Does the Intensity of Therapy Correspond to the Severity of Acute Respiratory Distress Syndrome (ARDS)?
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Study Design
- ARDS SeverityPF classes
- ARDS SeverityMP classes
2.3. Outcome Measurements
- Gas exchange: Arterial PaO2 (partial pressure of arterial oxygen), PaCO2 (partial pressure of arterial carbon dioxide), PaO2/FiO2, and pH were measured, and the ventilatory ratio was calculated using the following equation: [minute ventilation (L/min) × PaCO2 (mmHg)]/(predicted body weight × 100 × 37.5 mmHg).
- Ventilatory setting: tidal volume/ideal body weight, minute ventilation, FiO2 (fraction of inspired oxygen), respiratory rate, and positive end expiratory pressure were recorded or calculated.
- Respiratory system mechanics: peak, plateau, and driving pressures (plateau pressure—PEEP) were measured. Respiratory system elastance was computed as the ratio driving pressure and tidal volume. The mechanical power was normalized to the total lung capacity (TLC).
- CT scan analysis and derived variables: CT images were processed using custom-designed software (Maluna2020®) to calculate various CT-derived variables, including the following: lung weight; total gas volume; overinflated tissue (ranging from −900 HU to −1000 HU); normally inflated tissue (ranging from −500 HU to −900 HU); poorly aerated tissue (ranging from −100 HU to −500 HU); non-aerated tissue (ranging from +100 HU to −100 HU); total gas volume was measured as the sum of tissue volume (total lung tissue) and total lung capacity.
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Oxygenation Impairment and ARDS Classes
4.2. Mechanical Power and VILI
4.3. Interaction Between Oxygenation Classes and Mechanical Power Levels
5. Study Limitations
6. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pontoppidan, H.; Geffin, B.; Lowenstein, E. Acute respiratory failure in the adult. N. Engl. J. Med. 1972, 287, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Calfee, C.S.; Camporota, L.; Poole, D.; Amato, M.B.P.; Antonelli, M.; Arabi, Y.M.; Baroncelli, F.; Beitler, J.R.; Bellani, G.; et al. ESICM guidelines on acute respiratory distress syndrome: Definition, phenotyping and respiratory support strategies. Intensive Care Med. 2023, 49, 727–759. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Arabi, Y.; Arroliga, A.C.; Bernard, G.; Bersten, A.D.; Brochard, L.J.; Calfee, C.S.; Combes, A.; Daniel, B.M.; Ferguson, N.D.; et al. A New Global Definition of Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2024, 209, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Tognoni, G.; Pesenti, A.; Prone-Supine Study Group. Effect of prone positioning on the survival of patients with acute respiratory failure. N. Engl. J. Med. 2001, 345, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Zapol, W.M.; Snider, M.T.; Hill, J.D.; Fallat, R.J.; Bartlett, R.H.; Edmunds, L.H.; Morris, A.H.; Peirce, E.C., 2nd; Thomas, A.N.; Proctor, H.J.; et al. Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 1979, 242, 2193–2196. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Kolobow, T.; Damia, G.; Agostoni, A.; Pesenti, A. Extracorporeal carbon dioxide removal (ECCO2R): A new form of respiratory assistance. Int. J. Artif. Organs. 1979, 2, 183–185. [Google Scholar] [PubMed]
