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Abstract: Lung cancer remains a leading cause of cancer-related mortality worldwide. Although
surgical treatment is a primary approach, residual cancer cells and surgery-induced pathophysio-
logical changes may promote cancer recurrence and metastasis. Anesthetic agents and techniques
have recently been shown to potentially impact these processes by modulating surgical stress re-
sponses, immune function, inflammatory pathways, and the tumor microenvironment. Anesthetics
can influence immune-modulating cytokines, induce pro-inflammatory factors such as HIF-1α, and
alter natural-killer cell activity, affecting cancer cell survival and spread. Preclinical studies suggest
volatile anesthetics may promote tumor progression by triggering pro-inflammatory signaling, while
propofol shows potential antitumor properties through immune-preserving effects and reductions
in IL-6 and other inflammatory markers. Additionally, opioids are known to suppress immune
responses and stimulate pathways that may support cancer cell proliferation, whereas regional
anesthesia may reduce these risks by decreasing the need for systemic opioids and volatile agents.
Despite these findings, clinical data remain inconclusive, with studies showing mixed outcomes
across patient populations. Current clinical trials, including comparisons of volatile agents with
propofol-based total intravenous anesthesia, aim to provide clarity but highlight the need for further
investigation. Large-scale, well-designed studies are essential to validate the true impact of anesthetic
choice on cancer recurrence and to optimize perioperative strategies that support long-term oncologic
outcomes for lung cancer patients.
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1. Introduction

Lung cancer remains one of the most prevalent cancers with a high mortality rate [1].
According to 2020 data, it is the most frequently diagnosed cancer worldwide, accounting
for 11.4% of all cancer cases and causing approximately 1.8 million deaths annually. Non-
small cell lung cancer (NSCLC), which comprises about 85% of all lung cancer cases, is
primarily treated with surgical resection. However, despite the successful removal of the
primary tumor, microscopic residual cancer cells often persist, leading to recurrence and
metastasis. Postoperative recurrence and metastasis rates in NSCLC patients range from
30% to 55%, with a median survival time of approximately 21 months.

Ideally, the immune system would eliminate residual cancer cells after surgery [2].
However, surgical interventions often exacerbate pathophysiological changes that hinder
this process. The surgical stress response plays a crucial role in disrupting inflammatory
balance, resulting in immunosuppression [3,4]. Additionally, the preoperative period,
characterized by patient anxiety and stress, can elevate cortisol and catecholamine levels,
leading to reduced natural-killer (NK) cell activity and weakened immune readiness. The
postoperative period also poses challenges, such as pain, surgical site inflammation, and
potential infections, which further compromise immune recovery and promote an environ-
ment conducive to tumor growth. These stressors collectively contribute to inflammatory
and immune system alterations that affect cancer outcomes.
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The anesthesiologist’s role extends beyond the intraoperative period to include manag-
ing these preoperative and postoperative stress responses. Techniques such as preemptive
analgesia, multimodal pain management, and the targeted use of sedatives can mitigate
these stress-induced effects. Through these strategies, anesthesiologists play a vital role in
maintaining immune function and reducing the risk of cancer recurrence. Thus, understand-
ing these mechanisms is essential for developing strategies to mitigate surgery-induced
effects that contribute to cancer progression.

Emerging evidence suggests that anesthetic agents and techniques may also influence
cancer progression. This review aims to provide an in-depth analysis of the mechanisms un-
derlying cancer recurrence and metastasis following surgery. Additionally, we will explore
perioperative strategies and their role in mitigating cancer recurrence risk, particularly
focusing on lung cancer patients.

2. Materials and Methods

A comprehensive literature search was conducted using electronic databases, includ-
ing PubMed, EMBASE, Web of Science, Google Scholar, and the Cochrane Library. The
search utilized the following keywords: “cancer recurrence”, “metastasis”, “anesthesia”,
“analgesia”, “anesthetic agent”, and “lung cancer”. Studies published in English up to
December 2023 were included, and there were no restrictions on study type, ensuring a
broad and inclusive scope for eligible studies.

We adhered to the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines in identifying, screening, and selecting studies (Figure 1). All
retrieved articles were manually examined, and additional studies were identified by
screening the reference lists of relevant reviews and articles. The selection criteria included
both preclinical and clinical studies examining the role of anesthetic agents and techniques
in cancer recurrence and metastasis, with a specific focus on lung cancer surgery. Studies
investigating the effects of general and regional anesthesia, volatile anesthetics, opioids,
and non-opioid agents were prioritized.
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Figure 1. PRISMA flow diagram.

