Clinical Characteristics of Persistent Hypophosphatasemia Uncovered in Adult Patients: A Retrospective Study at a Japanese Tertiary Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Method for Measuring Serum ALP Levels
2.3. Definition of Persistent Hypophosphatasemia
2.4. Data Collection
2.5. Statistical Analysis
2.6. Ethics Approval
3. Results
3.1. Summary of All ALP Measurements
3.2. Characteristics of Patients with Persistent Hypophosphatasemia
3.3. Causes of Persistent Hypophosphatasemia
3.4. Categorization of Persistent and Uncertain Hypophosphatasemia
4. Discussion
4.1. Prevalence of Persistent Hypophosphatasemia
4.2. Age, Sex, and Laboratory Characteriscs of Patients with Persistent Hypophosphatasemia
4.3. Characteristics of Underlying Conditions of Persistent Hypophosphatasemia in Clinical Practice
4.4. Insights into Characteristics of Persistent Hypohphosphatasemia by Categorization
4.5. Limitations and Strengths of This Study
4.6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Whyte, M.P. Hypophosphatasia: An overview for 2017. Bone 2017, 102, 15–25. [Google Scholar] [CrossRef] [PubMed]
- José Luis, M. Mammalian alkaline phosphatases: From biology to applications in medicine and biotechnology. In Gene Structure, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 1, pp. 1–5. [Google Scholar]
- Vimalraj, S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene 2020, 754, 144855. [Google Scholar] [CrossRef] [PubMed]
- Maman, E.; Borderie, D.; Roux, C.; Briot, K. Absence of recognition of low alkaline phosphatase level in a tertiary care hospital. Osteoporos. Int. 2016, 27, 1251–1254. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, F.E.; Berg, R.L.; Fuehrer, J. Clinical and radiographic findings in adults with persistent hypophosphatasemia. J. Bone Miner. Res. 2014, 29, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Villa-Suarez, J.M.; Garcia-Fontana, C.; Andujar-Vera, F.; Gonzalez-Salvatierra, S.; de Haro-Munoz, T.; Contreras-Bolivar, V.; Garcia-Fontana, B.; Munoz-Torres, M. Hypophosphatasia: A Unique Disorder of Bone Mineralization. Int. J. Mol. Sci. 2021, 22, 4303. [Google Scholar] [CrossRef]
- Schmidt, T.; Mussawy, H.; Rolvien, T.; Hawellek, T.; Hubert, J.; Ruther, W.; Amling, M.; Barvencik, F. Clinical, radiographic and biochemical characteristics of adult hypophosphatasia. Osteoporos. Int. 2017, 28, 2653–2662. [Google Scholar] [CrossRef]
- Weber, T.J.; Sawyer, E.K.; Moseley, S.; Odrljin, T.; Kishnani, P.S. Burden of disease in adult patients with hypophosphatasia: Results from two patient-reported surveys. Metabolism 2016, 65, 1522–1530. [Google Scholar] [CrossRef]
- Sutton, R.A.; Mumm, S.; Coburn, S.P.; Ericson, K.L.; Whyte, M.P. “Atypical femoral fractures” during bisphosphonate exposure in adult hypophosphatasia. J. Bone Miner. Res. 2012, 27, 987–994. [Google Scholar] [CrossRef]
- Cundy, T.; Michigami, T.; Tachikawa, K.; Dray, M.; Collins, J.F.; Paschalis, E.P.; Gamsjaeger, S.; Roschger, A.; Fratzl-Zelman, N.; Roschger, P.; et al. Reversible Deterioration in Hypophosphatasia Caused by Renal Failure with Bisphosphonate Treatment. J. Bone Miner. Res. 2015, 30, 1726–1737. [Google Scholar] [CrossRef]
- Tornero, C.; Navarro-Compan, V.; Buno, A.; Heath, K.E.; Diaz-Almiron, M.; Balsa, A.; Tenorio, J.A.; Quer, J.; Aguado, P. Biochemical algorithm to identify individuals with ALPL variants among subjects with persistent hypophosphatasaemia. Orphanet J. Rare Dis. 2022, 17, 98. [Google Scholar] [CrossRef]
