Serum Level of Cadherin-P (CDH3) Is a Novel Predictor of Cardiovascular Events Related to Atherosclerosis in a 3-Year Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Blood Sampling
2.3. Routine Blood Analysis
2.4. Microarray Analysis in the Serum
2.5. Indirect ELISA of CDH3
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pettitt, J. The Cadherin Superfamily; WormBook: Pasadena, CA, USA, 2005; pp. 1–9. [Google Scholar]
- Kumara, H.M.; Bellini, G.A.; Caballero, O.L.; Herath, S.A.; Su, T.; Ahmed, A.; Njoh, L.; Cekic, V.; Whelan, R.L. P-Cadherin (CDH3) is overexpressed in colorectal tumors and has potential as a serum marker for colorectal cancer monitoring. Oncoscience 2017, 4, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chi, Y.; Bhandari, A.; Xia, E.; Thakur, P.C.; Qu, J.; Wang, O.; Zhang, X. Downregulated CDH3 decreases proliferation, migration, and invasion in thyroid cancer. Am. J. Transl. Res. 2020, 12, 3057–3067. [Google Scholar] [PubMed]
- Seppälä, M.; Jauhiainen, L.; Tervo, S.; Al-Samadi, A.; Rautiainen, M.; Salo, T.; Lehti, K.; Monni, O.; Hautaniemi, S.; Tynninen, O.; et al. The expression and prognostic relevance of CDH3 in tongue squamous cell carcinoma. APMIS 2021, 129, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Gumanova, N.G.; Vasilyev, D.K.; Bogdanova, N.L.; Havrichenko, Y.I.; Kots, A.Y.; Metelskaya, V.A. Application of an antibody microarray for serum protein profiling of coronary artery stenosis. Biochem. Biophys. Res. Commun. 2022, 631, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Montalescot, G.; Sechtem, U.; Achenbach, S.; Andreotti, F.; Arden, C.; Budaj, A.; Bugiardini, R.; Crea, F.; Cuisset, T.; Di Mario, C.; et al. 2013 ESC guidelines on the management of stable coronary artery disease: The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 2013, 34, 2949–3003. [Google Scholar]
- Metelskaya, V.A.; Gavrilova, N.E.; Zhatkina, M.V.; Yarovaya, E.B.; Drapkina, O.M. A Novel Integrated Biomarker for Evaluation of Risk and Severity of Coronary Atherosclerosis, and Its Validation. J. Pers. Med. 2022, 12, 206. [Google Scholar] [CrossRef]
- Metelskaya, V.; Zhatkina, M.; Gavrilova, N.; Yarovaya, E.; Bogdanova, N.; Kutsenko, V.; Rudenko, B.; Drapkina, O. Associations of circulating biomarkers with the presence and severity of coronary, carotid and femoral arterial atherosclerosis. Cardiovasc. Ther. Prev. 2021, 20, 3098. (In Russian) [Google Scholar] [CrossRef]
- Gensini, G.G. A more meaningful scoring system for determining the severity of coronary heart disease. Am. J. Cardiol. 1983, 51, 606. [Google Scholar] [CrossRef]
- Gumanova, N.G.; Gavrilova, N.E.; Chernushevich, O.I.; Kots, A.Y.; Metelskaya, V.A. Ratios of leptin to insulin and adiponectin to endothelin are sex-dependently associated with extent of coronary atherosclerosis. Biomarkers 2017, 22, 239–245. [Google Scholar] [CrossRef]
- Zhatkina, M.; Gavrilova, N.; Makarova, Y.; Metelskaya, V.; Rudenko, B.; Drapkina, O. Diagnosis of multifocal atherosclerosis using the Celermajer test. Cardiovasc. Ther. Prev. 2020, 19, 2638. (In Russian) [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.-B.; Marie-Louise, E.L.; Bartelink, M.B.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: The European Stroke Organization (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart. J. 2018, 39, 763–816. [Google Scholar] [PubMed]