3. Mechanisms of Cancer Recurrence After Surgery
3.1. Remnants of Cancer Cells and Circulating Tumor Cells

Despite curative surgical resection being the primary treatment for solid tumors,
microscopic residual cancer cells often persist, leading to local recurrence, lymphatic or
vascular invasion, and transcoelomic dissemination, such as intrapleural or intraperitoneal
spread [5]. Circulating tumor cells (CTCs) play a critical role in distant metastasis, as
they can escape the primary tumor site and travel through the bloodstream [6]. CTCs
are frequently detected in patients with solid tumors, and several studies have shown
elevated CTC levels following surgery for cancers such as lung, hepatocellular, gastric,
colorectal, and breast [7–11]. Elevated CTC counts are generally associated with a poor
prognosis; however, not all CTCs lead to metastasis. For metastasis to occur, CTCs must
evade immune surveillance, survive in the circulatory system, and successfully colonize
distant organs. This process is facilitated by postoperative stress responses, inflammation,
and immunosuppression, which collectively create an environment favorable for tumor cell
survival and progression. The ability of CTCs to evade immune destruction and establish
secondary tumors is significantly influenced by perioperative disruptions in immune and
inflammatory pathways.

3.2. Tumor Microenvironment and Metastasis

Cancer cells reside within a tumor microenvironment (TME), composed of various
elements, including inflammatory and immune cells, stromal cells, blood vessels, and
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extracellular matrix components [12,13]. Surgical manipulation and perioperative stress
response can significantly disrupt the TME, triggering a cascade of events that facilitate can-
cer cell migration to distant sites [12,14]. First, cancer cells acquire invasive and migratory
properties through epithelial–mesenchymal transition (EMT), during which they transform
into fibroblast-like cells. Second, the transformed cancer cells infiltrate adjacent tissues,
eventually entering the circulation by penetrating lymphatic or blood vessels. During this
phase, CTCs may be recognized and targeted by immune surveillance mechanisms, such as
NK cells or cytotoxic T (Tc) cells. Third, surviving CTCs travel to distant sites and function
as progenitor cells. Finally, these progenitor cells interact with local tissue, inflammatory
cells, and other components to proliferate within the newly formed TME.

The complex and dynamic interactions between cancer cells and surrounding non-
malignant cells within the TME are pivotal in cancer progression and metastasis. Inflam-
matory cells, for instance, contribute to cancer invasion and proliferation by releasing
cytokines, chemokines, growth factors, and enzymes [15,16]. Cytokines and chemokines
produced by inflammatory cells attract and activate immune cells while also promoting
cancer cell migration and invasion. Growth factors, such as epidermal growth factor (EGF)
and vascular endothelial growth factor (VEGF), stimulate cancer cell proliferation, survival,
and angiogenesis. Additionally, enzymes such as matrix metalloproteinases (MMPs) de-
grade the extracellular matrix at the invasive front, facilitating cancer cell invasion into
surrounding tissues.

3.3. Surgery-Induced Pathophysiologic Changes and Cancer Recurrence

Surgical stress is induced not only by tissue trauma but also by several factors such
as hypothermia, tissue hypoxia, transfusion, and patient anxiety. These stressors initiate
a cascade of sympathetic, inflammatory, and immune system changes, each of which can
influence the metastatic process [4,17] (Figure 2).
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Figure 2. Overview of tumor-promoting mechanisms during surgical treatment. The diagram illus-
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tive period. Notably, NK cells and CD8+ Tc cells are indicated as the only immune elements provid-
ing direct anti-tumor activity, contrasting with other factors that promote tumor growth. IL: inter-

Figure 2. Overview of tumor-promoting mechanisms during surgical treatment. The diagram illus-
trates the key mechanisms and related factors influencing cancer progression during the perioperative
period. Notably, NK cells and CD8+ Tc cells are indicated as the only immune elements providing
direct anti-tumor activity, contrasting with other factors that promote tumor growth. IL: interleukin,
TNF-α: tumor necrosis factor—alpha, NETs: neutrophil extracellular traps, PGE2: prostaglandin E2,
VEGF: vascular endothelial growth factor, EGF: epidermal growth factor, MMP: matrix metallopro-
teinase, COX-2: cyclooxygenase-2, HIF-1α: hypoxia-inducible factor-1 alpha, NK cells: natural killer
cells, CD8+ Tc cells: CD8+ cytotoxic T cells, Th2 cells: helper T2 cells, Treg cells: regulatory T cells.
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3.3.1. Sympathetic Activation

Surgical stress primarily activates the sympathetic nervous system, resulting in an
increased secretion of cortisol and catecholamines. These neuroendocrine mediators elevate
inflammatory cytokines (e.g., IL-6, IL-8) and immunosuppressive cytokines (e.g., IL-4, IL-10,
VEGF), suppressing NK cell and Tc cell activity while promoting regulatory T (Treg) cell
expansion, ultimately contributing to tumor progression [5].

Catecholamine can directly bind to β-receptors on tumor cells, inducing morphological
changes that promote EMT [18]. Additionally, it can indirectly contribute to the remodeling
of the TME by stimulating the secretion of IL-6 (an inflammatory cytokine), VEGF (a proan-
giogenic factor), and MMP-2/9 (enzymes involved in extracellular matrix degradation).
The activation of β-receptors on the surface of cancer cells has been shown to accelerate
metastasis and tumor growth in breast, colon, liver, prostate, and lung cancers [19,20].