- Hickling, K.G.; Henderson, S.J.; Jackson, R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med. 1990, 16, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Acute Respiratory Distress Syndrome Network; Brower, R. G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [CrossRef] [PubMed]
- Gattinoni, L.; Pesenti, A. The concept of “baby lung”. Intensive Care Med. 2005, 31, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Mead, J.; Takishima, T.; Leith, D. Stress distribution in lungs: A model of pulmonary elasticity. J. Appl. Physiol. 1970, 28, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Protti, A.; Maraffi, T.; Milesi, M.; Votta, E.; Santini, A.; Pugni, P.; Andreis, D.T.; Nicosia, F.; Zannin, E.; Gatti, S.; et al. Role of Strain Rate in the Pathogenesis of Ventilator-Induced Lung Edema. Crit. Care Med. 2016, 44, e838–e845. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Tonetti, T.; Cressoni, M.; Cadringher, P.; Herrmann, P.; Moerer, O.; Protti, A.; Gotti, M.; Chiurazzi, C.; Carlesso, E.; et al. Ventilator-related causes of lung injury: The mechanical power. Intensive Care Med. 2016, 42, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Serpa Neto, A.; Deliberato, R.O.; Johnson, A.E.W.; Bos, L.D.; Amorim, P.; Pereira, S.M.; Cazati, D.C.; Cordioli, R.L.; Correa, T.D.; Pollard, T.J.; et al. Mechanical power of ventilation is associated with mortality in critically ill patients: An analysis of patients in two observational cohorts. Intensive Care Med. 2018, 44, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Xie, Y.; Chen, X.; Sun, Y.; Du, Z.; Wang, Y.; Li, X. Mechanical power is associated with weaning outcome in critically ill mechanically ventilated patients. Sci. Rep. 2022, 12, 19634. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.L.V.; Slutsky, A.S.; Brochard, L.J.; Brower, R.; Serpa-Neto, A.; Cavalcanti, A.B.; Mercat, A.; Meade, M.; Morais, C.C.A.; Goligher, E.; et al. Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2021, 204, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Coppola, S.; Caccioppola, A.; Froio, S.; Formenti, P.; De Giorgis, V.; Galanti, V.; Consonni, D.; Chiumello, D. Effect of mechanical power on intensive care mortality in ARDS patients. Crit. Care 2020, 24, 246. [Google Scholar] [CrossRef] [PubMed]
Berlin Class | ||||
---|---|---|---|---|
Mild 1 | Moderate 1 | Severe 1 | p-Value 2,3 | |
N = 71 | n = 155 | n = 65 | ||
Age, years | 62 (16) | 62 (16) | 59 (16) | 0.5 |
Sex | 0.8 | |||
Female | 23 (32%) | 48 (31%) | 7 (70%) | |
Male | 48 (68%) | 107 (69%) | 42 (65%) | |