- Gao, M.; Hua, Y.; Zhao, X.; Jia, L.; Yang, J.; Liu, B. Optimal Ultrasound Criteria for Grading Stenosis of the Superficial Femoral Artery. Ultrasound Med. Biol. 2018, 44, 350–358. [Google Scholar] [CrossRef]
- Zhatkina, M.; Metelskaya, V.; Gavrilova, N.; Yarovaya, E.; Makarova, Y.; Litinskaya, O.; Bogdanova, N.; Rudenko, B.; Drapkina, O. Biochemical markers of coronary atherosclerosis: Building models and assessing their prognostic value regarding the lesion severity. Russ. J. Cardiol. 2021, 26, 4559. [Google Scholar] [CrossRef]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide Biol. Chem. 2001, 5, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Metelskaia, V.A.; Gumanova, N.G. Screening as a method for determining the serum level of nitric oxide metabolites. Klin. Lab. Diagn. 2005, 6, 15–18. (in Russian). [Google Scholar]
- Gumanova, N.G.; Klimushina, M.V.; Metel’skaya, V.A. Optimization of Single-Step Assay for Circulating Nitrite and Nitrate Ions (NOx) as Risk Factors of Cardiovascular Mortality. Bull. Exp. Biol. Med. 2018, 165, 284–287. [Google Scholar] [CrossRef]
- Ershova, A.; Meshkov, A.; Shalnova, S.; Shcherbakova, N.; Andreenko, E.; Romanchuk, S.; Shutemova, E.; Belova, O.; Boytsov, S. Ultrasound parameters of carotid and femoral atherosclerosis in patients with coronary heart disease. Russ. J. Prev. Med. 2014, 6, 108–116. [Google Scholar] [CrossRef]
- Gumanova, N.G.; Teplova, N.V.; Ryabchenko, A.U.; Denisov, E.N. Serum nitrate and nitrite levels in patients with hypertension and ischemic stroke depend on diet: A multicenter study. Clin. Biochem. 2015, 48, 29–32. [Google Scholar] [CrossRef]
- Takeichi, M. Self-organization of animal tissues: Cadherin-mediated processes. Dev. Cell 2011, 21, 24–26. [Google Scholar] [CrossRef]
- Vieira, A.; Paredes, J. P-cadherin and the journey to cancer metastasis. Mol. Cancer 2015, 14, 178. [Google Scholar] [CrossRef]
- Albergaria, A.; Ribeiro, A.-S.; Vieira, A.-F.; Sousa, B.; Nobre, A.-R.; Seruca, R.; Schmitt, F.; Paredes, J. P-cadherin role in normal breast development and cancer. Int. J. Dev. Biol. 2011, 55, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Hulpiau, P.; van Roy, F. Molecular evolution of the cadherin superfamily. Int. J. Biochem. Cell Biol. 2009, 41, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Nose, A.; Takeichi, M. A novel cadherin cell adhesion molecule: Its expression patterns associated with implantation and organogenesis of mouse embryos. J. Cell Biol. 1986, 103 Pt 2, 2649–2658. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Hirata, S.; Irie, A.; Senju, S.; Ikuta, Y.; Yokomine, K.; Harao, M.; Inoue, M.; Tsunoda, T.; Nakatsuru, S.; et al. Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clin. Cancer Res. 2008, 14, 6487–6495. [Google Scholar] [CrossRef]
- Cheung, L.W.; Leung, P.C.; Wong, A.S. Cadherin switching and activation of p120 catenin signaling are mediators of gonadotropin-releasing hormone to promote tumor cell migration and invasion in ovarian cancer. Oncogene 2010, 29, 2427–2440. [Google Scholar] [CrossRef]