3.3.2. Inflammatory Imbalance

Surgical tissue damage and sympathetic stimulation trigger an inflammatory response
as part of the normal wound-healing process [21]. The acute inflammatory response is
primarily mediated by macrophages and neutrophils, which secrete pro-inflammatory
cytokines such as IL-1, IL-6, and TNF-α. This response initially promotes a helper T
(Th)1-dominant profile, essential for cell-mediated immunity through the secretion of
interferon gamma (IFN-γ) and IL-2. However, persistent inflammatory cell stimulation
results in excessive cytokine production, altering the Th1/Th2 ratio and leading to an
inflammatory imbalance [22,23]. This suppresses the activity of NK cells and CD8+ Tc cells
while enhancing the functions of Th2 cells and Treg cells, thereby weakening anti-tumor
immunity and facilitating tumor progression. Additionally, fibroblasts and mesenchymal
cells secrete several factors, including growth factors (e.g., VEGF, EGF), enzymes (e.g., MMP,
COX-2), transcription factors (e.g., HIF-1α, NF-kB, STAT-3), and chemokines (e.g., CXCR-2).
These molecules are pivotal in tumor growth, angiogenesis, and consequent dissemination.

IL-6 stimulates macrophages to secrete prostaglandin E2 (PGE2), further amplifying
the inflammatory response and inhibiting cell-mediated immunity. PGE2 also enhances
tumor cell migration and angiogenesis, facilitating metastasis [24,25]. In lung cancer models,
PGE2 has been shown to upregulate MMP-9 mRNA expression while downregulating
E-cadherin mRNA expression [26]. These changes enhance extracellular matrix degradation
and reduce cell adhesion, promoting cancer cell invasion and metastasis.

Neutrophils also contribute to cancer progression and dissemination by releasing
neutrophil extracellular traps (NETs) [27]. While NETs play an essential role in clearing mi-
croorganisms, they promote tumor cell proliferation, migration, and invasion in the context
of cancer. In addition, NETs interact with CTCs, facilitating their implantation in distant
tissues and promoting metastasis. [28]. These processes are mediated by releasing high mo-
bility group box 1 (HMGB1) and activating Toll-like receptor (TLR) 9-dependent pathways.

Platelets play a dual role in their interaction with CTCs. First, they can form platelet-
CTC aggregates, shielding CTCs from immune surveillance [29]. Second, activated platelets
release factors such as TGF-β, platelet-derived growth factor (PDGF), and ATP, which fur-
ther modulate the TME to favor cancer growth [30]. TGF-β suppresses NK cell activity and
other immune responses, creating an immunosuppressive environment, while PDGF pro-
motes tumor growth and angiogenesis. Furthermore, ATP enhances vascular permeability,
facilitating the infiltration of immune cells and other factors into the TME. Perioperative
increases in platelet levels have been linked to poor cancer prognosis [31].

Recent studies have highlighted the role of fibrinogen and the complement system in
enhancing the metastatic process. Surgery-induced pro-inflammatory cytokines elevate
fibrinogen levels, forming fibrin complexes around tumor cells that protect them from NK
cell surveillance and promote tumor adhesion to endothelial cells [32,33]. The complement
system is also activated during surgery, contributing to cancer recurrence by promoting
cancer cell stemness, enhancing angiogenesis, and inhibiting anti-tumor immunity [34–37].
In lung cancer, complement activation through the C3a receptor has been shown to promote
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tumor progression by influencing T cell differentiation and fostering an immunosuppressive
microenvironment [38].

Tissue hypoxia, a common consequence of surgery, induces the expression of hypoxia-
inducible factor (HIF)-1α, which promotes angiogenesis by upregulating VEGF [39,40].
This pathway not only aids tissue repair but also provides cancer cells with a route for
distant metastasis. The overexpression of HIF-1α and VEGF has been associated with poor
prognosis in various cancer types [41,42].

3.3.3. Suppressive Immunity

Perioperative stress and inflammatory imbalances can impair the body’s anti-tumor
immune response, reducing its ability to eliminate residual cancer cells after tumor resec-
tion [43]. The peak suppression of immune function typically occurs around the third day
after surgery, with full recovery taking up to two weeks [44]. During this period, cancer
cells may evade immune detection and establish a tumor-promoting microenvironment
conducive to metastasis [45]. Tumor cells can express surface ligands that inhibit NK cell
cytotoxicity, allowing them to evade immunosurveillance. Additionally, tumor cells release
inflammatory mediators that create a pro-tumor environment, promoting their survival
and metastasis.

NK cells and T cells are crucial in post-surgical immunosurveillance [46]. NK cells
are capable of destroying cancer cells without prior sensitization, while Tc cells and Th
cells coordinate the immune response against tumor cells. However, surgery significantly
reduces the levels of circulating NK and T cells, mainly through the activation of the
programmed death-1 (PD-1) and programmed death–ligand 1 (PD-L1) pathway [47]. Cy-
tokine imbalances further exacerbate immune suppression, increasing anti-inflammatory
cytokines like IL-10 while reducing pro-inflammatory cytokines such as IFN-γ, thereby
shifting the immune response in favor of tumor survival [48].

