Systemic Immune Inflammatory Index as Predictor of Blood Pressure Variability in Newly Diagnosed Hypertensive Adults Aged 18–75
Abstract
:1. Introduction
2. Methods
- Category 1: The population was divided into 5 groups (Group 1: normal BP, Group 2: high-normal BP, Group 3: grade 1 HT, Group 4: grade 2 HT, Group 5: severe HT) based on ABP values.
- Category 2: The population was divided into two groups (Group 1: normal BP, high-normal BP, and grade 1 HT; Group 2: grade 2 and severe HT) based on eligibility for starting antihypertensive therapy.
- Category 3: After calculating ABPV, the fuzzy c-means (FCM) algorithm [26] was applied to divide patients into low–intermediate (Group 1: ABPV ≤ 14) and high (Group 2: ABPV > 14) variability groups. Employing a clustering algorithm instead of dividing patients according to percentiles was preferred, because theoretically this approach is able to establish optimal boundaries, which ensure that individuals placed in the same class are the most similar and separated ones are the most dissimilar.
3. Statistical Analysis
4. Results
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quintal, J.; Candjondjo, A.P.; Rato, Q.; Ferreira, E.M.; Sousa, J.; Silva, M.J.; Casas, J.D.; Coelho, R.A.; Farinha, J.M.; Esteves, A.F.; et al. Differences in 10-Year Cardiovascular Risk Estimation Using SCORE and SCORE2 Risk Prediction Tools: A Moderate Risk Country Population Analysis. Eur. J. Prev. Cardiol. 2023, 30, zwad125.330. [Google Scholar] [CrossRef]
- Stevens, S.L.; Wood, S.; Koshiaris, C.; Law, K.; Glasziou, P.; Stevens, R.J.; McManus, R.J. Blood Pressure Variability and Cardiovascular Disease: Systematic Review and Meta-Analysis. BMJ 2016, 354, i4098. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.O.; Sillito, J.A.; Goh, C.H.; Abdel-Fattah, A.R.; Einarsson, A.; Soiza, R.L.; Mamas, M.A.; Tan, M.P.; Potter, J.F.; Loke, Y.K.; et al. Association Between Different Methods of Assessing Blood Pressure Variability and Incident Cardiovascular Disease, Cardiovascular Mortality and All-Cause Mortality: A Systematic Review. Age Ageing 2020, 49, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Meissner, A. Hypertension and the Brain: A Risk Factor for More Than Heart Disease. Cerebrovasc. Dis. 2016, 42, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Verdecchia, P. Clinical Value of Ambulatory Blood Pressure: Evidence and Limits. Circ. Res. 2015, 116, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Bovha Hus, K.; Kersnik Levart, T. Does the Duration of Ambulatory Blood Pressure Measurement Matter in Diagnosing Arterial Hypertension in Children? Blood Press. Monit. 2019, 24, 199–202. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Fontao, M.J.; Mojón, A.; Fernández, J.R. Ambulatory Blood Pressure Monitoring: Importance of Sampling Rate and Duration—48 Versus 24 Hours—On the Accurate Assessment of Cardiovascular Risk. Chronobiol. Int. 2013, 30, 55–67. [Google Scholar] [CrossRef]
