The Double-Edged Sword of Immunotherapy—Durvalumab-Induced Polyendocrinopathy—Case Report
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, R.; Stewart, R.; Shalabi, A. PD-L1 Blockade for Cancer Treatment: MEDI4736. Semin. Oncol. 2015, 42, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.; Morrow, M.; Hammond, S.A.; Mulgrew, K.; Marcus, D.; Poon, E.; Watkins, A.; Mullins, S.; Chodorge, M.; Andrews, J.; et al. Identification and Characterization of MEDI4736, an Antagonistic Anti–PD-L1 Monoclonal Antibody. Cancer Immunol. Res. 2015, 3, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef]
- Ruiz-Esteves, K.N.; Shank, K.; Ouyang, T.; Colling, C.; Zubiri, L.; Villani, A.-C.; Reynolds, K.L.; Rengarajan, M. Clinical and immune phenotypes associated with immune checkpoint inhibitor-induced autoimmune diabetes. J. Clin. Oncol. 2023, 41, 2509. [Google Scholar] [CrossRef]
- Sun, Q.; Hong, Z.; Zhang, C.; Wang, L.; Han, Z.; Ma, D. Immune checkpoint therapy for solid tumours: Clinical dilemmas and future trends. Signal Transduct. Target. Ther. 2023, 8, 320. [Google Scholar] [CrossRef]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Wu, L.; Han, L.; Zheng, X.; Tong, R.; Li, L.; Bai, L.; Bian, Y. Immune-related adverse events of immune checkpoint inhibitors: A review. Front. Immunol. 2023, 14, 1167975. [Google Scholar] [CrossRef]
- de Moel, E.C.; Rozeman, E.A.; Kapiteijn, E.H.; Verdegaal, E.M.; Grummels, A.; Bakker, J.A.; Huizinga, T.W.J.; Haanen, J.B.; Toes, R.E.M.; van der Woude, D. Autoantibody Development under Treatment with Immune-Checkpoint Inhibitors. Cancer Immunol. Res. 2019, 7, 6–11. [Google Scholar] [CrossRef]
- Ryder, M.; Callahan, M.; Postow, M.A.; Wolchok, J.; Fagin, J.A. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: A comprehensive retrospective review from a single institution. Endocr. Relat. Cancer 2014, 21, 371–381. [Google Scholar] [CrossRef]
- De Filette, J.; Andreescu, C.E.; Cools, F.; Bravenboer, B.; Velkeniers, B. A Systematic Review and Meta-Analysis of Endocrine-Related Adverse Events Associated with Immune Checkpoint Inhibitors. Horm. Metab. Res. 2019, 51, 145–156. [Google Scholar] [CrossRef]
- Sonpavde, G.P.; Grivas, P.; Lin, Y.; Hennessy, D.; Hunt, J.D. Immune-Related Adverse Events with PD-1 Versus PD-L1 Inhibitors: A Meta-Analysis of 8730 Patients from Clinical Trials. Futur. Oncol. 2021, 17, 2545–2558. [Google Scholar] [CrossRef] [PubMed]
- Nivolumab Label Information 2018. Available online: https://packageinserts.bms.com/pi/pi_opdivo.pdf (accessed on 20 October 2024).
- Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; Hodi, F.S.; Min, L.; Krop, I.E.; Tolaney, S.M. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, K.P.; Johnson, M.L.; Lockhart, A.C.; Moore, K.N.; Falchook, G.S.; Formenti, S.C.; Naing, A.; Carvajal, R.D.; Rosen, L.S.; Weiss, G.J.; et al. First-In-Human Study of Cemiplimab Alone or In Combination with Radiotherapy and/or Low-dose Cyclophosphamide in Patients with Advanced Malignancies. Clin. Cancer Res. 2020, 26, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- André, T.; Berton, D.; Oaknin, A.; Garcia, V.M.; Curigliano, G.; Trigo, J.; Barretina-Ginesta, M.-P.; Ellard, S.; Tinker, A.; Miller, R.; et al. 991P Treatment-related adverse events (TRAEs) occurring during dostarlimab therapy in the GARNET study. Ann. Oncol. 2021, 32, S845–S846. [Google Scholar] [CrossRef]
- Mirza, M.R.; Chase, D.M.; Slomovitz, B.M.; Christensen, R.D.; Novák, Z.; Black, D.; Gilbert, L.; Sharma, S.; Valabrega, G.; Landrum, L.M.; et al. Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2145–2158. [Google Scholar] [CrossRef]
- Mengíbar, J.L.; Capel, I.; Bonfill, T.; Mazarico, I.; Espuña, L.C.; Caixàs, A.; Rigla, M. Simultaneous onset of type 1 diabetes mellitus and silent thyroiditis under durvalumab treatment. Endocrinol. Diabetes Metab. Case Rep. 2019, 2019, 19–0045. [Google Scholar] [CrossRef]
- Patel, S.; Chin, V.; Greenfield, J.R. Durvalumab-induced diabetic ketoacidosis followed by hypothyroidism. Endocrinol. Diabetes Metab. Case Rep. 2019, 2019, 19–0098. [Google Scholar] [CrossRef]
- Osum, K.C.; Burrack, A.L.; Martinov, T.; Sahli, N.L.; Mitchell, J.S.; Tucker, C.G.; Pauken, K.E.; Papas, K.; Appakalai, B.; Spanier, J.A.; et al. Interferon-gamma drives programmed death-ligand 1 expression on islet β cells to limit T cell function during autoimmune diabetes. Sci. Rep. 2018, 8, 8295. [Google Scholar] [CrossRef]
- Perri, V.; Russo, B.; Crinò, A.; Schiaffini, R.; Giorda, E.; Cappa, M.; Rosado, M.M.; Fierabracci, A. Expression of PD-1 Molecule on Regulatory T Lymphocytes in Patients with Insulin-Dependent Diabetes Mellitus. Int. J. Mol. Sci. 2015, 16, 22584–22605. [Google Scholar] [CrossRef]
- Fujiwara, M.; Shimizu, M.; Okano, T.; Maejima, Y.; Shimomura, K. Successful treatment of nivolumab and ipilimumab triggered type 1 diabetes by using sodium-glucose transporter 2 inhibitor: A case report and systematic review. Front. Public Health 2023, 11, 1264056. [Google Scholar] [CrossRef]
- Marchand, L.; Disse, E.; Dalle, S.; Reffet, S.; Vouillarmet, J.; Fabien, N.; Thivolet, C.; Cugnet-Anceau, C. The multifaceted nature of diabetes mellitus induced by checkpoint inhibitors. Acta Diabetol. 2019, 56, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.A.; Schneider, B.J.; Brahmer, J.; Andrews, S.; Armand, P.; Bhatia, S.; Budde, L.E.; Costa, L.; Davies, M.; Dunnington, D.; et al. Management of immunotherapy-related toxicities. J. Natl. Compr. Cancer Netw. 2019, 17, 255–289. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Sousa, R.; Ott, P.A.; Hodi, F.S.; Kaiser, U.B.; Tolaney, S.M.; Min, L. Endocrine dysfunction induced by immune checkpoint inhibitors: Practical recommendations for diagnosis and clinical management. Cancer 2018, 124, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Villadolid, J.; Amin, A. Immune checkpoint inhibitors in clinical practice: Update on management of immune-related toxicities. Transl. Lung Cancer Res. 2015, 4, 560–575. [Google Scholar] [PubMed]
- Aleksova, J.; Lau, P.K.H.; Soldatos, G.; McArthur, G. Glucocorticoids did not reverse type 1 diabetes mellitus secondary to pembrolizumab in a patient with metastatic melanoma. BMJ Case Rep. 2016, 2016, bcr2016217454. [Google Scholar] [CrossRef]
- Fichna, M.; Fichna, P. Glucocorticoids and beta-cell function. Endokrynol. Pol. 2017, 68, 568–573. [Google Scholar] [CrossRef]
