposed U-Net deep learning architecture
to learn more robust and discriminative features. This improves the model’s ability to
generalize to unseen data by simulating variations in real CT scans. In this study, in
the original dataset prepared for appendix segmentation, the number of slices in the
training set was increased from 1199 to 2399, the number of CT slices in the test set was
increased from 221 to 441, and the total number of slices was increased from 1420 to 2840
using data augmentation strategies. The data augmentation procedures used to increase
the size of the dataset were width_shift range = 0.2 (WS), height_shift range = 0.2 (HS),
rotation_range = 2 (R) and zoom_range = 0.05 (Z). The data augmentation procedures for
the dataset were randomly generated on both training and test sets separately or together.
Figure 4 shows the effect of the data augmentation procedures on some CT scans and GT
masks in the dataset.
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Figure 4. The effect of the data augmentation procedures on some CT scans and GT masks in
the dataset.

The proposed U-Net model for appendix segmentation was subjected to training
processes in the working environment using the original dataset obtained after data aug-
mentation. In the original version of the dataset, a total of 1420 slices were collected from
CT scans. Using the data augmentation procedures, the total number of CT slices in the
dataset was doubled, resulting in a total of 2840 CT slices. For appendix segmentation,
2399 (~84%) of the 2840 images were allocated to the training phase and the remaining 441
(~16%) to the test phase.

In this study, the results of the proposed U-Net architecture for appendix detection
from CT scans are also compared with the results of the state-of-the-art DenseNet [39] and
Residual U-Net (Res U-Net) [40] architectures. The most prominent feature of DenseNet is
that each layer of the network is directly connected to the outputs of all the previous layers
and is widely used in segmentation problems. Res U-Net is a variation of the classical
U-Net model where residual links are used as a basis to increase the depth of the model.

In experimental studies of this study, some hyperparameters in the U-Net architecture
proposed for appendix segmentation are optimized and their optimal values for high
segmentation performance are determined. First, ReLU is used as the activation function in
the U-Net architecture. ReLU allows the U-Net to learn and model complex, non-linear
mappings between input images and output segmentations. On the other hand, the Adam
function was chosen as the optimization function. The Adam optimizer is well fitted to
train the U-Net as it handles the complex nature of the deep layers of the architecture with
adaptive learning rates and impulse-like behaviour. The learning rate was set to 0.001
for training the U-Net network. The learning rate plays a significant role in how quickly
or slowly the U-Net model converges to an optimal solution as it learns from the data,
especially for image segmentation tasks such as appendix detection in CT scans. Training
was performed with these parameters for 100 epochs. The development of the loss during
the training process is shown in Figure 5a. Looking at this figure, it is clear that the training
process achieved a continuous improvement. During the training process, the weights
after 100 epochs were obtained and subjected to the test phase. The DSC evolution for the
100 epochs can be seen in Figure 5b, which illustrates the performance during testing. It
can be seen that the DSC value reaches an effective level after the first 10 epochs.
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Figure 5. (a) Training loss and (b) DSC development during test phase for U-Net, DenseNet, and Res
U-Net methods.

The appendix regions successfully detected and segmented on CT slices using the
proposed U-Net deep learning architecture during the experimental studies are shown
in Figure 6. While the mask of an original CT slice in Figure 6a containing the appendix
region delineated by the expert is shown in Figure 6b, the segmentation of the appendix
by the proposed U-Net deep learning architecture is shown in Figure 6¢ along with the
DSC score. On the other hand, the overlap of the expert mask and the U-Net segmentation
on the CT slice is also shown in Figure 6d and its zoomed version is shown in Figure 6e.
As can be seen, the proposed U-Net-based deep learning architecture is very successful in
segmenting the appendix CT scans and is very close to the expert GTs. Some examples of
the segments that the proposed model has difficulty in detecting are shown in Figure 7.
When analysing Figure 7, it is clear that the model cannot successfully detect some slices.
The lack of success in these slices can be attributed to the fact that the appendix region
is close to or adjacent to other areas, or the boundaries of the region are similar to those
of the neighbouring areas. Such cases stood out as instances where the boundaries of the
appendix were blurred and the model was unstable.
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(a) Original CT slice (b) Ground truth mask (c) U-Net segmentation (d) Segmentation of (e) Zoom in
in dataset for i for ix on CT slice segmentation

DSC: 92.58%

DSC: 92.73%

DSC: 94.35%

DSC: 95.52%

DSC: 92.93%

DSC: 94.85%

\
DSC: 92.05%

Figure 6. The appendix regions successfully detected and segmented on CT slices using the proposed
U-Net deep learning architecture during the experimental studies. Red: ground truth mask for
appendix, yellow: U-Net segmentation for appendix.