- Heshmatollah, A.; Ma, Y.; Fani, L.; Koudstaal, P.J.; Ikram, M.A.; Ikram, M.K. Visit-to-Visit Blood Pressure Variability and the Risk of Stroke in the Netherlands: A Population-Based Cohort Study. PLoS Med. 2022, 19, e1003942. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, X.; Wu, J.; Lin, L.; Zhou, Z.; Li, M.; Wang, C. Association Between Short-Term Blood Pressure Variability and Target Organ Damage in Non-Dialysis Patients with Chronic Kidney Disease. BMC Nephrol. 2024, 25, 111. [Google Scholar] [CrossRef]
- Hansen, T.W.; Thijs, L.; Li, Y.; Boggia, J.; Kikuya, M.; Björklund-Bodegård, K.; Richart, T.; Ohkubo, T.; Jeppesen, J.; Torp-Pedersen, C.; et al. Prognostic Value of Reading-to-Reading Blood Pressure Variability over 24 Hours in 8938 Subjects from 11 Populations. Hypertension 2010, 55, 1049–1057. [Google Scholar] [CrossRef]
- Gosmanova, E.O.; Mikkelsen, M.K.; Molnar, M.Z.; Lu, J.L.; Yessayan, L.T.; Kalantar-Zadeh, K.; Kovesdy, C.P. Association of Systolic Blood Pressure Variability with Mortality, Coronary Heart Disease, Stroke, and Renal Disease. J. Am. Coll. Cardiol. 2016, 68, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Dasa, O.; Smith, S.M.; Howard, G.; Cooper-DeHoff, R.M.; Gong, Y.; Handberg, E.; Pepine, C.J. Association of 1-Year Blood Pressure Variability with Long-Term Mortality Among Adults with Coronary Artery Disease: A Post Hoc Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e218418. [Google Scholar] [CrossRef] [PubMed]
- Mehlum, M.H.; Liestøl, K.; Kjeldsen, S.E.; Julius, S.; Hua, T.A.; Rothwell, P.M.; Mancia, G.; Parati, G.; Weber, M.A.; Berge, E. Blood Pressure Variability and Risk of Cardiovascular Events and Death in Patients with Hypertension and Different Baseline Risks. Eur. Heart J. 2018, 39, 2243–2251. [Google Scholar] [CrossRef]
- Diaz, K.M.; Tanner, R.M.; Falzon, L.; Levitan, E.B.; Reynolds, K.; Shimbo, D.; Muntner, P. Visit-to-Visit Variability of Blood Pressure and Cardiovascular Disease and All-Cause Mortality: A Systematic Review and Meta-Analysis. Hypertension 2014, 64, 965–982. [Google Scholar] [CrossRef] [PubMed]
- Manning, L.; Hirakawa, Y.; Arima, H.; Wang, X.; Chalmers, J.; Wang, J.; Lindley, R.; Heeley, E.; Delcourt, C.; Neal, B.; et al. Blood Pressure Variability and Outcome After Acute Intracerebral Haemorrhage: A Post-Hoc Analysis of INTERACT2, a Randomised Controlled Trial. Lancet Neurol. 2014, 13, 364–373. [Google Scholar] [CrossRef]
- Li, F.K.; An, D.W.; Guo, Q.H.; Zhang, Y.Q.; Qian, J.Y.; Hu, W.G.; Li, Y.; Wang, J.G. Day-by-Day Blood Pressure Variability in Hospitalized Patients with COVID-19. J. Clin. Hypertens. 2021, 23, 1675–1680. [Google Scholar] [CrossRef]
