Effects of Acute Maximum-Intensity Exercise on Matrix Metalloproteinase-2, -9, and Tissue Inhibitor of Metalloproteinase-1 Levels in Adult Males with Type 1 Diabetes Mellitus Treated with Insulin Pumps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soedamah-Muthu, S.S.; Fuller, J.H.; Mulnier, H.E.; Raleigh, V.S.; Lawrenson, R.A.; Colhoun, H.M. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: A cohort study using the general practice research database. Diabetes Care 2006, 29, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.G.; Mahajan, H.D.; Costacou, T.; Sekikawa, A.; Anderson, S.J.; Orchard, T.J. A Contemporary Estimate of Total Mortality and Cardiovascular Disease Risk in Young Adults with Type 1 Diabetes: The Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care 2016, 39, 2296–2303. [Google Scholar] [CrossRef] [PubMed]
- Soedamah-Muthu, S.S.; Fuller, J.H.; Mulnier, H.E.; Raleigh, V.S.; Lawrenson, R.A.; Colhoun, H.M. All-cause mortality rates in patients with type 1 diabetes mellitus compared with a non-diabetic population from the UK general practice research database, 1992–1999. Diabetologia 2006, 49, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.; Daskalopoulou, S.S.; Perrea, D.; Liapis, C.D. Matrix metalloproteinases and diabetic vascular complications. Angiology 2005, 56, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Olejarz, W.; Łacheta, D.; Kubiak-Tomaszewska, G. Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int. J. Mol. Sci. 2020, 21, 3946. [Google Scholar] [CrossRef]
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar]
- Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef]
- Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef]
- Peeters, S.A.; Engelen, L.; Buijs, J.; Chaturvedi, N.; Fuller, J.H.; Schalkwijk, C.G.; Stehouwer, C.D.; EURODIAB Prospective Complications Study Group. Plasma levels of matrix metalloproteinase-2, -3, -10, and tissue inhibitor of metalloproteinase-1 are associated with vascular complications in patients with type 1 diabetes: The EURODIAB Prospective Complications Study. Cardiovasc. Diabetol. 2015, 14, 31. [Google Scholar] [CrossRef]
- Derosa, G.; Avanzini, M.A.; Geroldi, D.; Fogari, R.; Lorini, R.; De Silvestri, A.; Tinelli, C.; Rondini, G.; d’Annunzio, G. Matrix metalloproteinase 2 may be a marker of microangiopathy in children and adolescents with type 1 diabetes mellitus. Diabetes Res. Clin. Pract. 2005, 70, 119–125. [Google Scholar] [CrossRef]
- Thrailkill, K.M.; Bunn, R.C.; Moreau, C.S.; Cockrell, G.E.; Simpson, P.M.; Coleman, H.N.; Frindik, J.P.; Kemp, S.F.; Fowlkes, J.L. Matrix Metalloproteinase-2 Dysregulation in Type 1 Diabetes. Diabetes Care 2007, 30, 2321–2326. [Google Scholar] [CrossRef] [PubMed]
- Gharagozlian, S.; Svennevig, K.; Bangstad, H.J.; Winberg, J.O.; Kolset, S.O. Matrix metalloproteinases in subjects with type 1 diabetes. BMC Clin. Pathol. 2009, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Peeters, S.A.; Engelen, L.; Buijs, J.; Chaturvedi, N.; Fuller, J.H.; Jorsal, A.; Parving, H.H.; Tarnow, L.; Theilade, S.; Rossing, P.; et al. Circulating matrix metalloproteinases are associated with arterial stiffness in patients with type 1 diabetes: Pooled analysis of three cohort studies. Cardiovasc. Diabetol. 2017, 16, 139. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou-Marketou, N.; Whiss, P.A.; Eriksson, A.C.; Hyllienmark, L.; Papassotiriou, I.; Wahlberg, J. Plasma levels of tissue inhibitor of metalloproteinase-1 in patients with type 1 diabetes mellitus associate with early diabetic neuropathy and nephropathy. Diab. Vasc. Dis. Res. 2021, 18, 14791641211002470. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, C. Exercise and Type 1 Diabetes. Adv. Exp. Med. Biol. 2020, 1228, 107–121. [Google Scholar]
