The Effect of Four-Month Training on Biochemical Variables in Amateur Cross-Country Skiers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Biochemical Variables
2.4. VO2 Max Test
2.5. Training Loads
2.6. Statistics
3. Results
4. Discussion
4.1. Leukocytes
4.2. Mean Corpuscular Hemoglobin Concentration
4.3. Limitations and Future Research
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schnohr, P.; O’Keefe, J.H.; Marott, J.L.; Lange, P.; Jensen, G.B. Dose of jogging and long-term mortality: The Copenhagen city heart study. J. Am. Coll. Cardiol. 2015, 65, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Scheer, V.; Tiller, N.B.; Doutreleau, S.; Khodaee, M.; Knechtle, B.; Pasternak, A.; Rojas-Valverde, D. Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review. Sports Med. 2022, 52, 725–740. [Google Scholar] [CrossRef]
- Roberts, W.O. Heat and cold: What does the environment do to marathon injury? Sports Med. 2007, 37, 400–403. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, X.; Zhou, H.; Baker, J.S.; Gu, Y. Prolonged Running Using Bionic Footwear Influences Lower Limb Biomechanics. Healthcare 2021, 9, 236. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.A.; Merritt, E.K.; Lidstone, D.E.; McBride, J.M.; Zwetsloot, K.A. Prolonged cycling lowers subsequent running mechanical efficiency in collegiate triathletes. BMC Sports Sci. Med. Rehabil. 2022, 14, 149. [Google Scholar] [CrossRef] [PubMed]
- Dohnalová, L.; Lundgren, P.; Carty, J.R.R.; Goldstein, N.; Wenski, S.L.; Nanudorn, P.; Thiengmag, S.; Huang, K.P.; Litichevskiy, L.; Descamps, H.C.; et al. A microbiome-dependent gut-brain pathway regulates motivation for exercise. Nature 2022, 612, 739–747. [Google Scholar] [CrossRef]
- Espeit, L.; Brownstein, C.G.; Royer, N.; Besson, T.; Martin, V.; Millet, G.Y.; Lapole, T. Central fatigue aetiology in prolonged trail running races. Exp. Physiol. 2021, 106, 663–672. [Google Scholar] [CrossRef]
- Seeberg, T.M.; Kocbach, J.; Wolf, H.; Talsnes, R.K.; Sandbakk, Ø.B. Race development and performance-determining factors in a mass-start cross-country skiing competition. Front. Sports Act. Living 2023, 4, 1094254. [Google Scholar] [CrossRef]
- Staunton, C.A.; Colyer, S.L.; Karlsson, Ø.; Swarén, M.; Ihalainen, S.; McGawley, K. Performance and Micro-Pacing Strategies in a Freestyle Cross-Country Skiing Distance Race. Front. Sports Act. Living 2022, 4, 834474. [Google Scholar] [CrossRef]
- Bucher, E.; Millet, G.P.; Wehrlin, J.P.; Steiner, T. Test-retest reliability of ski-specific aerobic, sprint, and neuromuscular performance tests in highly trained cross-country skiers. Scand. J. Med. Sci. Sports 2023, 33, 2482–2498. [Google Scholar] [CrossRef]
- Carlsson, M.; Assarsson, H.; Carlsson, T. The influence of sex, age, and race experience on pacing profiles during the 90 km Vasaloppet ski race. J. Sports Med. 2016, 7, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Stöggl, T.L.; Hertlein, M.; Brunauer, R.; Welde, B.; Andersson, E.P.; Swarén, M. Pacing, Exercise Intensity, and Technique by Performance Level in Long-Distance Cross-Country Skiing. Front. Physiol. 2020, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Stöggl, T.; Pellegrini, B.; Holmberg, H.C. Pacing and predictors of performance during cross-country skiing races: A systematic review. J. Sport. Health Sci. 2018, 7, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Sagelv, E.H.; Engseth, T.P.; Pedersen, S.; Pettersen, S.A.; Mathisen, G.; Heitmann, K.A.; Welde, B.; Thomassen, T.O.; Stöggl, T.L. Physiological comparisons of elite male Visma ski classics and national level cross-country skiers during uphill treadmill roller skiing. Front. Physiol. 2018, 9, 1523. [Google Scholar] [CrossRef]