- Garcia-Carretero, R.; Olid-Velilla, M.; Perez-Torrella, D.; Torres-Pacho, N.; Darnaude-Ortiz, M.T.; Bustamate-Zuloeta, A.D.; Tenorio, J.A. Predictive modeling of hypophosphatasia based on a case series of adult patients with persistent hypophosphatasemia. Osteoporos. Int. 2021, 32, 1815–1824. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, F.E.; Dong, J.; Berg, R.L.; Scotty, E.; Mundt, P.; Larson, L.; Rai, I. Mutational and biochemical findings in adults with persistent hypophosphatasemia. Osteoporos. Int. 2017, 28, 2343–2348. [Google Scholar] [CrossRef] [PubMed]
- Riancho-Zarrabeitia, L.; Garcia-Unzueta, M.; Tenorio, J.A.; Gomez-Gerique, J.A.; Ruiz Perez, V.L.; Heath, K.E.; Lapunzina, P.; Riancho, J.A. Clinical, biochemical and genetic spectrum of low alkaline phosphatase levels in adults. Eur. J. Intern. Med. 2016, 29, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Riancho, J.A. Diagnostic Approach to Patients with Low Serum Alkaline Phosphatase. Calcif. Tissue Int. 2023, 112, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Sasaki, N.; Kusano, E.; Ando, Y.; Nemoto, J.; Iimura, O.; Ito, C.; Takeda, S.; Yano, K.; Tsuda, E.; Asano, Y. Changes in osteoprotegerin and markers of bone metabolism during glucocorticoid treatment in patients with chronic glomerulonephritis. Bone 2002, 30, 853–858. [Google Scholar] [CrossRef]
- Xing, Q.; Feng, J.; Zhang, X. Glucocorticoids suppressed osteoblast differentiation by decreasing Sema3A expression via the PIK3/Akt pathway. Exp. Cell Res. 2021, 403, 112595. [Google Scholar] [CrossRef]
- Horsch, K.; de Wet, H.; Schuurmans, M.M.; Allie-Reid, F.; Cato, A.C.; Cunningham, J.; Burrin, J.M.; Hough, F.S.; Hulley, P.A. Mitogen-activated protein kinase phosphatase 1/dual specificity phosphatase 1 mediates glucocorticoid inhibition of osteoblast proliferation. Mol. Endocrinol. 2007, 21, 2929–2940. [Google Scholar] [CrossRef]
- Hofbauer, L.C.; Shui, C.; Riggs, B.L.; Dunstan, C.R.; Spelsberg, T.C.; O’Brien, T.; Khosla, S. Effects of immunosuppressants on receptor activator of NF-kappaB ligand and osteoprotegerin production by human osteoblastic and coronary artery smooth muscle cells. Biochem. Biophys. Res. Commun. 2001, 280, 334–339. [Google Scholar] [CrossRef]
- Martin-Fernandez, M.; Rubert, M.; Montero, M.; de la Piedra, C. Effects of Cyclosporine, Tacrolimus, and Rapamycin on Osteoblasts. Transplant. Proc. 2017, 49, 2219–2224. [Google Scholar] [CrossRef]
- Guideline Development Committee, J.S.o.L.M. Guidelines for the Clinical Laboratory Tests 2021; Uchudo Yagi Books: Tokyo, Japan, 2021; p. 18. [Google Scholar]
- Aqeel Rashid, F.; Mahdi, S.; Abd-Alkader Mahdy, S.; Thamer Salim, A. Effect of Obesity on Plasma Alkaline Phosphatase Activity in Breast Cancer. Rep. Biochem. Mol. Biol. 2021, 10, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zeng, Q.; He, J. Do alkaline phosphatases have great potential in the diagnosis, prognosis, and treatment of tumors? Transl. Cancer Res. 2023, 12, 2932–2945. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, K.; Tanji, Y.; Ikeda, N.; Miyoshi, Y.; Taguchi, T.; Tamaki, Y.; Noguchi, S. Influence of adjuvant tamoxifen treatment on bone mineral density and bone turnover markers in postmenopausal breast cancer patients in Japan. Cancer Lett. 2002, 186, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Komi, J.; Lankinen, K.S.; DeGregorio, M.; Heikkinen, J.; Saarikoski, S.; Tuppurainen, M.; Halonen, K.; Lammintausta, R.; Vaananen, K.; Ylikorkala, O.; et al. Effects of ospemifene and raloxifene on biochemical markers of bone turnover in postmenopausal women. J. Bone Miner. Metab. 2006, 24, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Agnusdei, D. Clinical efficacy of raloxifene in postmenopausal women. Eur. J. Obstet. Gynecol. Reprod. Biol. 1999, 85, 43–46. [Google Scholar] [CrossRef]
- Sahebari, M.; Sarafraz Yazdi, M.; Mehrnaz Aghili, S.; Esmaily, H.; Saeidi, S.; Salari, M. Efficacy of Raloxifene as Add-on Therapy on Disease Activity of Postmenopausal Women with Rheumatoid Arthritis: A Double-blind, Randomized, Placebo-controlled Clinical Trial. Curr. Rheumatol. Rev. 2023, 19, 93–101. [Google Scholar] [CrossRef]
- Schaefer, A.K.; Hutschala, D.; Andreas, M.; Bernardi, M.H.; Brands, R.; Shabanian, S.; Laufer, G.; Wiedemann, D. Decrease in serum alkaline phosphatase and prognostic relevance in adult cardiopulmonary bypass. Interact. Cardiovasc. Thorac. Surg. 2020, 31, 383–390. [Google Scholar] [CrossRef]
- Chin, A.J.; Stephens, P.; Goldmuntz, E.; Leonard, M.B. Serum alkaline phosphatase reflects post-Fontan hemodynamics in children. Pediatr. Cardiol. 2009, 30, 138–145. [Google Scholar] [CrossRef]
- Antônio Martins-Júnior, P.; Letícia Ramos-Jorge, M.; Martins de Paiva, S.; José Pereira, L.; Silva Marques, L. Premature deciduous tooth loss and orthodontic treatment need: A 6-year prospective study. J. Public Health 2017, 25, 173–179. [Google Scholar] [CrossRef]
- Al-Shahrani, N.; Al-Amri, A.; Hegazi, F.; Al-Rowis, K.; Al-Madani, A.; Hassan, K.S. The prevalence of premature loss of primary teeth and its impact on malocclusion in the Eastern Province of Saudi Arabia. Acta Odontol. Scand. 2015, 73, 544–549. [Google Scholar] [CrossRef]
- Bates, D.W.; Buchwald, D.; Lee, J.; Kith, P.; Doolittle, T.; Rutherford, C.; Churchill, W.H.; Schur, P.H.; Wener, M.; Wybenga, D.; et al. Clinical laboratory test findings in patients with chronic fatigue syndrome. Arch. Intern. Med. 1995, 155, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Mornet, E.; Yvard, A.; Taillandier, A.; Fauvert, D.; Simon-Bouy, B. A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann. Hum. Genet. 2011, 75, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Mornet, E. Hypophosphatasia. Metabolism 2018, 82, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Nagata, M.; Setoh, K.; Takahashi, M.; Higasa, K.; Kawaguchi, T.; Kawasaki, H.; Wada, T.; Watanabe, A.; Sawai, H.; Tabara, Y.; et al. Association of ALPL variants with serum alkaline phosphatase and bone traits in the general Japanese population: The Nagahama Study. J. Hum. Genet. 2020, 65, 337–343. [Google Scholar] [CrossRef]
- Khan, A.A.; Brandi, M.L.; Rush, E.T.; Ali, D.S.; Al-Alwani, H.; Almonaei, K.; Alsarraf, F.; Bacrot, S.; Dahir, K.M.; Dandurand, K.; et al. Hypophosphatasia diagnosis: Current state of the art and proposed diagnostic criteria for children and adults. Osteoporos. Int. 2024, 35, 431–438. [Google Scholar] [CrossRef]
All Patients | Persistent Hypophosphatasemia | Without Persistent Hypophosphatasemia | p-Value | |