- Satoh, T. Rho GTPases in insulin-stimulated glucose uptake. Small GTPases 2014, 5, e28102. [Google Scholar] [CrossRef]
- Cheung, L.W.T.; Mak, A.S.C.; Cheung, A.N.Y.; Ngan, H.Y.S.; Leung, P.C.K.; Wong, A.S.T. P-cadherin cooperates with insulin-like growth factor-1 receptor to promote metastatic signaling of gonadotropin-releasing hormone in ovarian cancer via p120 catenin. Oncogene 2011, 30, 2964–2974. [Google Scholar] [CrossRef]
- Fukata, M.; Kaibuchi, K. Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat. Rev. Mol. Cell Biol. 2001, 2, 887–897. [Google Scholar] [CrossRef]
- Switzer, C.; Cheng, R.; Ridnour, L.; Glynn, S.; Ambs, S.; Wink, D. Ets-1 is a transcriptional mediator of oncogenic nitric oxide signaling in estrogen receptor-negative breast cancer. Breast Cancer Res. 2012, 14, R125. [Google Scholar] [CrossRef]
- Switzer, C.H.; Glynn, S.A.; Cheng, R.; Ridnour, L.A.; Green, J.E.; Ambs, S.; Wink, D.A. S-nitrosylation of EGFR and Src activates an oncogenic signaling network in human basal-like breast cancer. Mol. Cancer Res. 2012, 10, 1203–1215. [Google Scholar] [CrossRef]
- McKearnan, S.B.; Wolfson, J.; Vock, D.M.; Vazquez-Benitez, G.; O’Connor, P.J. Performance of the Net Reclassification Improvement for Nonnested Models and a Novel Percentile-Based Alternative. Am. J. Epidemiol. 2018, 187, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Pencina, M.J.; D’Agostino, R.B.; Vasan, R.S. Statistical methods for assessment of added usefulness of new biomarkers. Clin. Chem. Lab. Med. 2010, 48, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Ciliberti, G.; Guerra, F.; Pizzi, C.; Merlo, M.; Zilio, F.; Bianco, F.; Mancone, M.; Zaffalon, D.; Gioscia, R.; Bergamaschi, L.; et al. Characteristics of patients with recurrent acute myocardial infarction after MINOCA. Prog. Cardiovasc. Dis. 2023, 81, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Armillotta, M.; Amicone, S.; Bergamaschi, L.; Angeli, F.; Rinaldi, A.; Paolisso, P.; Stefanizzi, A.; Sansonetti, A.; Impellizzeri, A.; Bodega, F.; et al. Predictive value of Killip classification in MINOCA patients. Eur. J. Intern. Med. 2023, 117, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, U.; Dejana, E. Adhesion molecule signalling: Not always a sticky business. Nat. Rev. Mol. Cell Biol. 2011, 12, 189–197. [Google Scholar] [CrossRef]
- Larue, L.; Antos, C.; Butz, S.; Huber, O.; Delmas, V.; Dominis, M.; Kemler, R. A role for cadherins in tissue formation. Development 1996, 122, 3185–3194. [Google Scholar] [CrossRef]
- Raymond, K.; Deugnier, M.A.; Faraldo, M.M.; Glukhova, M.A. Adhesion within the stem cell niches. Curr. Opin. Cell Biol. 2009, 21, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Lincoff, A.M.; Plow, E.F.; Topol, E.J. Cell adhesion molecules in coronary artery disease. J. Am. Coll. Cardiol. 1994, 24, 1591–1601. [Google Scholar] [CrossRef]
- Soeki, T.; Tamura, Y.; Shinohara, H.; Sakabe, K.; Onose, Y.; Fukuda, N. Elevated concentration of soluble vascular endothelial cadherin is associated with coronary atherosclerosis. Circ. J. 2004, 68, 1–5. [Google Scholar] [CrossRef]
- Dejana, E.; Giampietro, C. Vascular endothelial-cadherin and vascular stability. Curr. Opin. Hematol. 2012, 19, 218–223. [Google Scholar] [CrossRef]