Treg cells, which are known for their immunosuppressive role, also increase after
surgery, promoting a tolerant environment that allows cancer cells to thrive [49]. Elevated
Treg levels have been associated with poor prognosis lung cancer and other malignan-
cies [50–52]. Furthermore, myeloid-derived suppressor cells (MDSCs), another immuno-
suppressive cell type, increase after surgery. The recruitment of MDSCs is facilitated by a
reduction in chemokine ligand 4 (CXCL4), which is known to inhibit MDSC activity [53].
Elevated MDSC levels have been linked to cancer recurrence and a poor prognosis [54–56],
as these cells promote tumor progression through angiogenesis and immune suppres-
sion [57]. In lung cancer patients, the increased presence of MDSCs after surgery supports
angiogenesis and facilitates tumor growth [58].

4. Effect of Thoracic Anesthesia on Lung Cancer Recurrence

Given the potential impact of perioperative changes on tumor growth and survival,
optimizing anesthetic management to mitigate these effects is essential for improving pa-
tient outcomes. In this section, we review commonly used anesthetic agents and techniques
in lung cancer resection, focusing on their influence on stress responses, inflammation, and
immune function, as well as their potential effects on cancer recurrence and metastasis. To
provide a comprehensive overview of current evidence regarding anesthetic agents and
techniques used in lung cancer surgeries, we have summarized the major findings from
clinical studies in Table 1.

4.1. General vs. Regional Anesthesia

Anesthetic techniques may influence cancer outcomes by modulating the immune
system and the body’s stress response during surgery, both of which are associated with
tumor progression. Regional anesthesia (RA), such as neuraxial and peripheral nerve blocks,
has been shown to reduce surgical stress by attenuating the neuroendocrine response, thus
preserving immune function [59–61]. Preclinical studies suggest that RA may reduce
circulating levels of cortisol and catecholamines, potentially limiting tumor cell invasion
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and metastasis by reducing EMT and maintaining NK cell activity [62,63]. In clinical
practice, RA is hypothesized to decrease recurrence risk by modulating the balance between
Th1 and Th2 immune responses, thereby enhancing the body’s ability to eliminate residual
cancer cells [64]. Additionally, RA may have direct inhibitory effects on cancer cells [65,66]
while reducing the need for volatile anesthetics and opioids, both of which are associated
with immunosuppression [67,68].

Despite the theoretical advantages, clinical trials have not consistently shown a signifi-
cant reduction in cancer recurrence or improved survival with RA compared to general
anesthesia (GA) alone. A randomized controlled trial (RCT) involving 400 patients under-
going video-assisted thoracoscopic surgery (VATS) for lung cancer compared the use of
combined epidural–GA with GA alone [69]. After a median follow-up of 32 months, no sig-
nificant differences were found between the two groups in terms of recurrence-free survival
(RFS), cancer-specific survival, or overall survival (OS) between the two groups. Hazard
ratios were 0.90 for RFS (95% CI: 0.60–1.35, p = 0.068), 1.08 for cancer-specific survival (95%
CI: 0.61–1.91, p = 0.802), and 1.12 for OS (95% CI: 0.64–1.96, p = 0.697). Similar findings
have been reported in other trials assessing RA’s impact on oncologic outcomes [70,71].

One explanation for these mixed results may lie in the complexity of the TME and
the variable biological behavior of different cancers. While RA reduces stress hormone
levels and preserves immune function, these effects may not be sufficient to counteract the
multifactorial nature of tumor recurrence and metastasis. Additionally, the concentration
of local anesthetics at micro-metastatic niches may not be high enough to exert a robust
anti-tumor effect [72,73].

In summary, although RA offers potential physiological benefits, including reduced
stress response and opioid-sparing effects, current clinical evidence does not consis-
tently demonstrate a significant impact on long-term cancer outcomes when compared to
GA alone.

4.2. Volatile vs. Total Intravenous Anesthetics (Propofol)

Volatile anesthetics, such as isoflurane and sevoflurane, have been extensively studied
for their potential impact on cancer progression. Inhalation anesthetics may promote
metastasis by activating the hypothalamic–pituitary–adrenal axis and sympathetic nervous
system, leading to the release of neuroendocrine mediators such as cortisol and cate-
cholamine [61,74]. These agents suppress immune responses by reducing NK cell activity
and increasing the release of immunosuppressive cytokines [75–77]. Additionally, volatile
anesthetics induce T lymphocyte apoptosis and increase the expression of HIF-1, which is
associated with cancer cell proliferation and metastasis via the Akt/mTOR and VEGF path-
ways [78–80]. Studies in NSCLC have demonstrated that isoflurane concentrations of 1–3%
enhance both cancer cell proliferation and invasion [78], although other studies suggest
that sevoflurane may inhibit invasion by downregulating MMPs and HIF-1α [81–83]. This
duality highlights the complexity of volatile anesthetics’ effects, which may vary based on
the specific cancer cell type and experimental conditions.

