Lights and Shadows of Long COVID: Are Latent Infections the Real Hidden Enemy?
Abstract
:1. Introduction
2. Long COVID
2.1. Definitions
2.2. The Broad Spectrum of Long COVID Symptoms
2.3. Identified Risk Factors for Long COVID
- -
- Age and gender
- -
- Smoking
- -
- Obstructive sleep apnea and obstructive pulmonary disease asthma
- -
- Autoimmune conditions
- -
- Obesity
- -
- Diabetes and cardiovascular diseases
- -
- Pediatric population
- -
- HIV-positive population
3. Pathophysiological Mechanisms
3.1. Endothelial Inflammation and Immune Thrombosis
3.2. Dysregulated Immune Response and Autoimmunity
3.3. Viral Persistence and Reactivation of Latent Infections
4. Long COVID Pathway: Consequence or Co-Protagonist of Reactivation of Latent and Chronic Infections?
- -
- Epstein-Barr virus (EBV): A ubiquitous virus acquired by approximately 90% of the population at least once during life and may be asymptomatic if acquired during childhood. In the young adult, the clinical manifestation is characterized by marked asthenia, general malaise, pharyngo-tonsillitis, fever, headache, generalized lymphadenopathy, splenomegaly, abdominal pain, nausea and inappetence (some overlapping with the symptomatic parade of LC) [85]. Diagnosis of infection is based on clinical and microbiologic criteria. The most specific diagnostic test is the detection of specific antibodies (IgM and IgG anti-VCA, IgG anti-EBNA). The presence of anti-EBNA levels excludes acute primary infection [86]. Simultaneous activation of VCA IgM and EBNA-1 IgG indicates reactivation of latent EBV infection. After resolution of the acute phase, EBV can persist indefinitely in the host in latent form, particularly in B cells without self-manifestation. However, following conditions of immunodepression, the virus may reactivate in lytic form, leading to damage and cell death and sometimes presenting in a clinically overt form with symptoms like those of LC [85]. The pathophysiological hypotheses that EBV induces the damage responsible for the characteristic symptoms of LC are controversial and require further confirmatory studies. However, several mechanisms secondary to a chronic inflammatory state induced by previous SARS-CoV-2 infection that would promote the transition from the latent state to the lytic phase of EBV are possible. A first hypothesis suggests that the virus in the lytic phase amplifies the inflammatory state already induced by SARS-CoV-2 and contributes to the damage [87]. Another hypothesis suggests that EBV cooperates in the genesis of cellular damage with direct action on target cells [88]. The final hypothesis is that EBV plays a role in inducing immune dysregulation by triggering autoreactivity and contributing to the pathogenesis of autoimmune diseases (e.g., multiple sclerosis) [87]. To evaluate the possible interaction of the virus with the pathophysiological mechanisms of LC, the most typical approach is to identify the antibody response to EBV. Available studies have used different approaches to identify viral reactivation. One study found a potential correlation between the presence of LC symptoms, such as fatigue and neurocognitive symptoms at 4 months after initial diagnosis, which were independently associated with serologic evidence of recent EBV reactivation in the absence of viral DNA [89]. Other studies have shown a correlation between the presence of an immune response to EBV and other herpesviruses, but the role of these pathogens has not yet been elucidated [90,91]. A potential role for EBV in the mechanisms responsible for multiple sclerosis has recently been hypothesized; it appears that EBNAs may show molecular mimicry with host proteins that induce autoimmune responses [92,93,94]. Although there is insufficient evidence in the literature to confirm these hypotheses, they are of great importance in terms of prevention and treatment. Indeed, one possible strategy could be the administration of antivirals at the time of reactivation to reduce the damage associated with it. Unfortunately, no effective treatments are currently available, although some, such as acyclovir, valacyclovir and high-dose ganciclovir, have shown efficacy in vitro but not in vivo [95]. It would be necessary to intensify research in this direction to optimize the parade of symptoms associated with LC.
- -
- Cytomegalovirus (CMV): The study of the association between CMV and LC was particularly surprising. In fact, CMV seems to act as a protective factor against the occurrence of neurocognitive symptoms in LC. There is insufficient evidence in the literature, and what is available is controversial. A recent study analyzed the effect of seropositivity for CMV and LC symptoms and showed that in this category of patients there was a lower risk of developing neurocognitive symptoms of LC (Odds Ratio (OR) = 0.52, p = 0.036). In addition, there was no evidence of an association with other non-neurocognitive symptoms [89].
- -
- Human Immunodeficiency Virus (HIV): The situation is different in HIV-positive patients. It is well known that HIV-infected people have a higher risk of developing LC symptoms than the general population, probably due to disease-related immune dysfunction. In a study of 39,405 HIV-positive patients with COVID-19, 52% of them developed at least one LC symptom. This confirms and supports the hypothesis that immune dysfunction leading to immunodeficiency or altered inflammatory pathways may promote viral persistence by inducing the onset of symptoms such as mental clouding and neurocognitive symptoms. One study also showed that a high prevalence of EBV antibodies was observed in these patients compared to patients who did not have them (51.9% vs. 32.1%, respectively, p < 0.01) [89], motivating the possible correlation with symptoms such as fatigue.