- Sandbakk, O.; Holmberg, H.C. Physiological capacity and training routines of elite cross-country skiers: Approaching the upper limits of human endurance. Int. J. Sports Physiol. 2017, 12, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, N. Determinants of the Cardiovascular Capacity of Amateur Long-Distance Skiers during the Transition Period. Diagnostics 2020, 10, 675. [Google Scholar] [CrossRef]
- Gonçalves, C.A.M.; Dantas, P.M.S.; Dos Santos, I.K.; Dantas, M.; da Silva, D.C.P.; Cabral, B.G.A.T.; Guerra, R.O.; Júnior, G.B.C. Effect of Acute and Chronic Aerobic Exercise on Immunological Markers: A Systematic Review. Front. Physiol. 2020, 10, 1602. [Google Scholar] [CrossRef]
- Grzebisz-Zatońska, N.; Grzywacz, T.; Waśkiewicz, Z. The Influence of Endurance Training on the Lipid Profile, Body Mass Composition and Cardiovascular Efficiency in Middle-Aged Cross-Country Skiers. Int. J. Environ. Res. Public Health 2021, 18, 10928. [Google Scholar] [CrossRef]
- Lippi, G.; Schena, F.; Franchini, M.; Salvagno, G.L.; Guidi, G.C. Serum ferritin as a marker of potential biochemical iron overload in athletes. Clin. J. Sport. Med. 2005, 15, 356–358. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The Differences in Pacing Among Age Groups of Amateur Cross-Country Skiers Depend on Performance. J. Hum. Kinet. 2019, 66, 165–173. [Google Scholar] [CrossRef]
- Docherty, S.; Harley, R.; McAuley, J.J.; Crowe, L.A.N.; Pedret, C.; Kirwan, P.D.; Siebert, S.; Millar, N.L. The effect of exercise on cytokines: Implications for musculoskeletal health: A narrative review. BMC Sports Sci. Med. Rehabil. 2022, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Kakanis, M.W.; Peake, J.; Brenu, E.W.; Simmonds, M.; Gray, B.; Hooper, S.L.; Marshall-Gradisnik, S.M. The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc. Immunol. Rev. 2010, 16, 119–137. [Google Scholar] [CrossRef]
- Lee, T.T.; Li, T.L.; Ko, B.J.; Chien, L.H. Effect of Acute High-Intensity Interval Training on Immune Function and Oxidative Stress in Canoe/Kayak Athletes. Biology 2023, 12, 1144. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.J.; Campbell, J.P.; Gleeson, M.; Krüger, K.; Nieman, D.C.; Pyne, D.B.; Turner, J.E.; Walsh, N.P. Can exercise affect immune function to increase susceptibility to infection? Exerc. Immunol. Rev. 2020, 26, 8–22. [Google Scholar] [PubMed]
- Horn, P.L.; Pyne, D.B.; Hopkins, W.G.; Barnes, C.J. Lower white blood cell counts in elite athletes training for highly aerobic sports. Eur. J. Appl. Physiol. 2010, 110, 925–932. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N.; Oliveira, M.; Tauler, P. Influence of training load on upper respiratory tract infection incidence and antigen-stimulated cytokine production. Scand. J. Med. Sci. Sports 2013, 23, 451–457. [Google Scholar] [CrossRef]