In contrast, propofol, a commonly used intravenous anesthetic, has demonstrated
anti-tumor properties in both preclinical and clinical studies. Preclinical studies indicate
that propofol inhibits tumor cell viability, migration, and invasion by modulating molecular
pathways such as STAT3/HOTAIR and by reducing the expression of critical factors like
Slug and HIF-1α [79,84–88]. Additionally, propofol promotes apoptosis in lung cancer
cells by activating p53 and suppressing ERK signaling, both of which are key regulators
of cell survival and metastasis [89]. Propofol also downregulates oncogenes such as neu-
roepithelial cell-transforming gene 1 and sex-determining region Y box (SOX)4 [86,90,91].
Furthermore, propofol inhibits EMT markers, including N-cadherin and MMPs, reducing
the potential for metastasis [92–95]. Its immune-modulating effects, such as enhanced NK
cell activity and reduced levels of pro-inflammatory cytokines like IL-6 and TNF-α, may
further contribute to its anti-cancer properties [96–98].
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Clinical studies have also shown promising results for propofol-based total intra-
venous anesthesia (TIVA) in cancer surgery [99–102]. Several retrospective analyses have
reported better OS in patients undergoing cancer surgery with propofol compared to
volatile anesthetics [103–105]. Recent meta-analysis studies found that propofol-based
TIVA was associated with improved OS and RFS compared to volatile agents [106,107].
However, not all studies support these findings. Some retrospective studies have reported
no significant differences in RFS or OS between TIVA and volatile anesthetics, including
in lung cancer cases [108,109]. Other studies have similarly produced mixed results, in-
dicating that propofol may offer some oncological advantages, but the evidence remains
inconclusive [110,111].

In summary, while propofol appears to exert anti-tumor effects through immune
modulation and the direct inhibition of cancer cell activity, volatile anesthetics may promote
tumor progression in certain contexts. However, the available data from both preclinical
and clinical studies remain inconclusive, and further research is required to establish a
definitive link between anesthetic type and long-term cancer outcomes.

4.3. Opioid Agents

Opioids, widely used for perioperative analgesia in cancer surgeries, have raised
concerns about their potential role in cancer progression. Laboratory studies indicate
opioids can modulate immune function, often leading to immunosuppression [112,113].
Morphine and fentanyl, for instance, reduce NK cell activity, promote lymphocyte apoptosis,
and inhibit T cell proliferation [114–116]. However, different opioids may have varying
immunomodulatory effects. While morphine has been shown to promote tumor growth by
enhancing angiogenesis and suppressing immune responses [117], oxycodone has been
found to have minimal impact on immune function [118]. Conversely, tramadol may
possess immune-stimulating properties, potentially reducing the risk of metastasis [119].

Opioids can directly influence tumor growth by activating transcription factors and
promoting angiogenesis through the activation of VEGF receptors [120,121]. These agents
also affect cell proliferation through Akt and ERK signaling, while higher doses can induce
tumor cell death through NF-κB inhibition and p53 stabilization [122,123].

Additionally, opioids have been linked to enhanced angiogenesis and tumor growth,
primarily through the activation of mu-opioid receptors (MOR) in cancer cells [114,124,125].
Preclinical models of NSCLC have demonstrated that MOR activation promotes tumor
growth pathways such as Akt/mTOR and VEGF signaling [126–129]. At the same time,
opioid antagonists like methylnaltrexone have shown potential in reducing tumor growth
and metastasis [130,131]. The overexpression of MOR in cancer cells is associated with
poorer outcomes, including higher rates of recurrence and metastasis, particularly in can-
cers such as prostate and NSCLC [126,132]. A continuous infusion of methylnaltrexone
has been shown to decrease primary tumor growth and lung metastasis [133], suggest-
ing the potential of MOR antagonism as a therapeutic strategy in limiting opioid-driven
tumor progression.

The clinical evidence regarding opioid use in cancer patients remains mixed. Some
studies suggest that fentanyl administered during or immediately after surgery is associated
with poorer OS and RFS in NSCLC [134,135]. However, other studies report no significant
impact of perioperative opioid use on long-term oncologic outcomes in NSCLC [136].
Conflicting data also exist for other cancer types, such as colorectal cancer and esophageal
cancer [137,138].

Despite the potential cancer-promoting effects of opioids, poorly managed pain may
also contribute to tumor progression by increasing sympathetic and adrenal activity, which
elevates catecholamine and glucocorticoid levels and suppresses immune function. A
retrospective study has linked poorly controlled pain or higher opioid needs to worse
survival outcomes in advanced NSCLC patients [139]. Therefore, balancing effective
pain management with minimizing opioid use is crucial in determining their impact on
cancer recurrence.
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4.4. Non-Opioid Agents
4.4.1. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)

NSAIDs exhibit anticancer effects primarily by reducing inflammation and inhibiting
PGE2 synthesis [140–142]. By inhibiting cyclooxygenase (COX) enzymes, NSAIDs reduce
PGE2 levels, suppressing tumor-promoting pathways and enhancing immune responses,
particularly Tc cell and NK cell activity [143]. In vitro studies demonstrate that NSAIDs like
aspirin and celecoxib reduce cancer cell viability, migration, and proliferation through both
COX-dependent and COX-independent mechanisms [144–146]. Animal models further
show that NSAIDs downregulate oncogenes like SOX2 and reduce VEGF expression,
inhibiting tumor growth and metastasis [147].