---|---|---|---|---|
n = 50,136 | n = 273 | n = 49,899 | ||
Age (years) a | 62 (44–74) | 51 (39–69) b | 63 (53–72) b | <0.01 |
Number and proportion (%) of the patients | ||||
Female | 26,670 (53.1%) | 198 (72.5%) c | 25,833 (52.9%) c | <0.01 |
Male | 23,466 (46.9%) | 75 (27.5%) | 24,066 (47.1%) |
Result | Persistent Hypophosphatasemia a | Reference Ranges b |
---|---|---|
White blood cells ×109 (L) | 5.35 (4.53–6.82; n = 270) | 3.3–8.6 |
Hemoglobin (g/L) | 127 (117–134; n = 270) | |
Platelets ×109 (L) | 215 (183–250; n = 270) | 158–348 |
Alkaline phosphatase (IU/L) | 30 (26–33; n = 273) | 38–113 |
Albumin (g/L) | 41 (38–43; n = 241) | 41–51 |
Aspartate aminotransferase (IU/L) | 18 (15–22; n = 272) | 13–30 |
Alanine aminotransferase (IU/L) | 13 (10–17: n = 273) | |
γ-Glutamyl transferase (IU/L) | 17 (13–26; n = 260) | |
Blood urea nitrogen (mmol/L) | 3.7 (4.8–6.1; n = 264) | 2.9–7.1 |
Creatinine (µmol/L) | 59 (54–60; n = 268) | |
Estimated glomerular filtration rate (mL/min/1.73 m2) | 74.6 (60.1–87.0; n = 268) | |
Calcium (mmol/L) c | 2.3 (2.2–2.3; n = 202) | 2.2–2.5 |
Phosphorus (mmol/L) | 1.2 (1.0–1.3; n = 69) | 0.9–1.5 |
Magnesium (mmol/L) | 0.8 (0.8–0.9; n = 58) | 0.7–1.0 |
C-reactive protein (µg/L) | 0.06 (0.03–0.22; n = 260) | <0.03 |
Thyroid-stimulating hormone (mIU/L) | 1.82 (1.13–3.30; n = 55) | 0.35–4.94 |
Free thyroxine (pmol/L) | 17 (14–18; n = 55) | 9–19 |
Causes of Persistent Hypophosphatasemia | Number of Patients (Total: n = 273) | Percentage |
---|---|---|
Cancer | 83 | 30% |
Glucocorticoids | 56 | 21% |
Immunosuppressants | 43 | 16% |
Bone absorptive (bisphosphonates, denosumab) | 39 | 14% |
Selective estrogen receptor modulators | 36 | 13% |
Surgery | 35 | 13% |
Abnormal renal or liver function | 29 | 10.60% |
Clofibrates | 26 | 9.50% |
Hypothyroidism | 24 | 9.20% |
Chemotherapy | 22 | 8.10% |
Severe condition | 16 | 6.20% |
Gastrointestinal disease | 6 | 2.20% |
Malnutrition | 1 | 0.36% |
Vit.B12 deficiency | 1 | 0.36% |
Zinc deficiency | 1 | 0.36% |
Not related cause | 38 | 14% |
No. | Age | Sex | Lowest ALP | Diagnosis, History, and Clinical Characteristics of the Patients |
---|---|---|---|---|
Category 1: Patients with a history of cardiovascular disease | ||||
1 | 76 | male | 21 | a history of ablation therapy for paroxysmal tachycardia |
2 | 74 | male | 31 | a history of transcatheter closure for atrial septal defect |
3 | 58 | female | 31 | a history of ablation therapy for paroxysmal tachycardia |
4 | 27 | male | 27 | a history of transcatheter closure for atrial septal defect |
5 | 23 | female | 33 | a history of surgery for atrioventricular septal defect in early childhood |
6 | 22 | female | 28 | a history of surgery for pulmonary atresia with intact ventricular septum in early childhood |
7 | 40 | female | 34 | untreated paroxysmal ventricular tachycardia since childhood |
8 | 24 | female | 29 | a history of surgery for Tetralogy of Fallot in early childhood |
9 | 23 | female | 30 | a history of surgery for Tetralogy of Fallot in early childhood |
Category 2: Patients who underwent orthognathic surgery | ||||
10 | 31 | female | 26 | a history of orthognathic surgery for malocclusion |
11 | 23 | female | 27 | a history of orthognathic surgery for malocclusion |
12 | 47 | female | 29 | a history of orthognathic surgery for malocclusion |