- Johannsen, N.M.; Swift, D.L.; Johnson, W.D.; Dixit, V.D.; Earnest, C.P.; Blair, S.N.; Church, T.S. Effect of different doses of aerobic exercise on total white blood cell (WBC) and WBC subfraction number in postmenopausal women: Results from DREW. PLoS ONE 2012, 7, e31319. [Google Scholar] [CrossRef]
- Grzebisz-Zatońska, N.; Poprzęcki, S.; Pokora, I.; Mikołajec, K.; Kamiński, T. Effect of Seasonal Variation during Annual Cyclist Training on Somatic Function, White Blood Cells Composition, Immunological System, Selected Hormones and Their Interaction with Irisin. J. Clin. Med. 2021, 10, 3299. [Google Scholar] [CrossRef]
- Cook, S. Increased mean cell hemoglobin concentration. Clin. Chem. 2022, 68, 861–862. [Google Scholar] [CrossRef]
- Choy, M.; Zhen, Z.; Dong, B.; Chen, C.; Dong, Y.; Liu, C.; Liang, W.; Xue, R. Mean corpuscular haemoglobin concentration and outcomes in heart failure with preserved ejection fraction. ESC Heart Fail. 2023, 10, 1214–1221. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F. Influence of chronic training workload on the hematological profile: A pilot study in sedentary people, amateur and professional cyclists. Acta Biomed. 2020, 91, e2020104. [Google Scholar]
- Koç, H.; Özen, G.; Abanoz, H.; Pulur, A. Comparative analysis of hematological parameters in well-trained athletes and untrained men. Pedagog. Psychol. Med.-Biol. Probl. Phys. Train Sports 2018, 5, 22. [Google Scholar] [CrossRef]
- Ciekot-Sołtysiak, M.; Kusy, K.; Podgórski, T.; Zieliński, J. Training-induced annual changes in red blood cell profile in highly-trained endurance and speed-power athletes. J. Sports Med. Phys. Fit. 2018, 58, 1859–1866. [Google Scholar] [CrossRef]
- Whittaker, J.P.; Linden, M.D.; Coffey, V.G. Effect of aerobic interval training and caffeine on blood platelet function. Med. Sci. Sports Exerc. 2013, 45, 342–350. [Google Scholar] [CrossRef]
- Kahan, T.; Schwieler, J.H.; Wallén, H.; Nussberger, J.; Hjemdahl, P. Platelet activation during exercise is not attenuated by inhibition of the renin angiotensin system: The role of physical activity. J. Hypertens. 2013, 31, 2103–2104. [Google Scholar] [CrossRef]
- Lippi, G.; Salvagno, G.L.; Danese, E.; Skafidas, S.; Tarperi, C.; Guidi, G.C.; Schena, F. Mean platelet volume (MPV) predicts middle distance running performance. PLoS ONE 2014, 9, e112892. [Google Scholar] [CrossRef]
- Hilberg, T.; Menzel, K.; Gläser, D.; Zimmermann, S.; Gabriel, H.H. Exercise intensity: Platelet function and platelet-leukocyte conjugate formation in untrained subjects. Thromb. Res. 2008, 122, 77–84. [Google Scholar] [CrossRef]
- Alis, R.; Sanchis-Gomar, F.; Risso-Ballester, J.; Blesa, J.R.; Romagnoli, M. Effect of training status on the changes in platelet parameters induced by short–duration exhaustive exercise. Platelets 2015, 27, 117–122. [Google Scholar] [CrossRef]
Parameter | Result 1 Mean (SD) | Result 2 Mean (SD) | p-Value |
---|---|---|---|
Leukocytes (WBC) (thousand/µL) | 5.4 (0.9) | 5.0 (0.8) | 0.045 |
Erythrocytes (M/µL) | 5.1 (0.3) | 5.0 (0.3) | 0.666 |
Hemoglobin (g/dL) | 15.2 (0.5) | 15.0 (0.9) | 0.414 |
Hematocrit % | 43.8 (1.6) | 44.0 (2.7) | 0.780 |
Mean corpuscular value (MCV) (fL) | 88.0 (3.5) | 89.1 (3.8) | 0.103 |
Mean corpuscular hemoglobin (MCH) (pg) | 30.5 (1.0) | 30.3 (1.0) | 0.209 |
Mean corpuscular hemoglobin concentration (MCHC) (g/dL) | 34.7 (0.9) | 34.1 (0.7) | 0.021 |