Clinical studies regarding NSAIDs’ impact on cancer recurrence have yielded mixed
results [148–151]. Regular NSAID use, especially aspirin, has been associated with reduced
cancer incidence and improved RFS in some retrospective studies, including NSCLC [152,153].
However, other studies found no significant survival benefits with perioperative NSAID
use alone [154,155]. A review of 16 studies concluded that the perioperative effects of
NSAIDs on reducing cancer recurrence remain inconclusive [156].

4.4.2. Dexmedetomidine

Dexmedetomidine, a selective α2-adrenoceptor agonist, has demonstrated both pro-
tumor and anti-tumor effects depending on the context [157,158]. It interacts with α2
adrenoceptors on both immune and tumor cells, potentially influencing immune regulation
and tumor progression.

Preclinical studies suggest that dexmedetomidine may promote cancer cell survival
through the upregulation of HIF-1α, enhance metastasis via MMPs, and stimulate angiogen-
esis by increasing VEGF expression [159–161]. In contrast, dexmedetomidine infusion has
been shown to increase NK cells, B cells, and CD4+ T cells while improving the CD4+/CD8+
and Th1/Th2 ratios [158]. In animal models, dexmedetomidine has been associated with
increased metastasis in cancers such as lung, liver, and colon, particularly through MMP
expression and the induction of MDSCs [162–165]. However, other studies show that
dexmedetomidine may reduce metastasis by upregulating miR-143-3p and downregulating
EGFR expression [166].

A retrospective study of NSCLC patients reported worse OS with intraoperative
dexmedetomidine use, although RFS was not significantly affected [167]. These findings
still require confirmation through further clinical trials.

4.4.3. Thiopental

Thiopental, a barbiturate that acts on the GABA-A receptor, has demonstrated im-
munosuppressive effects in preclinical studies. It suppresses NK cell and neutrophil activity
while protecting T lymphocytes from apoptosis [168,169]. This immunosuppression, pri-
marily due to the inhibition of the NF-κB pathway, may contribute to cancer cell survival
and metastasis, particularly in lung cancer [77,170]. However, clinical studies have not yet
established a definitive link between perioperative thiopental use and oncologic outcomes.

4.4.4. Ketamine

Ketamine, an NMDA receptor antagonist, is widely used for its anesthetic and anal-
gesic properties. Preclinical studies suggest that ketamine may reduce cancer cell pro-
liferation and migration by lowering intracellular calcium levels and inhibiting HIF-1α,
p-AKT, and p-ERK expression, thereby reducing VEGF levels [171,172]. Additionally,
ketamine decreases pro-inflammatory cytokines, such as IL-6 and TNF-α, which may
further inhibit tumor growth [173]. However, ketamine also suppresses NK cell activity,
induces lymphocyte apoptosis, and inhibits dendritic cell maturation, which may promote
metastasis [77,174–176].

In lung adenocarcinoma models, ketamine has been shown to promote apoptosis and
inhibit cell growth through CD69 expression [177]. However, some studies suggest an
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increased risk of metastasis due to reduced NK cell activity [77,174]. Clinical evidence
regarding ketamine’s overall impact on cancer outcomes remains limited and inconclu-
sive [178,179].

4.5. Local Anesthetics

Local anesthetics (LAs), commonly used for intraoperative anesthesia and postoper-
ative analgesia, block neural transmission by inhibiting voltage-gated sodium channels
(VGSCs) [180]. Recent studies suggest that LAs may also have direct anti-tumor effects by
modulating cancer cell behavior [181,182]. By reducing the surgical stress response, LAs
may help mitigate immunosuppression and preserve the immune system’s ability to elimi-
nate cancer cells. Additionally, LAs reduce the need for opioids and volatile anesthetics,
both of which may negatively impact cancer recurrence. Recent evidence suggests that
amide LAs may directly inhibit cancer cell growth.

Laboratory studies have shown that LAs, particularly amide types such as lidocaine,
can inhibit cancer cell viability, migration, and proliferation in vitro [183,184]. Lidocaine
has been shown to reduce lung cancer proliferation by upregulating miR-539, which blocks
EGFR signaling [185]. Lidocaine also exhibits anti-inflammatory properties, reducing
pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α, which may help prevent
perioperative immunosuppression [186,187]. Additionally, it preserves NK cell function
and lymphocyte proliferation, supporting the immune system’s role in targeting cancer
cells [188–190].