- Melgarejo, J.D.; Maestre, G.E.; Mena, L.J.; Lee, J.H.; Petitto, M.; Chávez, C.A.; Calmon, G.; Silva, E.; Thijs, L.; Al-Aswad, L.A.; et al. Normal-Tension Glaucomatous Optic Neuropathy Is Related to Blood Pressure Variability in the Maracaibo Aging Study. Hypertens. Res. 2021, 44, 1105–1112. [Google Scholar] [CrossRef]
- Virdis, A.; Dell’Agnello, U.; Taddei, S. Impact of Inflammation on Vascular Disease in Hypertension. Maturitas 2014, 78, 179–183. [Google Scholar] [CrossRef]
- Gutteridge, D.S.; Tully, P.J.; Smith, A.E.; Loetscher, T.; Keage, H.A. Cross-Sectional Associations Between Short and Mid-Term Blood Pressure Variability, Cognition, and Vascular Stiffness in Older Adults. Cereb. Circ. Cogn. Behav. 2023, 5, 100181. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.M.; Qiu, S.J.; Zhou, J.; et al. Systemic Immune-Inflammation Index Predicts Prognosis of Patients After Curative Resection for Hepatocellular Carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Yang, Y.L.; Wu, C.H.; Hsu, P.F.; Chen, S.C.; Huang, S.S.; Chan, W.L.; Lin, S.J.; Chou, C.Y.; Chen, J.W.; Pan, J.P.; et al. Systemic Immune-Inflammation Index (SII) Predicted Clinical Outcome in Patients with Coronary Artery Disease. Eur. J. Clin. Invest. 2020, 50, e13230. [Google Scholar] [CrossRef] [PubMed]
- Gok, M.; Kurtul, A. A Novel Marker for Predicting Severity of Acute Pulmonary Embolism: Systemic Immune-Inflammation Index. Scand. Cardiovasc. J. 2021, 55, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Akyüz, A.; Işık, F. Systemic Immune-Inflammation Index: A Novel Predictor for Non-dipper Hypertension. Cureus 2022, 14, e28176. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, G.S.; Parati, G. How to Best Assess Blood Pressure? The Ongoing Debate on the Clinical Value of Blood Pressure Average and Variability. Hypertension 2011, 57, 1041–1042. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.; Carey, R.; Aronow, W.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Sesso, H.D.; Buring, J.E.; Rifai, N.; Blake, G.J.; Gaziano, J.M.; Ridker, P.M. C-Reactive Protein and the Risk of Developing Hypertension. JAMA 2003, 290, 2945–2951. [Google Scholar] [CrossRef]
- Kawada, T.; Morihashi, M.; Ueda, H.; Sirato, T. Neutrophil Cell Count is Related to Hypertension in Workers: A Cross-Sectional Study. Vasc. Dis. Prev. 2007, 4, 225–228. [Google Scholar] [CrossRef]
- Nityanand, S.; Pande, I.; Bajpai, V.K.; Singh, L.; Chandra, M.; Singh, B.N. Platelets in Essential Hypertension. Thromb. Res. 1993, 72, 447–454. [Google Scholar] [CrossRef]
- Sunbul, M.; Gerin, F.; Durmus, E.; Kivrak, T.; Sari, I.; Tigen, K.; Cincin, A. Neutrophil to Lymphocyte and Platelet to Lymphocyte Ratio in Patients with Dipper Versus Non-Dipper Hypertension. Clin. Exp. Hypertens. 2014, 36, 217–221. [Google Scholar] [CrossRef]