Platelets (thousand/µL) | 211.1 (34.9) | 207.6 (43.7) | 0.414 |
Red blood cell distribution width-standard deviation (RDW-SD) (fL) | 42.1 (3.9) | 41.9 (3.3) | 1.000 |
Red blood cell distribution width-coefficient of variation (RDW-CV) % | 13.0 (0.8) | 13.0 (0.9) | 0.724 |
Platelet distribution width (PDW) (fL) | 13.6 (2.2) | 13.8 (2.6) | 0.432 |
Mean platelet volume (MPV) (fL) | 10.7 (1.1) | 10.8 (1.1) | 0.075 |
Platelet–large cell ratio (P-LCR) % | 32.4 (8.8) | 32.3 (8.4) | 0.889 |
Procalcitonin (PCT) % | 0.3 (NA) | 0.2 (NA) | NA |
Neutrophils (thousand/µL) | 2.7 (0.6) | 2.4 (0.5) | 0.079 |
Lymphocytes (thousand/µL) | 2.0 (0.6) | 1.9 (0.6) | 0.209 |
Monocytes (thousand/µL) | 0.4 (0.2) | 0.4 (0.1) | 0.859 |
Eosinophils (thousand/µL) | 0.3 (0.2) | 0.3 (0.4) | 0.306 |
Basophils (thousand/µL) | 0.0 (0.0) | 0.0 (0.0) | 1.000 |
Neutrophils % | 49.8 (8.2) | 49.2 (7.7) | 1.000 |
Lymphocytes % | 38.2 (7.7) | 37.7 (6.9) | 0.551 |
Eosinophils % | 4.8 (3.0) | 4.4 (1.7) | 0.919 |
Basophils % | 0.6 (0.4) | 0.6 (0.4) | 0.906 |
ESR (mm/h) | 4.8 (3.7) | 5.0 (3.8) | 0.615 |
Urea (mg/dL) | 33.7 (6.6) | 35.8 (9.4) | 0.232 |
Uric acid (mg/dL) | 5.6 (1.5) | 5.6 (1.1) | 0.470 |
Glucose (mg/dL) | 86.8 (17.0) | 86.5 (11.4) | 0.660 |
Total cholesterol (mg/dL) | 179.3 (33.7) | 182.5 (39.4) | 0.286 |
HDL (mg/dL) | 57.9 (12.5) | 62.5 (14.5) | 0.551 |
Non-HDL (mg/dL) | 120.2 (38.6) | 109.2 (42.7) | 1.000 |
LDL (mg/dL) | 106.2 (32.2) | 110.0 (36.0) | 0.233 |
Triglycerides (mg/dL) | 80.0 (35.2) | 76.4 (37.6) | 0.572 |
AST (U/L) | 29.1 (23.6) | 23.2 (5.7) | 0.916 |
ALT (U/L) | 21.7 (7.5) | 21.0 (7.0) | 0.463 |
ALP (U/L) | 59.8 (10.5) | 57.2 (10.5) | 0.106 |
GGTP (U/L) | 19.0 (10.4) | 20.2 (12.5) | 0.674 |
Serum amylase (U/L) | 64.2 (22.0) | 63.3 (19.4) | 0.484 |
Sodium (mmol/L) | 141.3 (2.2) | 140.6 (1.8) | 0.326 |
Potassium (mmol/L) | 4.5 (0.4) | 4.5 (0.5) | 0.944 |
Total calcium (mmol/L) | 2.4 (0.1) | 2.9 (1.9) | 0.442 |
Magnesium (mmol/L) | 0.8 (0.1) | 1.0 (0.4) | 0.432 |
Iron (µg/dL) | 110.9 (52.1) | 113.5 (27.2) | 0.950 |
CRP (mg/dL) | 0.7 (1.0) | 0.6 (0.4) | 0.925 |
TSH (µIU/mL) | 1.8 (0.7) | 1.0 (0.8) | 0.414 |
Testosterone (ng/dL) | 599.1 (216.8) | 619.8 (207) | 1.000 |
Cortisol (µg/dL) 7–10 AM | 14.7 (4.2) | 15.0 (3.4) | 0.834 |
Total bilirubin (mg/dL) | 1.8 (2.3) | 0.9 (0.5) | 0.167 |
Granulocytes (thousand/µL) | 0.7 (0.2) | 0.7 (0.4) | 0.414 |
Monocytes (%) | 7.5 (2.9) | 8.8 (1.9) | 0.224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzebisz-Zatońska, N. The Effect of Four-Month Training on Biochemical Variables in Amateur Cross-Country Skiers. J. Clin. Med. 2024, 13, 6026. https://doi.org/10.3390/jcm13206026
Grzebisz-Zatońska N. The Effect of Four-Month Training on Biochemical Variables in Amateur Cross-Country Skiers. Journal of Clinical Medicine. 2024; 13(20):6026. https://doi.org/10.3390/jcm13206026
Chicago/Turabian StyleGrzebisz-Zatońska, Natalia. 2024. "The Effect of Four-Month Training on Biochemical Variables in Amateur Cross-Country Skiers" Journal of Clinical Medicine 13, no. 20: 6026. https://doi.org/10.3390/jcm13206026
APA StyleGrzebisz-Zatońska, N. (2024). The Effect of Four-Month Training on Biochemical Variables in Amateur Cross-Country Skiers. Journal of Clinical Medicine, 13(20), 6026. https://doi.org/10.3390/jcm13206026