Radiomics for Predicting Prognostic Factors in Breast Cancer: Insights from Contrast-Enhanced Mammography (CEM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Contrast-Enhanced Mammography (CEM)
2.3. Histological Examination
2.4. Radiomic Analysis
2.5. Radiomic Feature Extraction
2.6. Statistical Analysis
3. Results
3.1. Univariate Analysis
3.1.1. Correlation Between Features Extracted from Lesions and Prognostic Factors
3.1.2. Correlation Between Features Extracted from Lesion Contours and Prognostic Factors
3.2. Multivariate Analysis
3.2.1. Correlation Between Feature Classes Extracted from Lesions and Prognostic Factors
3.2.2. Correlation Between Feature Classes Extracted from Lesion Contours and Prognostic Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rotili, A.; Trimboli, R.M.; Penco, S.; Pesapane, F.; Tantrige, P.; Cassano, E.; Sardanelli, F. Double reading of diffusion-weighted magnetic resonance imaging for breast cancer detection. Breast Cancer Res. Treat. 2020, 180, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Rotili, A.; Penco, S.; Nicosia, L.; Cassano, E. Digital Twins in Radiology. J. Clin. Med. 2022, 11, 6553. [Google Scholar] [CrossRef] [PubMed]
- European Society of Radiology. Medical imaging in personalised medicine: A white paper of the research committee of the European Society of Radiology (ESR). Insights Imaging 2015, 6, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, C.L.; Mallio, C.A.; Messina, L.; Tommasiello, M.; Orsaria, P.; Altomare, V.; Sammarra, M.; Zobel, B.B. Radiological Features of B3 Lesions in Mutation Carrier Patients: A Single-Center Retrospective Analysis. Appl. Sci. 2023, 13, 4994. [Google Scholar] [CrossRef]
- Jochelson, M.S.; Lobbes, M.B.I. Contrast-enhanced Mammography: State of the Art. Radiology 2021, 299, 36–48. [Google Scholar] [CrossRef]
- Piccolo, C.L.; Celli, I.; Bandini, C.; Tommasiello, M.; Sammarra, M.; Faggioni, L.; Cioni, D.; Beomonte Zobel, B.; Neri, E. The Correlation between Morpho-Dynamic Contrast-Enhanced Mammography (CEM) Features and Prognostic Factors in Breast Cancer: A Single-Center Retrospective Analysis. Cancers 2024, 16, 870. [Google Scholar] [CrossRef]
- Kinkar, K.K.; Fields, B.K.K.; Yamashita, M.W.; Varghese, B.A. Empowering breast cancer diagnosis and radiology practice: Advances in artificial intelligence for contrast-enhanced mammography. Front. Radiol. 2024, 3, 1326831. [Google Scholar] [CrossRef]
- Sammarra, M.; Piccolo, C.L.; Sarli, M.; Stefanucci, R.; Tommasiello, M.; Orsaria, P.; Altomare, V.; Zobel, B.B. Contrast-Enhanced Mammography-Guided Biopsy: Preliminary Results of a Single-Center Retrospective Experience. J. Clin. Med. 2024, 13, 933. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Yip, S.S.; Parmar, C.; Kim, J.; Huynh, E.; Mak, R.H.; Aerts, H.J. Impact of experimental design on PET radiomics in predicting somatic mutation status. Eur. J. Radiol. 2017, 97, 8–15. [Google Scholar] [CrossRef]
- Parekh, V.S.; Jacobs, M.A. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. Npj Breast Cancer 2017, 3, 43. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Codari, M.; Sardanelli, F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2018, 2, 35. [Google Scholar] [CrossRef] [PubMed]