Original CT slice Ground truth mask U-Net seg tation S ion of Zoom in
in dataset for appendix for appendix appendix on CT slice segmentation

DSC: 66.08%

DSC: 52.56%

Figure 7. Some examples of unsuccessful appendix detection and segmentation by the proposed
U-Net model. Red: ground truth mask for appendix, yellow: U-Net segmentation for appendix.
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4. Discussion

The performance metrics results obtained using the proposed U-Net deep learning
architecture and other state-of-the-art models for appendix segmentation are shown in
Table 1. The proposed U-Net model is compared with other previous deep learning-
based methods. Our model is particularly successful in accurately segmenting small and
ambiguous patch boundaries. Comparisons with other methods show that U-Net provides
better performance due to its encoder-decoder structure and the ability of skip connections
to preserve spatial information. For DSC, which is the most important key metric for
appendix segmentation performance, the proposed U-Net architecture achieves a score
of 86.58%, while the Res U-Net and DenseNet architectures achieves 83.53% and 80.64%
for the same metric, respectively. For the other key metrics with 22.99% for VOE, 1.08 mm
for ASSD, 3.87 mm for HD95, and 87.08% for REC, it can be concluded that the U-Net
architecture is more successful than Res U-Net and DenseNet. In addition, it is seen that
DenseNet architecture is more successful with 88.56% only for PRE key metric.

Table 1. The comparison of the results of the proposed U-Net architecture with the results of the
state-of-the-art DenseNet and Res U-Net architectures for the detection of the appendix from CT scans.

Method DSC[%] VOE[%] ASSD[mm] HD95[mm] PRE[%] REC[%]
DenseNet 80.64 30.12 1.49 5.84 88.56 77.49
Res U-Net 83.53 26.99 1.73 6.93 88.06 81.51

Proposed U-Net 86.58 22.99 1.08 3.87 87.08 87.08

In Figure 8, the average scores achieved on the test set of CT slices for the proposed
U-Net and other state-of-the-art methods such as DenseNet and Res U-Net are represented
by box plots in terms of DSC in Figure 8a, VOE in Figure 8b, ASSD in Figure 8c, HD95
in Figure 8d, PRE in Figure 8e and REC in Figure 8f key metrics. From these results, it
can be concluded that the proposed U-Net-based deep learning model is highly successful
in detecting the appendix. Furthermore, our dataset, which was annotated by expert
physicians and included CT scans from both healthy individuals and patients, provided
high-quality and diverse training data, which enhanced the generalization of the U-Net
model. We used hyper-parameter optimization with the ReLu activation function and the
ADAM optimizer, which are known for efficient training and convergence [41,42]. These
choices, combined with comprehensive evaluation metrics such as DSC, VOE, ASSD and
HD95, ensured detailed evaluation and high performance. Such differences in architecture,
data quality, augmentation, and evaluation strategies are likely to contribute to U-Net
model’s competitive DSC of 86.58% in appendix detection, highlighting the importance of
these factors in achieving superior diagnostic performance.

Due to the absence of previous studies specifically focusing on appendix segmentation,
it was not possible to compare our study’s results directly with existing studies on this
topic. However, comparisons can be drawn from similar tasks in the appendix such as
segmentation, diagnosis, and classification, as shown in Table 2. In previous studies,
classification research has generally been carried out using different CNN architectures in
the diagnosis of appendicitis [15,43—45]. However, it is very important to determine the
location of the appendix from the scans in cases. Therefore, in this study, the segmentation
of the appendix is first achieved with a high score, and an important step in the diagnosis
is completed. These comparative analyses help highlight the potential and robustness of
our proposed model for appendix segmentation, suggesting its promising application in
this area.
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Figure 8. Boxplot showing the performance metrics for appendix segmentation obtained using the
proposed U-Net deep learning architecture and other models in the study.
Table 2. Comparison of previous studies for automatic segmentation of appendix and classification
of appendicitis.
Number of Im- . Key Metric
Study Year ages/Subjects Research Topic Methodology Evaluation (%)
319CT Classification Reinforcement Learning _
Aletal. [43] 2019 examinations of acute appendicitis and CNN AUC=961
Rajpurgar et al. [15] 2020 646 CT Classification of 3D CNN AUC =826
examinations appendicitis
Park et al. [44] 2020 667 CT images Classification of 3D CNN AUC =96.0
appendicitis
AUC =95.1 (acute
Classification of acute appendicitis)
. appendicitis, - AUC =97.2 (acute
Park et al. [45] 2023 4078 CT images diverticulitis, and CNN (EfficientNet) diverticulitis)
normal appendix AUC=979
(normal appendix)
U-Net-based deep
Ours 2024 940 CT images Segmentatlpn of learning architecture with DSC = 86.58
appendix hyperparameter
optimization