- Tikkanen-Dolenc, H.; Wadén, J.; Forsblom, C.; Harjutsalo, V.; Thorn, L.M.; Saraheimo, M.; Elonen, N.; Hietala, K.; Summanen, P.; Tikkanen, H.O.; et al. Frequent physical activity is associated with reduced risk of severe diabetic retinopathy in type 1 diabetes. Acta Diabetol. 2020, 57, 527–534. [Google Scholar] [CrossRef]
- Pongrac Barlovic, D.; Tikkanen-Dolenc, H.; Groop, P.H. Physical Activity in the Prevention of Development and Progression of Kidney Disease in Type 1 Diabetes. Curr. Diab. Rep. 2019, 19, 41. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef]
- Boehncke, S.; Poettgen, K.; Maser-Gluth, C.; Reusch, J.; Boehncke, W.H.; Badenhoop, K. Endurance capabilities of triathlon competitors with type 1 diabetes mellitus. Dtsch. Med. Wochenschr. 2009, 134, 677–682. [Google Scholar] [CrossRef]
- Teich, T.; Zaharieva, D.P.; Riddell, M.C. Advances in Exercise, Physical Activity, and Diabetes Mellitus. Diabetes Technol. Ther. 2019, 21, S112–S122. [Google Scholar] [CrossRef]
- Palermi, S.; Iacono, O.; Sirico, F.; Modestino, M.; Ruosi, C.; Spera, R.; De Luca, M. The complex relationship between physical activity and diabetes: An overview. J. Basic Clin. Physiol. Pharmacol. 2021, 33, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Riddell, M.C.; Gallen, I.W.; Smart, C.E.; Taplin, C.E.; Adolfsson, P.; Lumb, A.N.; Kowalski, A.; Rabasa-Lhoret, R.; McCrimmon, R.J.; Hume, C.; et al. Exercise management in type 1 diabetes: A consensus statement. Lancet Diabetes Endocrinol. 2017, 5, 377–390. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Neto, I.V.; Tibana, R.A.; da Cunha Nascimento, D.; Vieira, D.C.R.; Durigan, J.L.Q.; Pereira, G.B.; Navalta, J.W.; de Cássia Marqueti, R.; Prestes, J. Effects of Resistance Training Volume on MMPs in Circulation, Muscle and Adipose Tissue. Int. J. Sports Med. 2017, 38, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, R.; Hopps, E.; Caimi, G. Gelatinases and physical exercise: A systematic review of evidence from human studies. Medicine 2017, 96, e8072. [Google Scholar] [CrossRef]
- Nascimento, D.C.; Durigan, R.C.M.; Tibana, R.A.; Durigan, J.L.Q.; Navalta, J.W.; Prestes, J. The response of matrix metalloproteinase-9 and -2 to exercise. Sports Med. 2015, 45, 269–278. [Google Scholar] [CrossRef]
- Tota, Ł.; Matejko, B.; Morawska-Tota, M.; Pilch, W.; Mrozińska, S.; Pałka, T.; Klupa, T.; Malecki, M.T. Changes in Oxidative and Nitrosative Stress Indicators and Vascular Endothelial Growth Factor After Maximum-Intensity Exercise Assessing Aerobic Capacity in Males with Type 1 Diabetes Mellitus. Front. Physiol. 2021, 12, 672403. [Google Scholar] [CrossRef]
- Matejko, B.; Tota, Ł.; Mrozińska, S.; Morawska, M.; Pałka, T.; Kieć-Wilk, B.; Klupa, T.; Malecki, M.T. Predictors of the maximal oxygen consumption in adult patients with type 1 diabetes treated with personal insulin pumps. J. Diabetes Investig. 2021, 12, 1377–1385. [Google Scholar] [CrossRef]