- Patella, F.; Franceschelli, G.; Petrillo, M.; Sansone, M.; Fusco, R.; Pesapane, F.; Pompili, G.; Ierardi, A.M.; Saibene, A.M.; Moneghini, L.; et al. A multiparametric analysis combining DCE-MRI- and IVIM-derived parameters to improve differentiation of parotid tumors: A pilot study. Future Oncol. 2018, 14, 2893–2903. [Google Scholar] [CrossRef] [PubMed]
- King, A.D.; Chow, K.-K.; Yu, K.-H.; Mo, F.K.F.; Yeung, D.K.W.; Yuan, J.; Bhatia, K.S.; Vlantis, A.C.; Ahuja, A.T. Head and Neck Squamous Cell Carcinoma: Diagnostic Performance of Diffusion-weighted MR Imaging for the Prediction of Treatment Response. Radiology 2013, 266, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Chen, C.; Liu, H.; Lui, C.; Huang, Y.; Lee, T.; Chang, C.; Wang, F. Analysis of parametric histogram from dynamic contrast-enhanced MRI: Application in evaluating brain tumor response to radiotherapy. NMR Biomed. 2013, 26, 443–450. [Google Scholar] [CrossRef]
- Rofena, A.; Guarrasi, V.; Sarli, M.; Piccolo, C.L.; Sammarra, M.; Zobel, B.B.; Soda, P. A deep learning approach for virtual contrast enhancement in Contrast Enhanced Spectral Mammography. Comput. Med. Imaging Graph. 2024, 116, 102398. [Google Scholar] [CrossRef]
- Vasselli, F.; Fabi, A.; Ferranti, F.R.; Barba, M.; Botti, C.; Vidiri, A.; Tommasin, S. How Dual-Energy Contrast-Enhanced Spectral Mammography Can Provide Useful Clinical Information About Prognostic Factors in Breast Cancer Patients: A Systematic Review of Literature. Front. Oncol. 2022, 12, 859838. [Google Scholar] [CrossRef]
- Pesapane, F.; Agazzi, G.M.; Rotili, A.; Ferrari, F.; Cardillo, A.; Penco, S.; Dominelli, V.; D’Ecclesiis, O.; Vignati, S.; Raimondi, S.; et al. Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients with MRI-Radiomics: A Systematic Review and Meta-Analysis. Curr. Probl. Cancer 2022, 46, 100883. [Google Scholar] [CrossRef]
- Zhang, X.; Su, G.-H.; Chen, Y.; Gu, Y.-J.; You, C. Decoding Intratumoral Heterogeneity: Clinical Potential of Habitat Imaging based on Radiomics. Radiology 2023, 309, e232047. [Google Scholar] [CrossRef]
- Rodriguez-Ruiz, A.; Lång, K.; Gubern-Merida, A.; Broeders, M.; Gennaro, G.; Clauser, P.; Helbich, T.H.; Chevalier, M.; Tan, T.; Mertelmeier, T.; et al. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison with 101 Radiologists. JNCI J. Natl. Cancer Inst. 2019, 111, 916–922. [Google Scholar] [CrossRef]
- Rodríguez-Ruiz, A.; Krupinski, E.; Mordang, J.-J.; Schilling, K.; Heywang-Köbrunner, S.H.; Sechopoulos, I.; Mann, R.M. Detection of Breast Cancer with Mammography: Effect of an Artificial Intelligence Support System. Radiology 2019, 290, 305–314. [Google Scholar] [CrossRef] [PubMed]
Radiomics | Prognostic | Pearson’s Coefficient | p-Value |
---|---|---|---|
Uniformity | ER | 0.4719 | 0.0009 |
Minimum | PgR | 0.4207 | 0.0036 |
Gray Level Non-uniformity Normalized | ER | 0.4226 | 0.0034 |
Gray Level Non-uniformity Normalized | PgR | 0.4792 | 0.0008 |
Gray Level Variance | HER2 | 0.4096 | 0.0047 |
Size Zone Non-uniformity | HER2 | 0.4277 | 0.0030 |
Strength | HER2 | 0.5683 | 0.0000 |
Radiomics | Prognostic | R2 | R2 Adjusted | F-Statistic | p-Value |
---|---|---|---|---|---|
First-order Features | ER | 0.3372 | 0.1939 | 2.3529 | 0.0070 |
First-order Features | PgR | 0.2878 | 0.1338 | 1.8687 | 0.0375 |
First-order Features | Lymph nodes | 0.3377 | 0.1667 | 1.9755 | 0.0294 |
GLCM Features | ER | 0.4121 | 0.2219 | 2.1668 | 0.0081 |