- Speed, J.S.; Heimlich, J.B.; Hyndman, K.A.; Fox, B.M.; Patel, V.; Yanagisawa, M.; Pollock, J.S.; Titze, J.M.; Pollock, D.M. Endothelin-1 as a master regulator of whole-body Na+ homeostasis. FASEB J. 2015, 29, 4937–4944. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Discher, D.J.; Hu, J.; Bishopric, N.H.; Webster, K.A. Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, AND p300/CBP. J. Biol. Chem. 2001, 276, 12645–12653. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, H.N.; Rivera-Gonzalez, O.; Gibert, Y.; Speed, J.S. Endothelin-1 in the pathophysiology of obesity and insulin resistance. Obes. Rev. 2020, 21, e13086. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. Pharmacol. Rev. 2016, 68, 357–418. [Google Scholar] [CrossRef]
- Juan, C.C.; Chang, C.L.; Lai, Y.H.; Ho, L.T. Endothelin-1 induces lipolysis in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E1146–E1152. [Google Scholar] [CrossRef]
- Jenkins, H.N.; Williams, L.J.; Dungey, A.; Vick, K.D.; Grayson, B.E.; Speed, J.S. Elevated plasma endothelin-1 is associated with reduced weight loss post vertical sleeve gastrectomy. Surg. Obes. Relat. Dis. 2019, 15, 1044–1050. [Google Scholar] [CrossRef]
- Sartori, C.; Scherrer, U. Insulin, nitric oxide and the sympathetic nervous system: At the crossroads of metabolic and cardiovascular regulation. J. Hypertens. 1999, 17, 1517–1525. [Google Scholar] [CrossRef]
- Scherrer, U.; Sartori, C. Defective nitric oxide synthesis: A link between metabolic insulin resistance, sympathetic overactivity and cardiovascular morbidity. Eur. J. Endocrinol. 2000, 142, 315–323. [Google Scholar] [CrossRef]
- Owlya, R.; Vollenweider, L.; Trueb, L.; Sartori, C.; Lepori, M.; Nicod, P.; Scherrer, U. Cardiovascular and sympathetic effects of nitric oxide inhibition at rest and during static exercise in humans. Circulation 1997, 96, 3897–3903. [Google Scholar] [CrossRef]
- Lucas, C.P.; Estigarribia, J.A.; Darga, L.L.; Reaven, G.M. Insulin and blood pressure in obesity. Hypertension 1985, 7, 702–706. [Google Scholar] [CrossRef]
- Steinberg, H.O.; Brechtel, G.; Johnson, A.; Fineberg, N.; Baron, A.D. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J. Clin. Investig. 1994, 94, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Meininger, C.J. Nitric oxide and vascular insulin resistance. BioFactors 2009, 35, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Gumanova, N.G.; Gorshkov, A.U.; Klimushina, M.V.; Kots, A.Y. Associations of endothelial biomarkers, nitric oxide metabolites and endothelin, with blood pressure and coronary lesions depend on cardiovascular risk and sex to mark endothelial dysfunction on the SCORE scale. Horm. Mol. Biol. Clin. Investig. 2020, 41, 4. [Google Scholar] [CrossRef] [PubMed]
Stratification After 3-Year Follow Up | Baseline Characteristics | ||||||
---|---|---|---|---|---|---|---|
Parameter | Patients with No CV Events * | Patients with CV Events | Total Cohort | Patients with Gensini Score = 0 | Patients with Gensini Score > 0 | ||
N | 77 | 99 | 218 | 76 | 142 | ||
Mean (SD) | p | Mean (SD) | p | ||||
General characteristic | |||||||
Sex | 1.48 | 1.46 | NS | 1.39 | 1.57 | 1.42 (0.49) | 0.036 |
Age | 59.7 (12.1) | 63.7 (9.3) | NS | 63.2 (10.9) | 60.5 (11.9) | 63.5 (10.1) | NS |
Smoking (0/1/2) **, % | 53/14/33 | 41/13/47 | NS | 45/13/42 | 50/14/36 | 42/9/46 | NS |