- Maxwell, P.R.; Timms, P.M.; Chandran, S.; Gordon, D. Peripheral blood level alterations of TIMP-1, MMP-2 and MMP-9 in patients with Type 1 diabetes. Diabet. Med. 2001, 18, 777–780. [Google Scholar] [CrossRef]
- Diamant, M.; Hanemaaijer, R.; Verheijen, J.H.; Smit, J.W.A.; Radder, J.K.; Lemkes, H.H.P.J. Elevated matrix metalloproteinase-2 and -9 in urine, but not in serum, are markers of type 1 diabetic nephropathy. Diabet. Med. 2001, 18, 423–424. [Google Scholar] [CrossRef]
- Jacqueminet, S.; Ben Abdesselam, O.; Chapman, M.J.; Nicolay, N.; Foglietti, M.J.; Grimaldi, A.; Beaudeux, J.L. Elevated circulating levels of matrix metalloproteinase-9 in type 1 diabetic patients with and without retinopathy. Clin. Chim. Acta 2006, 367, 103–107. [Google Scholar] [CrossRef]
- Shiau, M.Y.; Tsai, S.T.; Tsai, K.J.; Haung, M.L.; Hsu, Y.T.; Chang, Y.H. Increased circulatory MMP-2 and MMP-9 levels and activities in patients with type 1 diabetes mellitus. Mt. Sinai J. Med. 2006, 73, 1024–1028. [Google Scholar] [PubMed]
- Maftei, G.A.; Martu, M.A.; Martu, M.C.; Popescu, D.; Surlin, P.; Tatarciuc, D.; Popa, C.; Foia, L.G. Correlations between Salivary Immuno-Biochemical Markers and HbA1c in Type 2 Diabetes Subjects before and after Dental Extraction. Antioxidants 2021, 10, 1741. [Google Scholar] [CrossRef] [PubMed]
- Thrailkill, K.M.; Moreau, C.S.; Cockrell, G.E.; Jo, C.H.; Bunn, R.C.; Morales-Pozzo, A.E.; Lumpkin, C.K.; Fowlkes, J.L. Disease and gender-specific dysregulation of NGAL and MMP-9 in type 1 diabetes mellitus. Endocrine 2010, 37, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Gerlach, R.F.; Tanus-Santos, J.E. Preanalytical pitfalls of blood sampling to measure true circulating matrix metalloproteinase 9 and tissue inhibitors of matrix metalloproteinases. Clin. Chim. Acta 2006, 373, 180–181. [Google Scholar] [CrossRef] [PubMed]
- Aljada, A.; Ghanim, H.; Mohanty, P.; Syed, T.; Bandyopadhyay, A.; Dandona, P. Glucose intake induces an increase in activator protein 1 and early growth response 1 binding activities, in the expression of tissue factor and matrix metalloproteinase in mononuclear cells, and in plasma tissue factor and matrix metalloproteinase concentrations. Am. J. Clin. Nutr. 2004, 80, 51–57. [Google Scholar]
- Dandona, P.; Aljada, A.; Mohanty, P.; Ghanim, H.; Bandyopadhyay, A.; Chaudhuri, A. Insulin suppresses plasma concentration of vascular endothelial growth factor and matrix metalloproteinase-9. Diabetes Care 2003, 26, 3310–3314. [Google Scholar] [CrossRef]
- Lee, H.W.; Lee, S.J.; Lee, M.Y.; Park, M.W.; Kim, S.S.; Shin, N.; Lovett, D.H.; Bae, S.S.; Ahn, J.; Park, J.S.; et al. Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus. PLoS ONE 2019, 14, e0221798. [Google Scholar] [CrossRef]
- Barker, J.M. Clinical review: Type 1 diabetes-associated autoimmunity: Natural history, genetic associations, and screening. J. Clin. Endocrinol. Metab. 2006, 91, 1210–1217. [Google Scholar] [CrossRef]
- Ram, M.; Sherer, Y.; Shoenfeld, Y. Matrix metalloproteinase-9 and autoimmune diseases. J. Clin. Immunol. 2006, 26, 299–307. [Google Scholar] [CrossRef]
- Uemura, S.; Matsushita, H.; Li, W.; Glassford, A.J.; Asagami, T.; Lee, K.H.; Harrison, P.S.; Tsao, P.S. Diabetes mellitus enhances vascular matrix metalloproteinase activity: Role of oxidative stress. Circ. Res. 2001, 88, 1291–1298. [Google Scholar] [CrossRef]