- Mancia, G.; Grassi, G. The Autonomic Nervous System and Hypertension. Circ. Res. 2014, 114, 1804–1814. [Google Scholar] [CrossRef]
- Parati, G.; Faini, A.; Valentini, M. Blood Pressure Variability: Its Measurement and Significance in Hypertension. Curr. Hypertens. Rep. 2006, 8, 199–204. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.; Atkins, N.; Staessen, J. Factors Influencing Validation of Ambulatory Blood Pressure Measuring Devices. J. Hypertens. 1995, 13, 1235–1240. [Google Scholar] [PubMed]
- Parati, G.; Ochoa, J.E.; Lombardi, C.; Bilo, G. Assessment and Management of Blood-Pressure Variability. Nat. Rev. Cardiol. 2013, 10, 143–155, Erratum in Nat. Rev. Cardiol. 2014, 11, 314. [Google Scholar] [CrossRef] [PubMed]
- Levitan, E.B.; Kaciroti, N.; Oparil, S.; Julius, S.; Muntner, P. Blood Pressure Measurement Device, Number and Timing of Visits, and Intra-Individual Visit-to-Visit Variability of Blood Pressure. J. Clin. Hypertens. 2012, 14, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, G.S.; Palatini, P.; Parati, G.; O’Brien, E.; Januszewicz, A.; Lurbe, E.; Persu, A.; Mancia, G.; Kreutz, R. 2021 European Society of Hypertension Practice Guidelines for Office and Out-of-Office Blood Pressure Measurement. J. Hypertens. 2021, 39, 1293–1302. [Google Scholar] [CrossRef]
- Madden, J.M.; O’Flynn, A.M.; Fitzgerald, A.P.; Kearney, P.M. Correlation Between Short-Term Blood Pressure Variability and Left-Ventricular Mass Index: A Meta-Analysis. Hypertens. Res. 2016, 39, 171–177. [Google Scholar] [CrossRef]
- Abramson, J.L.; Lewis, C.; Murrah, N.V.; Anderson, G.T.; Vaccarino, V. Relation of C-Reactive Protein and Tumor Necrosis Factor-Alpha to Ambulatory Blood Pressure Variability in Healthy Adults. Am. J. Cardiol. 2006, 98, 649–652. [Google Scholar] [CrossRef]
- Tatasciore, A.; Zimarino, M.; Renda, G.; Zurro, M.; Soccio, M.; Prontera, C.; Emdin, M.; Flacco, M.; Schillaci, G.; De Caterina, R. Awake Blood Pressure Variability, Inflammatory Markers and Target Organ Damage in Newly Diagnosed Hypertension. Hypertens. Res. 2008, 31, 2137–2146. [Google Scholar] [CrossRef]
- Kim, K.I.; Lee, J.H.; Chang, H.J.; Cho, Y.S.; Youn, T.J.; Chung, W.Y.; Chae, I.H.; Choi, D.J.; Park, K.U.; Kim, C.H. Association Between Blood Pressure Variability and Inflammatory Marker in Hypertensive Patients. Circ. J. 2008, 72, 293–298. [Google Scholar] [CrossRef]
- Wong, K.H.; Muddasani, V.; Peterson, C.; Sheibani, N.; Arkin, C.; Cheong, I.; Majersik, J.J.; Biffi, A.; Petersen, N.; Falcone, G.J. Baseline Serum Biomarkers of Inflammation and Subsequent Visit-to-Visit Blood Pressure Variability: A Post Hoc Analysis of MESA. Am. J. Hypertens. 2023, 36, 144–147. [Google Scholar] [CrossRef]