- Tamez-Pérez, H.E.; Quintanilla-Flores, D.L.; Rodríguez-Gutiérrez, R.; González-González, J.G.; Tamez-Peña, A.L. Steroid hyperglycemia: Prevalence, early detection and therapeutic recommendations: A narrative review. World J. Diabetes 2015, 6, 1073–1081. [Google Scholar] [CrossRef]
- Chang, L.-S.; Barroso-Sousa, R.; Tolaney, S.M.; Hodi, F.S.; Kaiser, U.B.; Min, L. Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocr. Rev. 2018, 40, 17–65. [Google Scholar] [CrossRef]
- Farina, K.A.; Kane, M.P. Programmed Cell Death-1 Monoclonal Antibody Therapy and Type 1 Diabetes Mellitus: A Review of the Literature. J. Pharm. Pract. 2021, 34, 133–140. [Google Scholar] [CrossRef]
- Myers, G. Immune-Related Adverse Events of Immune Checkpoint Inhibitors: A Brief Review. Curr. Oncol. 2018, 25, 342–347. [Google Scholar] [CrossRef]
- Darnell, E.P.; Mooradian, M.J.; Baruch, E.N.; Yilmaz, M.; Reynolds, K.L. Immune-Related Adverse Events (irAEs): Diagnosis, Management, and Clinical Pearls. Curr. Oncol. Rep. 2020, 22, 39. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.; Obeid, M.; Spain, L.; Carbonnel, F.; Wang, Y.; Robert, C.; Lyon, A.; Wick, W.; Kostine, M.; Peters, S.; et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 1217–1238. [Google Scholar] [CrossRef] [PubMed]
- Stamatouli, A.M.; Quandt, Z.; Perdigoto, A.L.; Clark, P.L.; Kluger, H.; Weiss, S.A.; Gettinger, S.; Sznol, M.; Young, A.; Rushakoff, R.; et al. Collateral Damage: Insulin-Dependent Diabetes Induced with Checkpoint Inhibitors. Diabetes 2018, 67, 1471–1480. [Google Scholar] [CrossRef]
- de Filette, J.M.; Pen, J.J.; Decoster, L.; Vissers, T.; Bravenboer, B.; Van der Auwera, B.J.; Gorus, F.K.; Roep, B.O.; Aspeslagh, S.; Neyns, B.; et al. Immune checkpoint inhibitors and type 1 diabetes mellitus: A case report and systematic review. Eur. J. Endocrinol. 2019, 181, 363–374. [Google Scholar] [CrossRef] [PubMed]
Drug Name | Target | Immunoglobulin (Ig) Type | Incidence of Endocrinopathy During Treatment | ||||
---|---|---|---|---|---|---|---|
T1DM/Hyperglycemia * | Hypothyroidism | Hyperthyroidism | Hypophysitis | Adrenalitis/Adrenal Dysfunction | |||
Ipilimumab | CTLA-4 | IgG1 | No risk when administered alone | 1–19% (8% overall) [9] | no data | 6–30% (6% overall) [9] | 1% [9] |
Pembrolizumab | PD-1 | IgG4 | 0.4% [10] | 8.0% [11] | 3.7% [10] | 1.1% [10] | 0.8% [10] |
Nivolumab | PD-1 | IgG4 | 0.9% [12] | 7.6% [11] | 2.8% [10] | 0.5% [10] | 2% [10] |
Atezolizumab | PD-L1 | IgG1 | 1.4% [10] | 1.9% [11] | 0.6% [13] | no data | no data |
Avelumab | PD-L1 | IgG1 | 1.1% [10] | 4.6% [11] | 0.6% [13] | less than 0.1% [13] | 1.1% [10] |
Durvalumab | PD-L1 | IgG1 | no data | 9.0% [11] | 0.6% [13] | less than 0.1% [13] | no data |
Cemiplimab | PD-1 | IgG4 | no data | 8.3% [14] * | 2.8% [14] | no data | no data |
Dostarlimab | PD-1 | IgG4 | 1% [15] | 11.2% [16] | 3.1% [15] | 0.4% [15] | 1.4% [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błażowska, O.; Stróżna, K.; Dancewicz, H.; Zygmunciak, P.; Zgliczyński, W.; Mrozikiewicz-Rakowska, B. The Double-Edged Sword of Immunotherapy—Durvalumab-Induced Polyendocrinopathy—Case Report. J. Clin. Med. 2024, 13, 6322. https://doi.org/10.3390/jcm13216322
Błażowska O, Stróżna K, Dancewicz H, Zygmunciak P, Zgliczyński W, Mrozikiewicz-Rakowska B. The Double-Edged Sword of Immunotherapy—Durvalumab-Induced Polyendocrinopathy—Case Report. Journal of Clinical Medicine. 2024; 13(21):6322. https://doi.org/10.3390/jcm13216322
Chicago/Turabian StyleBłażowska, Olga, Katarzyna Stróżna, Hanna Dancewicz, Przemysław Zygmunciak, Wojciech Zgliczyński, and Beata Mrozikiewicz-Rakowska. 2024. "The Double-Edged Sword of Immunotherapy—Durvalumab-Induced Polyendocrinopathy—Case Report" Journal of Clinical Medicine 13, no. 21: 6322. https://doi.org/10.3390/jcm13216322
APA StyleBłażowska, O., Stróżna, K., Dancewicz, H., Zygmunciak, P., Zgliczyński, W., & Mrozikiewicz-Rakowska, B. (2024). The Double-Edged Sword of Immunotherapy—Durvalumab-Induced Polyendocrinopathy—Case Report. Journal of Clinical Medicine, 13(21), 6322. https://doi.org/10.3390/jcm13216322