Body weight (kg) | 74 (16) | 77 (21) | 85 (21) | 0.054 |
BMI | 26 (5) | 27 (7) | 29 (7) | 0.056 |
SAPS II | 41 (13) | 41 (15) | 39 (12) | 0.8 |
Unknown | 10 | 26 | 6 | |
Mortality, n (%) | <0.001 | |||
Dead | 18 (23%) | 74 (48%) | 36 (55%) |
Berlin Class | ||||
---|---|---|---|---|
Mild 1 | Moderate 1 | Severe 1 | p Value 2 | |
n = 71 | n = 155 | n = 65 | ||
Lung Anatomy | ||||
Lung weight, g | 1.335 (355) | 1.562 (527) | 1.927 (829) | <0.001 |
Total gas volume, mL | 1.275 (622) | 1.163 (665) | 949 (650) | 0.004 |
Overinflated tissue, % | 0.20 (0.47) | 0.30 (0.87) | 0.22 (0.56) | 0.93 |
Well inflated tissue, % | 31 (13) | 25 (14) | 15 (10) | <0.001 |
Poorly inflated tissue, % | 30 (9) | 30 (12) | 30 (11) | 0.64 |
Not-inflated tissue, % | 39 (15) | 45 (17) | 54 (14) | <0.001 |
Physiological Variables | ||||
PaO2/FiO2, mmHg | 234 (23) | 148 (27) | 78 (13) | <0.001 |
PaCO2, mmHg | 40 (7) | 46 (11) | 61 (22) | <0.001 |
Minute ventilation, L/min | 8.48 (2.07) | 8.11 (2.46) | 9.04 (2.28) | 0.8 |
Ventilatory ratio | 1.42 (0.44) | 1.57 (0.60) | 2.24 (0.98) | <0.001 |
Respiratory system elastance (ELRS), cmH2O/L | 23 (8) | 28 (11) | 32 (17) | <0.001 |
Respiratory rate, bpm | 16.1 (4.4) | 17 (5) | 22.2 (5.9) | <0.001 |
Vt pro kg IBW, mL/kg | 7.4 (1.43) | 6.62 (1.84) | 5.76 (1.58) | <0.001 |
PEEP, cmH2O | 10.8 (3) | 10.2 (2.6) | 11.7 (3.9) | 0.135 |
Mechanical power, J/min | 20 (7) | 19 (8) | 23 (8) | 0.186 |
Berlin Class | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mild 1 (n = 71) | Moderate 1 (n = 155) | Severe 1 (n = 65) | ||||||||||
Low Power | Middle Power | High Power | p Value 2 | Low Power | Middle Power | High Power | p Value 2 | Low Power | Middle Power | High Power | p Value 2 | |
Mechanical power tertiles threshold, J/min | 5.49–16.1 | 16.2–21.8 | 21.9–46.9 | 5.49–16.1 | 16.2–21.8 | 21.9–46.9 | 5.49–16.1 | 16.2–21.8 | 21.9–46.9 | |||
n = 24 | n = 20 | n = 27 | n = 58 | n = 57 | n = 40 | n = 12 | n = 19 | n = 34 | ||||
Respiratory System Mechanics | ||||||||||||
Plateau, cmH2O | 19.6 (3.8) | 24.2 (3.5) * | 24.3 (3) * | <0.001 | 21 (4.3) | 23.7 (4) * | 26.3 (4.1) * † | <0.001 | 22 (7) | 25 (6) | 28 (6) * | 0.009 |
Peak pressure, cmH2O | 24.1 (4.8) | 29.5 (2.8) * | 24 (4.4) * † | <0.001 | 26 (4) | 31 (3) * | 37 (5) * † | <0.001 | 26.2 (5.8) | 31.8 (3) * | 35.5 (6.4) * † | <0.001 |
Mechanical power, J/min | 12 (3) | 19 (2) * | 27 (5) * † | <0.001 | 12 (3) | 19 (1.55) * | 29 (7) * † | <0.001 | 13 (3) | 19 (1.4) * | 29 (6) * † | <0.001 |
Driving pressure, cmH2O | 10.89 (3) | 12.48 (2.60) | 12.39 (3.22) | 0.126 | 11.4 (3.4) | 13.6 (3.9) * | 15.4 (3.1) * † | <0.001 | 13 (6.8) | 12.9 (3.8) | 15.2 (4.3) | 0.061 |
Elastance respiratory system, cmH2O/L | 22 (8) | 23 (7) | 24 (9) | 0.8 | 27 (13) | 28 (10) | 31 (9) * | 0.030 | 36 (31) | 28 (10) | 33 (11) | 0.33 |
Ventilatory Setting | ||||||||||||
Tidal volume/IBW, mL/kg | 7.19 (1.30) | 7.73 (1.59) | 7.35 (1.42) | 0.44 | 6.34 (1.83) | 6.95 (1.60) | 6.57 (2.14) | 0.108 | 5.67 (1.95) | 5.92 (1.52) | 5.70 (1.52) | 0.876 |