LAs may also reduce metastasis by inhibiting VGSC activity, which is crucial for tumor
cell invasion and metastasis formation. Preclinical studies suggest that LAs block the
formation of invadopodia, structures that help cancer cells degrade the extracellular matrix
and invade surrounding tissues [191,192]. Lidocaine reduces lung metastasis by decreasing
MMP-2 levels in murine breast cancer models, limiting tumor cell invasion [193,194]. Both
lidocaine and ropivacaine further inhibit cancer cell migration and invasion by blocking
TNF-α-induced Src phosphorylation and reducing ICAM-1 expression, which are essential
for cellular adhesion in lung cancer cells [195,196]. Furthermore, lidocaine and ropivacaine
have demonstrated anti-angiogenic effects by inhibiting VEGF-induced tumor growth and
promoting apoptosis in tumor-associated endothelial cells [197,198].

Despite promising preclinical data, clinical evidence on the impact of LAs on can-
cer recurrence remains mixed. Some retrospective studies have suggested that regional
anesthesia, which reduces opioid and volatile anesthetic use, may improve OS in cancer
patients [199–201]. However, more recent studies, including a Cochrane review, concluded
that the evidence supporting the benefit of local anesthetics on cancer recurrence remains
inadequate, with conflicting results from various retrospective studies [202–204]. Although
some clinical studies have shown potential benefits, such as improved survival in patients
with pancreatic cancer receiving intravenous lidocaine [205], prospective trials are needed
to clarify these findings across various cancer types.

4.6. Others
4.6.1. Hypothermia

Perioperative hypothermia can suppress immune function by reducing NK cell activ-
ity and disrupting the Th1/Th2 cytokine balance, both of which promote cancer metasta-
sis [206,207]. Retrospective studies show mixed results, with some reporting worse cancer
outcomes [208,209], while others find no significant impact on recurrence or survival [210].

4.6.2. Transfusions

Perioperative blood transfusions, often necessary in cancer surgeries, have been linked
to immunosuppressive effects that may contribute to cancer recurrence [211,212]. Transfu-
sions can impair macrophage function and shift the immune balance toward a pro-tumor
Th2 profile. Retrospective studies associate allogeneic transfusions with poorer OS and
disease-free survival in several cancer types, including gastric, bladder, and lung can-
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cers [213–216]. However, the exact relationship between transfusions and cancer prognosis
remains unclear, and more research is needed to understand the underlying mechanisms.

4.6.3. β-Blockers

β-blockers, commonly used as antihypertensive agents, have shown potential anti-
cancer effects by reducing catecholamine-mediated tumor progression [217,218]. In vitro
studies suggest β-blockers may exert anti-metastatic effects by reducing inflammation and
inhibiting pro-tumor Treg cell activity [219,220]. Retrospective studies in patients with
ovarian, breast, and other cancers have indicated improved survival with perioperative
β-blocker use [221,222]. Meta-analyses have shown similar trends, although results vary
depending on factors such as administration time, cancer stage, and tumor type [223–225].
Further studies are needed to confirm the benefits of β-blockers in cancer surgery.

4.6.4. Steroids

Corticosteroids, such as dexamethasone, are frequently used perioperatively for their
anti-inflammatory and anti-emetic properties. However, their immunosuppressive effects at
higher doses have raised concerns about increased cancer recurrence. Retrospective studies
have shown mixed results, with some indicating improved survival in cancers like NSCLC
and pancreatic cancer with perioperative dexamethasone use [152,226], while others report
worsened outcomes, particularly in colorectal cancer [227,228]. More prospective trials
are needed to clarify the long-term impact of corticosteroid use on cancer recurrence
and metastasis.

Table 1. Summary of clinical studies on anesthetic agents and techniques in lung cancer surgery.

Anesthetic
Agents/Techniques

Study
Type Author (Year) Patients/Studies Findings References

EA + GA
(vs. GA alone) RCT Xu. et al.

(2021) n = 400 No difference in OS and RFS [69]

EA + GA
(vs. GA alone) RCT Du. et al.

(2021) n = 1802 No difference in OS and RFS [70]

TIVA (vs. Volatile) Meta-analysis Chang. et al.
(2021) n = 19 Improved OS and RFS [106]

TIVA (vs. Volatile) Meta-analysis Yap. et al.
(2019) n = 10 Improved OS and RFS [107]

TIVA (vs. Volatile) Retrospective Oh. et al.
(2018) n = 943 No difference in OS and RFS [108]

Opioid Retrospective Cata. et al.
(2014) n = 901 Decreased OS and RFS (in

stage I) [134]

Opioid Retrospective Maher. et al.
(2014) n = 99 Increased in recurrence rate [135]

Opioid Retrospective Oh. et al.
(2017) n = 1009 No difference in recurrence

rate and OS [136]

NSAIDs Retrospective Choi. et al.
(2015) n = 1139 No difference in OS and RFS [154]

NSAIDs Retrospective Lee. et al.
(2016) n = 1637 No difference in OS and RFS [155]