- Ciobanu, D.M.; Bala, C.; Rusu, A.; Cismaru, G.; Roman, G. E-Selectin Is Associated with Daytime and 24-Hour Diastolic Blood Pressure Variability in Type 2 Diabetes. Biomedicines 2022, 10, 279. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Fu, Z.; Wu, W.; Zhang, J.; Liu, M.; Gao, L. Association between High-Sensitivity C-Reactive Protein and Blood Pressure Variability in Subacute Stage of Ischemic Stroke. Brain Sci. 2023, 13, 998. [Google Scholar] [CrossRef] [PubMed]
Normal (58) | High–Normal (60) | Grade 1 (53) | Grade 2 (102) | Severe (113) | ||
---|---|---|---|---|---|---|
Mean ± Sd | Mean ± Sd | Mean ± Sd | Mean ± Sd | Mean ± Sd | p Value (Between the Groups) | |
SII | 412.90 ± 123.6 d,e | 425.21 ± 142.5 d,e | 442.78 ± 149.9 d,e | 746.49 ± 202.6 a,b,c,e | 851.44 ± 224.94 a,b,c,d | <0.001 |
Age (years) | 59.71 ± 10.22 | 54.87 ± 8.92 | 56.51 ± 11.60 | 55.52 ± 10.97 | 55.78 ± 10.41 | 0.068 |
Height (cm) | 169.03 ± 8.43 | 171.13 ± 7.30 | 170.64 ± 8.12 | 169.18 ± 7.62 | 167.90 ± 6.32 | 0.090 |
Weight (kg) | 73.98 ± 11.11 | 74.53 ± 12.13 | 75.25 ± 9.39 | 73.30 ± 10.21 | 71.64 ± 11.11 | 0.656 |
BMİ, kg/m2 | 25.81 ± 2.65 | 25.42 ± 3.43 | 25.91 ± 3.22 | 25.64 ± 3.24 | 25.39 ± 3.49 | 0.391 |
Creatine, mg/dL | 0.70 ± 0.14 | 0.77 ± 0.15 | 0.75 ± 0.19 | 0.76 ± 0.16 | 0.75 ± 0.17 | 0.122 |
Gender (female), N (%) | 41 (70.7%) | 29 (48.3%) | 33 (62.3%) | 55 (53.9%) | 68 (60.2%) | 0.115 |
Glucose, mg/dL | 100.09 ± 14.17 | 97.90 ± 11.00 | 100.02 ± 11.77 | 98.18 ± 12.77 | 95.22 ± 12.44 | 0.289 |
Uric acid, mg/dL | 4.08 ± 1.37 | 4.25 ± 1.20 | 4.48 ± 1.68 | 4.27 ± 1.25 | 4.45 ± 1.42 | 0.415 |
Cholesterol, mg/dL | 201.22 ± 41.77 | 208.17 ± 40.28 | 209.79 ± 42.76 | 211.47 ± 45.37 | 204.43 ± 44.13 | 0.990 |
HDL, mg/dL | 59.34 ± 66.58 | 48.67 ± 10.66 | 45.32 ± 11.18 | 45.61 ± 10.79 | 45.69 ± 10.24 | 0.019 |
LDL, mg/dL | 120.28 ± 32.44 | 129.03 ± 38.52 | 130.81 ± 31.35 | 132.09 ± 35.59 | 124.34 ± 35.02 | 0.163 |
Triglyceride, mg/dL | 158.43 ± 90.57 | 160.28 ± 89.43 | 192.02 ± 252.7 | 176.77 ± 147.1 | 171.66 ± 79.81 | 0.133 |
hs-CRP, mg/L | 0.40 ± 0.20 | 0.36 ± 0.17 | 0.49 ± 0.40 | 0.43 ± 0.25 | 0.49 ± 0.31 | 0.026 |
Hb, g/dL | 14.00 ± 1.59 | 14.83 ± 1.22 | 14.31 ± 1.35 | 14.37 ± 1.63 | 14.28 ± 1.62 | 0.175 |
WBC count, ×10/μL | 7.39 ± 2.23 e | 7.86 ± 2.97 | 7.36 ± 1.77 e | 8.18 ± 2.61 | 8.68 ± 2.04 a,c | 0.002 |
PLT count, ×10/μL | 271.12 ± 52.58 e | 254.85 ± 63.52 e | 245.09 ± 49.81 d,e | 288.13 ± 73.27 c,e | 331.55 ± 67.63 a,b,c,d | <0.001 |
Neutrophil count, ×10/μL | 3.92 ± 1.33 | 4.27 ± 1.85 | 4.14 ± 1.32 | 5.17 ± 1.93 | 5.53 ± 1.38 | 0.099 |
Lymphocyte count, ×10/μL | 2.66 ± 0.95 | 2.63 ± 1.03 | 2.39 ± 0.70 | 2.03 ± 0.75 | 2.28 ± 0.90 | 0.062 |
Monocytes count, ×10/μL | 0.57 ± 0.22 | 0.67 ± 0.27 | 0.57 ± 0.22 | 0.66 ± 0.23 | 0.59 ± 0.19 | 0.006 |
ABPV | 12.79 ± 2.98 e | 12.32 ± 2.54 c,d,e | 15.08 ± 4.53 b | 14.52 ± 4.78 b,e | 17.10 ± 5.22 a,b,d | <0.001 |
DİPPER, N (%) | 41 (70.7%) d,e | 46 (76.7%) d,e | 35 (66.0%) e | 43 (42.2%) a,b | 35 (31.0%) a,b,c | <0.001 |