Respiratory rate | 13.9 (3.5) | 15.1 (2.8) | 18.9 (4.6) * † | <0.001 | 14.3 (3.1) | 17.1 (4.8) * | 20.8 (5.1) * † | <0.001 | 16.9 (4.4) | 16.6 (3.1) | 23.4 (5.8) * † | <0.001 |
FiO2 | 0.42 (0.07) | 0.42 (0.06) | 0.43 (0.07) | 0.5 | 0.54 (0.11) | 0.57 (0.13) | 0.61 (0.15) | 0.3 | 0.81 (0.16) | 0.78 (0.15) | 0.9 (0.1) | 0.014 |
PEEP, cmH2O | 8.8 (2.4) | 11.7 (3.1) * | 11.9 (2.6) * | <0.001 | 9.63 (2.60) | 10.17 (2.74) | 10.93 (2.5) * | 0.039 | 8.7 (2.6) | 11.8 (3.5) | 12.6 (4.1) * | 0.017 |
Minute ventilation, L/min | 8.48 (2.07) | 8.29 (0.84) * | 10.15 (1.96) * † | <0.001 | 6.31 (1.61) | 8.30 (1.81) * | 10.47 (2.20) * † | <0.001 | 6.70 (1.36) | 7.68 (0.85) * | 10.63 (1.86) * † | <0.001 |
Gas Exchange | ||||||||||||
pH | 7.36 (0.09) | 7.35 (0.11) | 7.32 (0.11) | 0.3 | 7.4 (0.07) | 7.39 (0.07) | 7.37 (0.09) | 0.2 | 7.4 (0.06) | 7.39 (0.06) | 7.4 (0.08) | 0.8 |
PaO2, mmHg | 95 (15) | 100 (16) | 103 (16) | 0.2 | 77 (11) | 86 (19) * | 86 (22) * | 0.006 | 64 (15) | 62 (16) | 68 (11) | 0.4 |
PaO2/FiO2, mmHg | 227 (21) | 237 (25) | 239 (23) | 0.14 | 145 (27) | 154 (26) | 145 (28) | 0.11 | 80 (17) | 79 (11) | 77 (13) | 0.5 |
PaCO2, mmHg | 41 (7) | 39 (7) | 40 (7) | 0.8 | 47 (9) | 45 (11) | 47 (13) | 0.3 | 51 (13) | 71 (27) * | 59 (20) | 0.049 |
Ventilatory ratio | 1.20 (0.32) | 1.30 (0.22) | 1.69 (0.53) * † | <0.001 | 1.27 (0.41) | 1.59 (0.52) * | 1.99 (0.70) * † | <0.001 | 1.50 (0.31) | 2.29 (1.0.9) * | 2.47 (0.96) * | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocera, D.; Giovanazzi, S.; Pozzi, T.; Ghidoni, V.; Donati, B.; Catozzi, G.; D’Albo, R.; Caronna, M.; Grava, I.; Gazzè, G.; et al. Does the Intensity of Therapy Correspond to the Severity of Acute Respiratory Distress Syndrome (ARDS)? J. Clin. Med. 2024, 13, 7084. https://doi.org/10.3390/jcm13237084
Nocera D, Giovanazzi S, Pozzi T, Ghidoni V, Donati B, Catozzi G, D’Albo R, Caronna M, Grava I, Gazzè G, et al. Does the Intensity of Therapy Correspond to the Severity of Acute Respiratory Distress Syndrome (ARDS)? Journal of Clinical Medicine. 2024; 13(23):7084. https://doi.org/10.3390/jcm13237084
Chicago/Turabian StyleNocera, Domenico, Stefano Giovanazzi, Tommaso Pozzi, Valentina Ghidoni, Beatrice Donati, Giulia Catozzi, Rosanna D’Albo, Martina Caronna, Ilaria Grava, Gaetano Gazzè, and et al. 2024. "Does the Intensity of Therapy Correspond to the Severity of Acute Respiratory Distress Syndrome (ARDS)?" Journal of Clinical Medicine 13, no. 23: 7084. https://doi.org/10.3390/jcm13237084
APA StyleNocera, D., Giovanazzi, S., Pozzi, T., Ghidoni, V., Donati, B., Catozzi, G., D’Albo, R., Caronna, M., Grava, I., Gazzè, G., Collino, F., Coppola, S., Gattarello, S., Busana, M., Romitti, F., Moerer, O., Quintel, M., Camporota, L., & Gattinoni, L. (2024). Does the Intensity of Therapy Correspond to the Severity of Acute Respiratory Distress Syndrome (ARDS)? Journal of Clinical Medicine, 13(23), 7084. https://doi.org/10.3390/jcm13237084