- Mastaloudis, A.; Leonard, S.W.; Traber, M.G. Oxidative stress in athletes during extreme endurance exercise. Free Radic. Biol. Med. 2001, 31, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Kliszczewicz, B.; Quindry, C.J.; Blessing, L.D.; Oliver, D.G.; Esco, R.M.; Taylor, J.K. Acute Exercise and Oxidative Stress: CrossFit(TM) vs. Treadmill Bout. J. Hum. Kinet. 2015, 47, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Quindry, J.C.; Stone, W.L.; King, J.; Broeder, C.E. The effects of acute exercise on neutrophils and plasma oxidative stress. Med. Sci. Sports Exerc. 2003, 35, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Lee, Y.H.; Kim, J.C.; Ko, Y.H.K.; Yoon, C.S.; Yi, H.K. Effect of exercise training of different intensities on anti-inflammatory reaction in streptozotocin-induced diabetic rats. Biol. Sport 2014, 31, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Mi, M.Y.; Barber, J.L.; Rao, P.; Farrell, L.A.; Sarzynski, M.A.; Bouchard, C.; Robbins, J.M.; Gerszten, R.E. Plasma Proteomic Kinetics in Response to Acute Exercise. Mol. Cell Proteom. 2023, 22, 100601. [Google Scholar] [CrossRef]
- Rader, E.P.; Turk, R.; Willer, T.; Beltrán, D.; Inamori, K.I.; Peterson, T.A.; Engle, J.; Prouty, S.; Matsumura, K.; Saito, F. Role of dystroglycan in limiting contraction-induced injury to the sarcomeric cytoskeleton of mature skeletal muscle. Proc. Natl. Acad. Sci. USA 2016, 113, 10992–10997. [Google Scholar] [CrossRef]
- Provenzano, M.; Andreucci, M.; Garofalo, C.; Faga, T.; Michael, A.; Ielapi, N.; Grande, R.; Sapienza, P.; de Franciscis, S.; Mastroroberto, P.; et al. The Association of Matrix Metalloproteinases with Chronic Kidney Disease and Peripheral Vascular Disease: A Light at the End of the Tunnel? Biomolecules 2020, 10, 154. [Google Scholar] [CrossRef]
- Kłysik, A.B.; Naduk-Kik, J.; Hrabec, Z.; Goś, R.; Hrabec, E. Intraocular matrix metalloproteinase 2 and 9 in patients with diabetes mellitus with and without diabetic retinopathy. Arch. Med. Sci. 2010, 6, 375–381. [Google Scholar] [CrossRef]
- Ohno-Matsui, K.; Uetama, T.; Yoshida, T.; Hayano, M.; Itoh, T.; Morita, I.; Mochizuki, M. Reduced retinal angiogenesis in MMP-2-deficient mice. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5370–5375. [Google Scholar] [CrossRef]
- Mackey, A.L.; Donnelly, A.E.; Turpeenniemi-Hujanen, T.; Roper, H.P. Skeletal muscle collagen content in humans after high-force eccentric contractions. J. Appl. Physiol. 2004, 97, 197–203. [Google Scholar] [CrossRef]
- Suhr, F.; Brixius, K.; de Marées, M.; Bölck, B.; Kleinöder, H.; Achtzehn, S.; Bloch, W.; Mester, J. Effects of short-term vibration and hypoxia during high-intensity cycling exercise on circulating levels of angiogenic regulators in humans. J. Appl. Physiol. 2007, 103, 474–483. [Google Scholar] [CrossRef] [PubMed]
T1DM (N = 24) | Control (N = 10) | p | |
---|---|---|---|
Age [years] | 23.1 (5.4) | 23.4 (1.9) | 0.0376 |
BH [cm] | 179.8 (8.7) | 181.2 (6.1) | 0.6534 |
BM [kg] | 78.7 (15.0) | 72.5 (8.7) | 0.2350 |
BCM [kg] | 37.3 (5.3) | 36.1 (3.7) | 0.375 |
FFM [kg] | 64.5 (8.5) | 61.2 (6.2) | 0.2792 |
FM [kg] | 14.2 (8.2) | 11.4 (3.5) | >0.9999 |
TBW [%] | 60.7 (4.8) | 57.0 (14.2) | 0.4316 |
T1DM (N = 24) | |
---|---|
DM duration [years] | 11.8 (6.2) |
Time of CSII use [years] | 6.9 (4.2) |
HbA1c [%] | 7.1 (0.9) |
DDI [IU] | 57.6 (16.6) |
VO2 max * | 44.7 (6.0) |
CGM | 156.1 (30.6) |
T1DM | p | Control | p | p T1DM vs. Control | ||||
---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |||