LVDD | 47.41 ± 3.29 | 48.67 ± 3.27 | 46.96 ± 3.24 | 46.93 ± 3.22 | 47.33 ± 3.53 | 0.693 |
LVSD | 31.06 ± 3.81 | 31.18 ± 4.11 | 30.83 ± 3.57 | 30.87 ± 4.38 | 30.93 ± 3.68 | 0.189 |
İVS | 10.21 ± 1.31 | 10.78 ± 1.11 | 10.32 ± 1.42 | 10.46 ± 1.39 | 11.80 ± 1.30 | 0.404 |
PW | 9.58 ± 1.01 | 10.05 ± 1.02 | 9.95 ± 1.26 | 9.90 ± 1.22 | 10.97 ± 1.12 | 0.217 |
LVM | 166.95 ± 37.50 | 185.69 ± 34.09 | 170.19 ± 41.61 | 170.64 ± 39.42 | 200.67 ± 38.37 | 0.464 |
LVMİ | 90.05 ± 20.11 | 99.98 ± 22.43 | 90.71 ± 22.74 | 92.81 ± 23.02 | 110.86 ± 23.44 | 0.677 |
N/L | 1.55 ± 0.47 d,e | 1.70 ± 0.50 d,e | 1.86 ± 0.70 d,e | 2.71 ± 0.86 a,b,c | 2.64 ± 0.74 a,b,c | <0.001 |
P/L | 110.74 ± 34.06 d,e | 107.08 ± 40.68 d,e | 110.01 ± 33.22 d,e | 153.53 ± 44.98 a,b,c | 159.89 ± 46.20 a,b,c | <0.001 |
Group 1 (Non-Candidate for Antihypertensive Therapy) (171) | Group 2 (Candidate for Antihypertensive Therapy) (215) | ||
---|---|---|---|
Mean ± Sd | Mean ± Sd | p | |
SII | 426.48 ± 138.54 | 801.65 ± 220.47 | <0.001 |
Gender (female), N (%) | 103 (60.2%) | 123 (57.2%) | 0.550 |
Age (years) | 57.02 ± 10.39 | 55.66 ± 10.66 | 0.208 |
BMİ, kg/m2 | 25.70 ± 3.11 | 25.51 ± 3.37 | 0.563 |
Glucose, mg/dL | 99.30 ± 12.36 | 96.62 ± 12.66 | 0.038 |
Creatine, mg/dL | 0.74 ± 0.17 | 0.75 ± 0.16 | 0.466 |
Uric acid, mg/dL | 4.26 ± 1.42 | 4.36 ± 1.34 | 0.475 |
Cholesterol, mg/dL | 206.32 ± 41.49 | 207.77 ± 44.76 | 0.743 |
HDL, mg/dL | 51.25 ± 40.00 | 45.65 ± 10.48 | 0.050 |
LDL, mg/dL | 126.61 ± 34.49 | 128.01 ± 35.42 | 0.697 |
Triglyceride, mg/dL | 169.49 ± 159.05 | 174.09 ± 116.38 | 0.743 |
hs-CRP, mg/L | 0.41 ± 0.27 | 0.46 ± 0.29 | 0.082 |
Hb, g/dL | 14.39 ± 1.43 | 14.32 ± 1.62 | 0.693 |
WBC count, ×10/μL | 7.54 ± 2.39 | 8.44 ± 2.34 | <0.001 |
PLT count, ×10/μL | 257.35 ± 56.57 | 310.95 ± 73.48 | <0.001 |
Neutrophil count, ×10/μL | 4.11 ± 1.53 | 5.36 ± 1.67 | <0.001 |
Lymphocyte count, ×10/μL | 2.57 ± 0.91 | 2.16 ± 0.84 | <0.001 |
Monocytes count, ×10/μL | 0.60 ± 0.24 | 0.62 ± 0.22 | 0.323 |
N/L | 1.70 ± 0.57 | 2.67 ± 0.80 | <0.001 |
P/L | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.037 |
ABPV | 13.34 ± 3.59 | 15.87 ± 5.17 | <0.001 |
Dipper (N/%) | 122 (71.3%) | 78 (36.3%) | <0.001 |
LVDD, mm | 47.71 ± 3.33 | 47.14 ± 3.38 | 0.096 |
LVSD, mm | 31.03 ± 3.83 | 30.90 ± 4.02 | 0.746 |
İVS, mm | 10.44 ± 1.30 | 11.16 ± 1.50 | <0.001 |
PW, mm | 9.86 ± 1.11 | 10.46 ± 1.28 | <0.001 |
LV MASS | 174.53 ± 38.39 | 186.43 ± 41.59 | 0.004 |
LVMİ | 93.74 ± 22.13 | 102.30 ± 24.89 | <0.001 |
ABPV < 14 (203) | ABPV > 14 (183) | p | |
---|---|---|---|
Mean ± Sd. | Mean ± Sd. | ||
N/L | 1.89 ± 0.70 | 2.61 ± 0.85 | <0.001 |
P/L | 122.49 ± 41.53 | 150.48 ± 50.25 | <0.001 |
LVMİ | 96.31 ± 23.35 | 100.93 ± 24.64 | 0.060 |
LV MASS | 177.18 ± 38.89 | 185.56 ± 42.05 | 0.043 |
PW, mm | 9.99 ± 1.17 | 10.42 ± 1.28 | 0.001 |