- -
- Varicella Zoster Virus (VZV): Virus responsible for chickenpox; after initial infection, this virus remains in a latent form in the nerve ganglia and, following predisposing conditions such as immunodepression or other infections, can reactivate and manifest itself in an active form with the appearance of intensely painful and itchy vesicles. Clinical symptoms are self-limiting; however, neurological symptoms such as neuritis, neuropathy, and, in rare cases, encephalopathy and meningitis may occur. Recently, an association between LC and VZV reactivation has been observed. This hypothesis would explain the occurrence of vesicular lesions and neuropathic manifestations that worsen the clinical picture of LC patients [97].
5. What Strategies Are in Place?
5.1. Prevention
5.2. Therapeutic Strategies
6. Discussion
7. Conclusions
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; the Northwell COVID-19 Research Consortium; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 23 October 2024).
- Rotundo, S.; Berardelli, L.; Gullì, S.; La Gamba, V.; Lionello, R.; Russo, A.; Trecarichi, E.M.; Torti, C. Early Initiation of Combined Therapy in Severely Immunocompromised Patients with COVID-19: A Retrospective Cohort Study. BMC Infect. Dis. 2024, 24, 564. [Google Scholar] [CrossRef]
- Rossi, R.; Coppi, F.; Talarico, M.; Boriani, G. Protective Role of Chronic Treatment with Direct Oral Anticoagulants in Elderly Patients Affected by Interstitial Pneumonia in COVID-19 Era. Eur. J. Intern. Med. 2020, 77, 158–160. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, J.; Lee, J.H.; Kim, S.K.; Lee, S.R.; Kim, S.H.; Chae, H.D. Hormone Therapy in the Era of the COVID-19 Pandemic: A Review. J. Menopausal Med. 2022, 28, 1. [Google Scholar] [CrossRef]
- Averyanova, M.; Vishnyakova, P.; Yureneva, S.; Yakushevskaya, O.; Fatkhudinov, T.; Elchaninov, A.; Sukhikh, G. Sex Hormones and Immune System: Menopausal Hormone Therapy in the Context of COVID-19 Pandemic. Front. Immunol. 2022, 13, 928171. [Google Scholar] [CrossRef]
- Rossi, R.; Talarico, M.; Coppi, F.; Boriani, G. Protective Role of Statins in COVID 19 Patients: Importance of Pharmacokinetic Characteristics Rather than Intensity of Action. Intern. Emerg. Med. 2020, 15, 1573–1576. [Google Scholar] [CrossRef]
- Kow, C.S.; Hasan, S.S. Meta-Analysis of Effect of Statins in Patients with COVID-19. Am. J. Cardiol. 2020, 134, 153–155. [Google Scholar] [CrossRef]
- Proal, A.D.; VanElzakker, M.B. Long COVID or Post-Acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front. Microbiol. 2021, 12, 698169. [Google Scholar] [CrossRef]
- Kavanagh, K.T.; Cormier, L.E.; Pontus, C.; Bergman, A.; Webley, W. Long COVID’s Impact on Patients, Workers, & Society: A Review. Medicine 2024, 103, e37502. [Google Scholar] [CrossRef]
- Parums, D.V. Long COVID or Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) and the Urgent Need to Identify Diagnostic Biomarkers and Risk Factors. Med. Sci. Monit. 2024, 30, e946512. [Google Scholar] [CrossRef]
- Makhluf, H.; Madany, H.; Kim, K. Long COVID: Long-Term Impact of SARS-CoV2. Diagnostics 2024, 14, 711. [Google Scholar] [CrossRef] [PubMed]
- Rofail, D.; Somersan-Karakaya, S.; Choi, J.Y.; Przydzial, K.; Zhao, Y.; Hussein, M.; Norton, T.D.; Podolanczuk, A.J.; Mylonakis, E.; Geba, G.P. Thematic Analysis to Explore Patients’ Experiences with Long COVID-19: A Conceptual Model of Symptoms and Impacts on Daily Lives. BMJ Open 2024, 14, e076992. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J. V A Clinical Case Definition of Post-COVID-19 Condition by a Delphi Consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef] [PubMed]
- Fineberg, H.V.; Brown, L.; Worku, T.; Goldowitz, I. (Eds.) A Long COVID Definition; National Academies Press: Washington, DC, USA, 2024; ISBN 978-0-309-71908-7. [Google Scholar]
- Wulf Hanson, S.; Abbafati, C.; Aerts, J.G.; Al-Aly, Z.; Ashbaugh, C.; Ballouz, T.; Blyuss, O.; Bobkova, P.; Bonsel, G.; Borzakova, S.; et al. Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA 2022, 328, 1604. [Google Scholar] [CrossRef]