Automated appendix detection using U-Net deep learning architecture has some
significant advantages and some disadvantages. On the positive side, these systems are
much faster than manual methods, saving valuable time and enabling faster diagnoses.
They offer high accuracy and consistency because they are trained on large datasets,
minimizing human error. In addition, deep learning models can be customized for different
patient populations and imaging modalities, resulting in more personalized and accurate
analyses. These systems can process large amounts of data, improving their performance
over time, and are able to detect small abnormalities in the early stages of appendicitis,
allowing for earlier treatment. However, there are challenges to consider. The performance
of deep learning models is highly dependent on the quality and diversity of the training
data. Poor quality or insufficient datasets can lead to inaccurate results. Developing and
implementing these systems can be expensive, both initially and in terms of ongoing
maintenance and updates. The complexity of building and training these models requires
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specialized expertise, which may require the hiring of skilled personnel. There is also a
risk of misleading results, particularly in rare cases or situations not represented in the
training data, which can lead to false positives or false negatives. Finally, ensuring the
privacy and security of medical data is critical, and robust protocols must be in place to
protect this sensitive information. In conclusion, while the fully automated segmentation
of the appendix region using deep learning models can significantly improve the speed
and accuracy of medical diagnoses, its success depends largely on the quality of the data
and the continuous improvement of the system.

Figure 9 shows the comparison of the segmentation performances of the proposed
U-Net deep learning model and other state-of-the-art DenseNet and Res U-Net architec-
tures on the same CT slices in the dataset in terms of the DSC key metric. Although the
performances of the architectures are close to each other for the segmentation results, it is
seen that the U-Net architecture is slightly more successful.

Ground truth DenseNet Res U-Net U-Net
mask segmentation segmentation segmentation

DSC: 92.25% | DSC:94.50% | DSC:96.77%

DSC: 93.75% | DSC:94.77% | DSC: 95.77%

Figure 9. The comparison of the appendix segmentation performances of the proposed U-Net deep
learning model and other state-of-the-art DenseNet and Res U-Net architectures on the same CT slices.

5. Conclusions

Our study showed the significant potential of using a U-Net-based deep learning
model for the accurate segmentation and detection of the appendix in CT images. With
an achieved DSC score of 86.58%, the model shows promise in aiding clinical diagnosis
and potentially improving patient outcomes. Detailed annotation by expert physicians and
extensive data augmentation techniques contributed to the robustness and reliability of
the model. The results of this study, demonstrating high performance in the detection of
appendicitis using a U-Net-based deep learning model, have significant potential clinical
implications. Improved diagnostic accuracy can reduce misdiagnosis and prevent com-
plications such as perforation and sepsis, while the reduction in diagnostic time enables
faster treatment decisions. The model’s ability to provide consistent and standardized
diagnoses reduces clinician variability and human error. In addition, the model’s rapid and
accurate diagnosis can optimize healthcare resources by minimizing unnecessary imaging
and surgery. As a decision support tool, the model can assist radiologists by highlighting
areas of interest and providing second opinions, which is particularly beneficial for less
experienced practitioners. Early and accurate detection allows for timely intervention,
improving patient outcomes. Integrating the U-Net model into clinical workflows can
streamline the diagnostic process, and further research could extend its applications by
refining the model and incorporating multimodal data to improve its accuracy. Overall, the
robust performance of the model highlights the transformative potential of deep learning
in medical diagnostics, particularly in the timely and accurate diagnosis of appendicitis.

To further improve our appendix detection model, we can focus on expanding and
diversifying the dataset by including more CT scans from a varied patient population
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and multiple medical centres to improve generalization. Advanced data augmentation
techniques, such as 3D augmentation and the use of generative adversarial networks
for synthetic data generation, can introduce additional variability. Improving the model
architecture by integrating hybrid models, using transfer learning, and applying ensemble
methods can also improve performance. Automated hyperparameter tuning and advanced
regularization techniques can optimize model parameters and prevent overfitting. The
integration of clinical and imaging data through multimodal fusion techniques can provide
a more comprehensive input for improved accuracy. Finally, continuous evaluation in
real-world clinical settings and regular model updates with new data can ensure that the
model remains accurate and relevant, ultimately leading to better diagnostic outcomes and
improved patient care. To further improve model performance, future work should focus on
expanding the dataset with more diverse and comprehensive samples, employing advanced
augmentation and hybrid modelling techniques, and integrating multimodal data. In
addition, the incorporation of explicable Al methods may improve the interpretability
and trustworthiness of the model. Continuous evaluation in clinical settings and regular
updates with new data can ensure that the model remains accurate and relevant. These
advances can solidify the role of Al in medical diagnostics, ultimately leading to more
precise and timely treatments for patients.
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