IVS, mm | 10.64 ± 1.34 | 11.06 ± 1.54 | 0.004 |
LVSD, mm | 30.85 ± 3.98 | 31.07 ± 3.87 | 0.576 |
LVDD, mm | 47.52 ± 3.24 | 47.25 ± 3.50 | 0.431 |
DİPPER, N (%) | 110 (54.2%) | 90 (49.2%) | 0.327 |
ABP Grade | 2.00 ± 1.42 | 2.83 ± 1.30 | <0.001 |
SII | 510.95 ± 210.65 | 773.54 ± 251.05 | <0.001 |
Gender (female), N (%) | 112 (55.2%) | 114 (62.3%) | 0.156 |
Age (years) | 56.14 ± 10.27 | 56.38 ± 10.87 | 0.828 |
BMİ, kg/m2 | 25.40 ± 3.20 | 25.80 ± 3.30 | 0.232 |
Glucose, mg/dL | 96.49 ± 12.50 | 99.26 ± 12.52 | 0.030 |
Creatine, mg/dL | 0.74 ± 0.16 | 0.74 ± 0.16 | 0.917 |
HDL, mg/dL | 50.76 ± 36.79 | 45.20 ± 10.99 | 0.050 |
LDL, mg/dL | 130.12 ± 34.95 | 124.36 ± 34.84 | 0.106 |
hs-CRP, mg/L | 0.40 ± 0.21 | 0.48 ± 0.33 | 0.007 |
Hb, g/dL | 14.44 ± 1.42 | 14.24 ± 1.64 | 0.211 |
Triglyceride, mg/dL | 161.13 ± 78.23 | 184.16 ± 180.25 | 0.111 |
Cholesterol, mg/dL | 209.71 ± 41.66 | 204.25 ± 44.96 | 0.218 |
Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|
r | p | Beta | %95 CI | p | |
Age | 0.011 | 0.828 | 0.001 | −0.003 −0.005 | 0.672 |
N/L | 0.420 | 0.000 | 0.074 | −0.007 −0.155 | 0.072 |
P/L | 0.292 | 0.000 | −0.001 | −0.002 −0.001 | 0.198 |
Gender | −0.073 | 0.157 | −0.059 | −0.164 −0.045 | 0.264 |
SII | 0.495 | 0.000 | 0.001 | 0.001 −0.001 | <0.001 |
hs-CRP | 0.141 | 0.005 | 0.098 | −0.060 −0.255 | 0.225 |
BMİ | 0.061 | 0.232 | 0.008 | −0.006 −0.021 | 0.272 |
Creatine | 0.005 | 0.917 | −0.014 | −0.326 −0.299 | 0.932 |
LDL | 0.082 | 0.106 | −0.001 | −0.002 −0.000 | 0.142 |
ABP Grade | 0.291 | 0.000 | −0.022 | −0.064 −0.020 | 0.295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaca, Y.; Karasu, M.; Gelen, M.A.; Şahin, Ş.; Yavçin, Ö.; Yaman, İ.; Hidayet, Ş. Systemic Immune Inflammatory Index as Predictor of Blood Pressure Variability in Newly Diagnosed Hypertensive Adults Aged 18–75. J. Clin. Med. 2024, 13, 6647. https://doi.org/10.3390/jcm13226647
Karaca Y, Karasu M, Gelen MA, Şahin Ş, Yavçin Ö, Yaman İ, Hidayet Ş. Systemic Immune Inflammatory Index as Predictor of Blood Pressure Variability in Newly Diagnosed Hypertensive Adults Aged 18–75. Journal of Clinical Medicine. 2024; 13(22):6647. https://doi.org/10.3390/jcm13226647
Chicago/Turabian StyleKaraca, Yücel, Mehdi Karasu, Mehmet Ali Gelen, Şeyda Şahin, Özkan Yavçin, İrfan Yaman, and Şıho Hidayet. 2024. "Systemic Immune Inflammatory Index as Predictor of Blood Pressure Variability in Newly Diagnosed Hypertensive Adults Aged 18–75" Journal of Clinical Medicine 13, no. 22: 6647. https://doi.org/10.3390/jcm13226647
APA StyleKaraca, Y., Karasu, M., Gelen, M. A., Şahin, Ş., Yavçin, Ö., Yaman, İ., & Hidayet, Ş. (2024). Systemic Immune Inflammatory Index as Predictor of Blood Pressure Variability in Newly Diagnosed Hypertensive Adults Aged 18–75. Journal of Clinical Medicine, 13(22), 6647. https://doi.org/10.3390/jcm13226647