Patients with CV family history ***, % | 59.7 | 75 | 0.01 | 67.8 | 47.4 | 81 | >0.0001 |
BMI, kg/m2 | 28.8 (4.7) | 30.1 (4.8) | NS | 29.9 (5.8) | 29.4 (5.6) | 30.1 (5.1) | NS |
WS, cm | 90.4 (9.9) | 94.9 (13.2) | NS | 93.7 (12.5) | 92.1 (12.2) | 93.7 (12.3) | NS |
SBP, mm Hg | 128.5 (13.2) | 130.1 (14.1) | NS | 128.5 (12.7) | 126.53 (11.5) | 131.1 (14.3) | 0.02 |
DBP, mm Hg | 73.1 (7.4) | 72.3 (8.7) | NS | 71.8 (7.8) | 71.8 (7.6) | 73.5 (8.6) | NS |
Biochemical markers | |||||||
NOx, µM | 42.62 (23.9) | 39.62 (26.74) | NS | 41.29 (25.30) | 51.73 (32.03) | 35.50 (18.35) | 0.000 |
Endothelin-1, pg/ml | 1.72 (0.8) | 1.73 (0.36) | NS | 1.68 (0.63) | 1.72 (0.84) | 1.66 (0.47) | 0.005 |
TC, mmol/L | 4.30 (1.1) | 4.23 (1.04) | NS | 4.13 (1.08) | 4.45 (1.08) | 4.24 (1.08) | NS |
Triglycerides, mmol/L | 1.55 (0.96) | 1.57 (0.61) | NS | 1.58 (0.90) | 1.54 (0.85) | 1.50 (0.72) | NS |
LDL-cholesterol, mmol/L | 2.45 (0.92) | 2.46 (0.88) | NS | 2.33 (0.90) | 2.62 (0.97) | 2.43 (0.91) | NS |
HDL-cholesterol, mmol/L | 1.20 (0.31) | 1.06 (0.27) | NS | 1.10 (0.31) | 1.18 (0.32) | 1.12 (0.30) | NS |
Glucose, mmol/L | 6.12 (1.53) | 6.53 (1.91) | 0.000 | 6.32 (1.79) | 5.85 (1.35) | 6.60 (1.78) | 0.000 |
Insulin, µIU/ml | 12.01 (10.7) | 14.99 (14.22) | 0.000 | 12.90 (9.82) | 10.94 (10.18) | 14.55 (12.89) | 0.002 |
HOMA-IR | 3.58 (4.21) | 4.75 (5.83) | 0.002 | 3.82 (3.66) | 2.96 (3.26) | 4.64 (5.4) | 0.000 |
CRP, mg/L | 5.70 (16.3) | 7.98 (12.6) | 0.000 | 9.46 (22.23) | 6.80 (21.62) | 7.48 (15.72) | NS |
Fibrinogen, g/L | 4.60 (1.35) | 4.88 (1.21) | 0.01 | 5.03 (1.40) | 4.59 (1.40) | 4.87 (1.25) | 0.01 |
Adiponectin, µg/mL | 8.80 (3.61) | 8.55 (4.72) | NS | 8.86 (5.01) | 9.30 (4.55) | 9.08 (5.93) | NS |
Leptin, ng/mL | 44.18 (46.2) | 29.04 (38.21) | NS | 34.00 (42.50) | 39.14 (43.99) | 34.78 (41.94) | NS |
CDH3, pg/mL | 3.50 (2.68) | 4.29 (2.96) | 0.016 | 4.02 (2.88) | 2.88 (2.72) | 4.72 (2.76) | 0.000 |
Statin treatment before blood withdrawal, % | 49.3 | 65.2 | 0.006 | 58.2 | 32.3 | 72.3 | 0.000 |
Statistical Method | p | ||||
---|---|---|---|---|---|
N total = 172; CV outcomes * N = 95; CDH3 (continuous) | AUC (95% CI) | 0.58 (0.52–0.64) | 0.017 | Optimal cut-off for CDH3 = 4.6 pg/mL | Sensitivity 0.55 Specify 0.63 |
CV outcomes N (50/45); CDH3 (binary) N (53/24); cut-off 4.6 pg/mL | OR (95% CI) | 1.81 (1.07–3.72) | 0.022 |
Parameters | B | Wald (Chi-Squared) | p |
---|---|---|---|
Sex | 1.251 | 0.720 | 0.396 |
Age | 0.430 | 30.021 | 0.082 |
Smoking | −0.038 | 40.713 | 0.030 |
Patients with CV family history ** | −0.544 | 0.781 | 0.377 |
Gensini score | 0.407 | 70.346 | 0.007 |
Systolic blood pressure, mm Hg | −0.021 | 40.058 | 0.044 |
Diastolic blood pressure, mm Hg | −0.039 | 50.353 | 0.021 |
Total cholesterol, mmol/L | 0.078 | 0.846 | 0.358 |
Triglycerides, mmol/L | 590.197 | 0.840 | 0.359 |
LDL holesterol, mmol/L | −270.063 | 0.856 | 0.355 |
HDL cholesterol, mmol/L | −590.539 | 0.764 | 0.382 |
Glucose, mmol/L | −560.314 | 30.088 | 0.079 |
C-reactive protein, mg/L | −0.211 | 0.889 | 0.346 |
CDH3, pg/mL | 0.013 | 30.726 | 0.049 |
Observed | Predicted | ||
0 | 1 | % of Corrected Observations | |
0 | 29 | 48 | 37.7% |
1 | 20 | 75 | 78.9% |
Total % | 28.5% | 71.5% | 60.5% |