13 | 42 | female | 30 | a history of orthognathic surgery for malocclusion |
14 | 32 | female | 30 | a history of orthognathic surgery for malocclusion |
15 | 19 | female | 35 | a history of orthognathic surgery for malocclusion |
Category 3: Patients with muscle, bone, and joint pain in the extremities or back, as well as muscle weakness | ||||
16 | 39 | female | 29 | chronic fatigue syndrome |
17 | 35 | female | 35 | chronic fatigue syndrome |
18 | 28 | female | 34 | chronic fatigue syndrome, muscle weakness in extremities |
19 | 30 | female | 31 | chronic fatigue syndrome, muscle weakness in extremities |
20 | 30 | female | 34 | chronic fatigue syndrome, muscle weakness in extremities |
21 | 35 | female | 34 | chronic fatigue syndrome, muscle weakness in extremities |
22 | 88 | female | 31 | joint pain in extremities, back pain |
23 | 47 | female | 34 | joint, muscle, and bone pain in extremities |
24 | 40 | female | 33 | general fatigue, muscle weakness in extremities |
25 | 22 | female | 35 | joint, muscle, bone pain, and muscle weakness in extremities |
26 | 78 | female | 32 | chronic fatigue syndrome, muscle pain in extremities |
27 | 28 | female | 34 | chronic fatigue syndrome, lack of focus |
Category 4: Patients with asymptomatic endocrine disease | ||||
28 | 47 | female | 32 | a history of surgery for pituitary adenoma |
29 | 33 | female | 28 | nonfunctioning thyroid nodule |
30 | 42 | female | 29 | nonfunctioning thyroid nodule |
31 | 61 | female | 32 | nonfunctioning thyroid cyst |
Category 5: Patients with urological disease | ||||
32 | 44 | female | 24 | chronic interstitial cystitis |
33 | 33 | male | 24 | ureteropelvic junction obstruction |
Category 6: Patients with metabolic disease | ||||
34 | 40 | female | 31 | obesity, hypertension |
35 | 34 | male | 17 | obesity, hypertension, diabetes mellitus |
Category 7: Others | ||||
36 | 64 | male | 33 | a history of surgery for lung cancer |
37 | 67 | male | 34 | a history of endoscopic submucosal dissection for stomach cancer |
38 | 46 | female | 28 | a splenic cyst with normal liver function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujiwara, S.; Otsuka, Y.; Furukawa, M.; Higashikage, A.; Otsuka, F. Clinical Characteristics of Persistent Hypophosphatasemia Uncovered in Adult Patients: A Retrospective Study at a Japanese Tertiary Hospital. J. Clin. Med. 2024, 13, 7078. https://doi.org/10.3390/jcm13237078
Fujiwara S, Otsuka Y, Furukawa M, Higashikage A, Otsuka F. Clinical Characteristics of Persistent Hypophosphatasemia Uncovered in Adult Patients: A Retrospective Study at a Japanese Tertiary Hospital. Journal of Clinical Medicine. 2024; 13(23):7078. https://doi.org/10.3390/jcm13237078
Chicago/Turabian StyleFujiwara, Shintaro, Yuki Otsuka, Masanori Furukawa, Akihito Higashikage, and Fumio Otsuka. 2024. "Clinical Characteristics of Persistent Hypophosphatasemia Uncovered in Adult Patients: A Retrospective Study at a Japanese Tertiary Hospital" Journal of Clinical Medicine 13, no. 23: 7078. https://doi.org/10.3390/jcm13237078
APA StyleFujiwara, S., Otsuka, Y., Furukawa, M., Higashikage, A., & Otsuka, F. (2024). Clinical Characteristics of Persistent Hypophosphatasemia Uncovered in Adult Patients: A Retrospective Study at a Japanese Tertiary Hospital. Journal of Clinical Medicine, 13(23), 7078. https://doi.org/10.3390/jcm13237078