MMP-2 [ng/mL] | 229.3 (136.8) | 267.0 (174.0) | <0.0001 | 158.8 (101.6) | 154.8 (100.0) | 0.8457 | 0.0949 | 0.01 |
Δ | 37.7 (47.5) | −4.0 (24.8) | 0.0017 | |||||
MMP-9 [ng/mL] | 58.6 (32.5) | 60.4 (34.9) | 0.4732 | 37.7 (21.1) | 35.1 (17.6) | 0.1602 | 0.0146 | 0.0046 |
Δ | 1.8 (7.9) | −2.6 (4.9) | 0.1179 | |||||
TIMP-1 [ng/mL] | 42.2 (28.3) | 44.4 (28.4) | 0.6401 | 24.5 (19.4) | 23.2 (18.9) | 0.2637 | 0.0606 | 0.0287 |
Δ | 2.2 (22.5) | −1.3 (4.4) | 0.1074 |
Indices | p | r |
---|---|---|
Biochemical indices | ||
ΔMMP-2 vs. Δ MMP-9 | 0.1894 | 0.2774 |
ΔMMP-2 vs. Δ TIMP-1 | 0.1263 | 0.3209 |
ΔMMP-9 vs. Δ TIMP-1 | 0.2296 | 0.2548 |
Anthropometric indices | ||
ΔMMP-2 vs. BM | 0.4023 | 0.1791 |
ΔMMP-2 vs. BCM | 0.2976 | 0.2218 |
ΔMMP-2 vs. FM | 0.4307 | 0.1687 |
ΔMMP-2 vs. FFM | 0.6892 | 0.0861 |
ΔMMP-9 vs. BM | 0.0127 | 0.5009 |
ΔMMP-9 vs. BCM | 0.0013 | 0.6171 |
ΔMMP-9 vs. FM | 0.0663 | 0.3809 |
ΔMMP-9 vs. FFM | 0.0066 | 0.5391 |
ΔTIMP-1 vs. BM | 0.0055 | 0.5487 |
ΔTIMP-1 vs. BCM | 0.0060 | 0.5436 |
ΔTIMP-1 vs. FM | 0.0093 | 0.5191 |
ΔTIMP-1 vs. FFM | 0.0146 | 0.4922 |
Clinical and physiological indices | ||
ΔMMP-2 vs. disease duration | 0.0831 | −0.3691 |
ΔMMP-2 vs. treatment duration (CSII) | 0.3998 | −0.1843 |
ΔMMP-2 vs. HbA1c | 0.4441 | 0.1639 |
ΔMMP-2 vs. VO2 max * | 0.8957 | −0.0283 |
ΔMMP-2 vs. CGM | 0.9775 | −0.0061 |
ΔMMP-9 vs. disease duration | 0.1568 | −0.3052 |
ΔMMP-9 vs. treatment duration (CSII) | 0.9964 | −0.00099 |
ΔMMP-9 vs. HbA1c | 0.8885 | −0.0302 |
ΔMMP-9 vs. VO2 max * | 0.0453 | −0.4123 |
ΔMMP-9 vs. CGM | 0.9743 | 0.0070 |
ΔTIMP-1 vs. disease duration | 0.1013 | −0.3503 |
ΔTIMP-1 vs. treatment duration (CSII) | 0.8504 | 0.0416 |
ΔTIMP-1 vs. HbA1c | 0.7448 | 0.0701 |
ΔTIMP-1 vs. VO2 max * | 0.2229 | −0.2583 |
ΔTIMP-1 vs. CGM | 0.8275 | 0.0470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kryst, J.; Matejko, B.; Czerwińska-Ledwig, O.; Tota, Ł.; Zuziak, R.; Piotrowska, A. Effects of Acute Maximum-Intensity Exercise on Matrix Metalloproteinase-2, -9, and Tissue Inhibitor of Metalloproteinase-1 Levels in Adult Males with Type 1 Diabetes Mellitus Treated with Insulin Pumps. J. Clin. Med. 2024, 13, 7077. https://doi.org/10.3390/jcm13237077
Kryst J, Matejko B, Czerwińska-Ledwig O, Tota Ł, Zuziak R, Piotrowska A. Effects of Acute Maximum-Intensity Exercise on Matrix Metalloproteinase-2, -9, and Tissue Inhibitor of Metalloproteinase-1 Levels in Adult Males with Type 1 Diabetes Mellitus Treated with Insulin Pumps. Journal of Clinical Medicine. 2024; 13(23):7077. https://doi.org/10.3390/jcm13237077
Chicago/Turabian StyleKryst, Joanna, Bartłomiej Matejko, Olga Czerwińska-Ledwig, Łukasz Tota, Roxana Zuziak, and Anna Piotrowska. 2024. "Effects of Acute Maximum-Intensity Exercise on Matrix Metalloproteinase-2, -9, and Tissue Inhibitor of Metalloproteinase-1 Levels in Adult Males with Type 1 Diabetes Mellitus Treated with Insulin Pumps" Journal of Clinical Medicine 13, no. 23: 7077. https://doi.org/10.3390/jcm13237077
APA StyleKryst, J., Matejko, B., Czerwińska-Ledwig, O., Tota, Ł., Zuziak, R., & Piotrowska, A. (2024). Effects of Acute Maximum-Intensity Exercise on Matrix Metalloproteinase-2, -9, and Tissue Inhibitor of Metalloproteinase-1 Levels in Adult Males with Type 1 Diabetes Mellitus Treated with Insulin Pumps. Journal of Clinical Medicine, 13(23), 7077. https://doi.org/10.3390/jcm13237077