GLCM Features | PgR | 0.3876 | 0.1895 | 1.9565 | 0.0187 |
GLCM Features | HER2 | 0.4461 | 0.2669 | 2.4890 | 0.0022 |
GLCM Features | Lymph nodes | 0.4688 | 0.2602 | 2.2468 | 0.0077 |
GLRLM Features | ER | 0.3043 | 0.1539 | 2.0233 | 0.0222 |
GLRLM Features | Ki67 | 0.2793 | 0.1235 | 1.7922 | 0.0484 |
GLRLM Features | HER2 | 0.3265 | 0.1809 | 2.2425 | 0.0104 |
GLRLM Features | Lymph nodes | 0.3858 | 0.2273 | 2.4340 | 0.0065 |
GLSZM Features | Ki67 | 0.3570 | 0.2179 | 2.5674 | 0.0033 |
NGTDM Features | ER | 0.1637 | 0.1145 | 3.3267 | 0.0086 |
Shape Features | Ki67 | 0.2314 | 0.1243 | 2.1616 | 0.0249 |
Shape Features | Lymph nodes | 0.3228 | 0.2116 | 2.9030 | 0.0035 |
Radiomics | Prognostic | R2 | R2 Adjusted | F-Statistic | p-Value |
---|---|---|---|---|---|
First-order Features | HER2 | 0.3547 | 0.2256 | 2.7487 | 0.0021 |
GLCM Features | ER | 0.4447 | 0.2651 | 2.4760 | 0.0023 |
GLCM Features | PgR | 0.3956 | 0.2000 | 2.0232 | 0.0144 |
GLCM Features | HER2 | 0.5042 | 0.3438 | 3.1437 | 0.0002 |
GLDM Features | ER | 0.3281 | 0.2043 | 2.6511 | 0.0034 |
GLDM Features | PgR | 0.2565 | 0.1195 | 1.8729 | 0.0430 |
Shape Features | ER | 0.2561 | 0.1525 | 2.4727 | 0.0102 |
Shape Features | Lymph nodes | 0.2918 | 0.1755 | 2.5102 | 0.0104 |
Radiomics | Prognostic | R2 | R2 Adjusted | F-Statistic | p-Value |
---|---|---|---|---|---|
First-order Features | HER2 | 0.7317 | 0.5976 | 5.4556 | 0.0000 |
GLCM Features | HER2 | 0.7936 | 0.5963 | 4.0208 | 0.0008 |
GLDM Features | ER | 0.5498 | 0.3465 | 2.7043 | 0.0103 |
GLDM Features | HER2 | 0.5115 | 0.2909 | 2.3188 | 0.0252 |
GLRLM Features | HER2 | 0.6345 | 0.4328 | 3.1463 | 0.0036 |
GLSZM Features | HER2 | 0.6811 | 0.5051 | 3.8708 | 0.0008 |
NGTDM Features | ER | 0.2489 | 0.1551 | 2.6517 | 0.0367 |
NGTDM Features | HER2 | 0.4399 | 0.3699 | 6.2831 | 0.0002 |
Radiomics | Prognostic | R2 | R2 Adjusted | F-Statistic | p-Value |
---|---|---|---|---|---|
GLCM Features | ER | 0.6892 | 0.3784 | 2.2178 | 0.0341 |
GLCM Features | PgR | 0.7037 | 0.4074 | 2.3754 | 0.0241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccolo, C.L.; Sarli, M.; Pileri, M.; Tommasiello, M.; Rofena, A.; Guarrasi, V.; Soda, P.; Beomonte Zobel, B. Radiomics for Predicting Prognostic Factors in Breast Cancer: Insights from Contrast-Enhanced Mammography (CEM). J. Clin. Med. 2024, 13, 6486. https://doi.org/10.3390/jcm13216486
Piccolo CL, Sarli M, Pileri M, Tommasiello M, Rofena A, Guarrasi V, Soda P, Beomonte Zobel B. Radiomics for Predicting Prognostic Factors in Breast Cancer: Insights from Contrast-Enhanced Mammography (CEM). Journal of Clinical Medicine. 2024; 13(21):6486. https://doi.org/10.3390/jcm13216486
Chicago/Turabian StylePiccolo, Claudia Lucia, Marina Sarli, Matteo Pileri, Manuela Tommasiello, Aurora Rofena, Valerio Guarrasi, Paolo Soda, and Bruno Beomonte Zobel. 2024. "Radiomics for Predicting Prognostic Factors in Breast Cancer: Insights from Contrast-Enhanced Mammography (CEM)" Journal of Clinical Medicine 13, no. 21: 6486. https://doi.org/10.3390/jcm13216486
APA StylePiccolo, C. L., Sarli, M., Pileri, M., Tommasiello, M., Rofena, A., Guarrasi, V., Soda, P., & Beomonte Zobel, B. (2024). Radiomics for Predicting Prognostic Factors in Breast Cancer: Insights from Contrast-Enhanced Mammography (CEM). Journal of Clinical Medicine, 13(21), 6486. https://doi.org/10.3390/jcm13216486