Dexmedetomidine Retrospective Cata. et al.
(2017) n = 1404 Decreased OS and no

difference in RFS [167]

EA: epidural anesthesia, GA: general anesthesia, RCT: randomized controlled trial, TIVA: total intravenous
anesthesia, OS: overall survival, RFS: recurrence-free survival, NSAIDs: non-steroidal anti-inflammatory drugs.
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5. Current Large-Scale Studies and Proposed New Research Directions

Recent clinical trials have sought to elucidate the relationship between anesthetic
techniques and cancer recurrence rates in surgical patients, with a particular focus on the
effects of volatile anesthetics and TIVA (Table 2). The VAPOR-C trial compares the long-
term impact of propofol-based TIVA with volatile anesthesia on RFS in patients with lung
and colorectal cancers, aiming to determine whether TIVA provides superior oncologic
outcomes. Preliminary results suggest TIVA may have a favorable impact, though compre-
hensive results are awaited. Similarly, the GA-CARES trial examines various anesthetic
agents across multiple cancer types, including lung cancer, to assess their influence on OS
and recurrence rates. The GAS-TIVA trial focuses on NSCLC, comparing the recurrence
rates between propofol-based TIVA and volatile agents. These studies will provide critical
insights into optimizing anesthetic strategies for improved oncologic outcomes.

Table 2. Ongoing prospective randomized clinical trials on anesthetic management and lung can-
cer recurrence.

Trial Registry
Number Study Title Study Design Interventions Primary

Outcome
Estimated
Completion

NCT03034096
General Anesthetics in
Cancer Resection Surgery
(GA-CARES trial)

All cancer type
(n = 2000)

Propofol-based TIVA
vs. Sevoflurane,
Isoflurane,
Desflurane

All-cause
mortality December 2025

NCT04316013

Volatile Anaesthesia and
Perioperative Outcomes
Related to Cancer
(VAPOR-C trial)

Non-small cell
lung cancer,
colorectal cancer
(n = 3500)

Propofol-based TIVA
vs. Sevoflurane

Disease-free
survival June 2028

NCT06330038

Recurrence Free Survival
After Curative Resection
of Non-small Cell Lung
Cancer Between
Inhalational Gas
Anesthesia and
Propofol-based Total
IntraVenous Anesthesia
(GAS-TIVA trial)

Non-small cell
lung cancer
(n = 5384)

Propofol-based TIVA
vs. Sevoflurane,
Isoflurane,
Desflurane

Recurrence-
free survival December 2028

TIVA: total-intravenous anesthesia.

Beyond these large-scale studies, new research should investigate how anesthetic
agents modulate molecular mechanisms such as ferroptosis and autophagy, which are
crucial in cancer cell survival and death [229,230]. Ferroptosis is a form of regulated
cell death characterized by lipid peroxidation driven by iron-dependent processes. It
contrasts with apoptosis and necrosis by involving unique mechanisms such as glutathione
peroxidase 4 (GPX4) inhibition, leading to cellular damage and death. Autophagy, on the
other hand, plays a dual role by promoting cell survival under stress but can also trigger
ferroptosis through processes like ferritinophagy, which releases free iron and generates
reactive oxygen species. These mechanisms represent promising targets for therapeutic
strategies, suggesting that anesthetic techniques impacting oxidative stress and autophagic
activity could influence cancer outcomes. Anesthetics like propofol and dexmedetomidine
are known to interact with these mechanisms; propofol can modulate oxidative stress and
autophagic processes, while dexmedetomidine may inhibit ferroptosis by enhancing GPX4
expression. Understanding these interactions could reveal how perioperative anesthetic
choices impact cancer cell viability and long-term recurrence, opening new therapeutic
strategies that combine anesthetic management with targeted interventions.
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6. Conclusions

While increasing evidence suggests that anesthetic techniques and perioperative
management may influence cancer recurrence and metastasis, much of the current data
come from preclinical or retrospective studies with conflicting results. Certain anesthetic
agents, such as propofol, have shown promising anti-tumor effects, whereas others, such
as volatile anesthetics and opioids, have been linked to tumor-promoting mechanisms.
However, these findings are not entirely consistent, likely due to the complex interactions
between tumor biology, surgical techniques, and patient-specific factors such as immune
status, comorbidities, and genetics. This complexity makes it challenging to isolate the
effects of individual agents or techniques on cancer outcomes.

In addition to anesthetic agents, future studies should focus on other perioperative
factors such as pain management, blood transfusions, and perioperative hypothermia,
which may significantly affect cancer prognosis. Understanding the influence of these
variables is crucial to developing comprehensive perioperative strategies aimed at reducing
metastasis risk and improving survival.

Effective anesthetic management in cancer surgery requires balancing immediate peri-
operative needs with long-term oncologic outcomes. Personalized approaches, considering
each patient’s risk profile—including immune status and comorbidities—are essential.
Multidisciplinary collaboration between anesthesiologists, surgeons, and oncologists is key
to ensuring that perioperative care effectively supports oncologic considerations.
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