Classification Table for Base Model Plus CDH3 | |||
0 | 1 | % of Corrected Observations | |
0 | 37 | 36 | 50.7% |
1 | 21 | 66 | 75.9% |
Total % | 36.2% | 63.7% | 64.4% |
Parameters | N | OR (95% CI) | p |
---|---|---|---|
Routine cardiac risk factors ** | 29/48 20/75 | 2.26 (1.15–4.45) | 0.017 |
Routine cardiac risk factors plus CDH3 (cut-off 4.6 pg/mL) | 37/36 21/66 | 3.23 (1.64–6.32) | 0.0006 |
AUC (95% CI) for Binary CDH3 (Cut-off 4.6 pg/mL) | Optimal Cut-Off for the Corresponding Parameters According to AUC | p | |
---|---|---|---|
General characteristics | |||
Sex | - | NS | |
Age | - | NS | |
Smoking (0/1/2) **, % | NS | ||
Patients with CV family history. | 0.61 (0.52–0.69) | 0.016 | |
BMI, kg/m2 | - | NS | |
WS, cm | - | NS | |
SBP, mm Hg | - | NS | |
DBP, mm Hg | 0.58 (0.53–0.63) | 71.0 | 0.006 |
Biochemical markers | |||
NOx, µM and endothelin-1 in model | 0.64 (0.54–0.74) | 33.01 | 0.005 |
Endothelin-1, pg/mL | 0.66(0.57–0.75) | 1.67 | 0.001 |
TC, mmol/L | - | ||
Triglycerides, mmol/L | - | NS | |
LDL-cholesterol, mmol/L | - | NS | |
HDL-cholesterol, mmol/L | - | NS | |
Glucose, mmol/L | - | NS | |
Insulin, µIU/mL | - | NS | |
HOMA-IR | - | NS | |
CRP, mg/L | - | NS | |
Fibrinogen, g/L | - | NS | |
Adiponectin, µg/mL | - | NS | |
Leptin, ng/mL | - | NS | |
Statins treatment before blood withdrawal, % | NS |
Parameter | B | S.E. | Wald | df | p | Exp (B) |
---|---|---|---|---|---|---|
NOx, µM | 0.006 | 0.007 | 0.855 | 1 | 0.355 | 1.006 |
Endothelin-1 (pg/mL) | 0.854 | 0.301 | 8.055 | 1 | 0.005 | 2.349 |
Unstandardized Coefficients | Standardized Coefficients | p | |||
---|---|---|---|---|---|
Dependent Variable | Models | B | S.E. | Beta | |
Systolic blood pressure, mm Hg | Endothelin-1, pg/mL | −0.687 | 1.382 | −0.041 | 0.620 |
NOx, µM | −0.054 | 0.027 | −0.162 | 0.045 | |
CDH3, pg/mL | 0.158 | 0.315 | 0.041 | 0.616 | |
Diastolic blood pressure, mm Hg | Endothelin-1, pg/mL | −1.995 | 0.931 | −0.172 | 0.034 |
NOx, µM | −0.016 | 0.018 | −0.069 | 0.382 | |
CDH3, pg/mL | 0.561 | 0.212 | 0.212 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumanova, N.G.; Vasilyev, D.K.; Bogdanova, N.L.; Drapkina, O.M. Serum Level of Cadherin-P (CDH3) Is a Novel Predictor of Cardiovascular Events Related to Atherosclerosis in a 3-Year Follow-Up Study. J. Clin. Med. 2024, 13, 6293. https://doi.org/10.3390/jcm13216293
Gumanova NG, Vasilyev DK, Bogdanova NL, Drapkina OM. Serum Level of Cadherin-P (CDH3) Is a Novel Predictor of Cardiovascular Events Related to Atherosclerosis in a 3-Year Follow-Up Study. Journal of Clinical Medicine. 2024; 13(21):6293. https://doi.org/10.3390/jcm13216293
Chicago/Turabian StyleGumanova, Nadezhda G., Dmitry K. Vasilyev, Natalya L. Bogdanova, and Oxana M. Drapkina. 2024. "Serum Level of Cadherin-P (CDH3) Is a Novel Predictor of Cardiovascular Events Related to Atherosclerosis in a 3-Year Follow-Up Study" Journal of Clinical Medicine 13, no. 21: 6293. https://doi.org/10.3390/jcm13216293
APA StyleGumanova, N. G., Vasilyev, D. K., Bogdanova, N. L., & Drapkina, O. M. (2024). Serum Level of Cadherin-P (CDH3) Is a Novel Predictor of Cardiovascular Events Related to Atherosclerosis in a 3-Year Follow-Up Study. Journal of Clinical Medicine, 13(21), 6293. https://doi.org/10.3390/jcm13216293