- Vojdani, A.; Vojdani, E.; Saidara, E.; Maes, M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses 2023, 15, 400. [Google Scholar] [CrossRef]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, Complications and Management of Long COVID: A Review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef]
- Ballering, A.V.; van Zon, S.K.R.; olde Hartman, T.C.; Rosmalen, J.G.M. Persistence of Somatic Symptoms after COVID-19 in the Netherlands: An Observational Cohort Study. Lancet 2022, 400, 452–461. [Google Scholar] [CrossRef]
- Groff, D.; Sun, A.; Ssentongo, A.E.; Ba, D.M.; Parsons, N.; Poudel, G.R.; Lekoubou, A.; Oh, J.S.; Ericson, J.E.; Ssentongo, P.; et al. Short-Term and Long-Term Rates of Postacute Sequelae of SARS-CoV-2 Infection. JAMA Netw. Open 2021, 4, e2128568. [Google Scholar] [CrossRef]
- van der Feltz-Cornelis, C.; Turk, F.; Sweetman, J.; Khunti, K.; Gabbay, M.; Shepherd, J.; Montgomery, H.; Strain, W.D.; Lip, G.Y.H.; Wootton, D.; et al. Prevalence of Mental Health Conditions and Brain Fog in People with Long COVID: A Systematic Review and Meta-Analysis. Gen. Hosp. Psychiatry 2024, 88, 10–22. [Google Scholar] [CrossRef]
- Taquet, M.; Dercon, Q.; Luciano, S.; Geddes, J.R.; Husain, M.; Harrison, P.J. Incidence, Co-Occurrence, and Evolution of Long-COVID Features: A 6-Month Retrospective Cohort Study of 273,618 Survivors of COVID-19. PLoS Med. 2021, 18, e1003773. [Google Scholar] [CrossRef] [PubMed]
- Naidu, S.B.; Shah, A.J.; Saigal, A.; Smith, C.; Brill, S.E.; Goldring, J.; Hurst, J.R.; Jarvis, H.; Lipman, M.; Mandal, S. The High Mental Health Burden of “Long COVID” and Its Association with on-Going Physical and Respiratory Symptoms in All Adults Discharged from Hospital. Eur. Respir. J. 2021, 57, 2004364. [Google Scholar] [CrossRef] [PubMed]
- Michelen, M.; Manoharan, L.; Elkheir, N.; Cheng, V.; Dagens, A.; Hastie, C.; O’Hara, M.; Suett, J.; Dahmash, D.; Bugaeva, P.; et al. Characterising Long COVID: A Living Systematic Review. BMJ Glob. Health 2021, 6, e005427. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Wood, J.; Jaycox, J.R.; Dhodapkar, R.M.; Lu, P.; Gehlhausen, J.R.; Tabachnikova, A.; Greene, K.; Tabacof, L.; Malik, A.A.; et al. Distinguishing Features of Long COVID Identified through Immune Profiling. Nature 2023, 623, 139–148. [Google Scholar] [CrossRef]
- Salari, N.; Khodayari, Y.; Hosseinian-Far, A.; Zarei, H.; Rasoulpoor, S.; Akbari, H.; Mohammadi, M. Global Prevalence of Chronic Fatigue Syndrome among Long COVID-19 Patients: A Systematic Review and Meta-Analysis. Biopsychosoc. Med. 2022, 16, 21. [Google Scholar] [CrossRef]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and Risk Factors for Long COVID in Non-Hospitalized Adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef]
- Di Gennaro, F.; Belati, A.; Tulone, O.; Diella, L.; Fiore Bavaro, D.; Bonica, R.; Genna, V.; Smith, L.; Trott, M.; Bruyere, O.; et al. Incidence of Long COVID-19 in People with Previous SARS-Cov2 Infection: A Systematic Review and Meta-Analysis of 120,970 Patients. Intern. Emerg. Med. 2023, 18, 1573–1581. [Google Scholar] [CrossRef]
- Lippi, G.; Cervellin, G. Risk Assessment of Post-Infarction Heart Failure. Systematic Review on the Role of Emerging Biomarkers. Crit. Rev. Clin. Lab. Sci. 2014, 51, 13–29. [Google Scholar] [CrossRef]
- Arnold, D.T.; Hamilton, F.W.; Milne, A.; Morley, A.J.; Viner, J.; Attwood, M.; Noel, A.; Gunning, S.; Hatrick, J.; Hamilton, S.; et al. Patient Outcomes after Hospitalisation with COVID-19 and Implications for Follow-up: Results from a Prospective UK Cohort. Thorax 2021, 76, 399–401. [Google Scholar] [CrossRef]
- Carvalho-Schneider, C.; Laurent, E.; Lemaignen, A.; Beaufils, E.; Bourbao-Tournois, C.; Laribi, S.; Flament, T.; Ferreira-Maldent, N.; Bruyère, F.; Stefic, K.; et al. Follow-up of Adults with Noncritical COVID-19 Two Months after Symptom Onset. Clin. Microbiol. Infect. 2021, 27, 258–263. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, C.; Gu, X.; Wang, Y.; Li, X.; Liu, M.; Wang, Q.; Xu, J.; Wang, Y.; Dai, H.; et al. 3-year outcomes of discharged survivors of COVID-19 following the SARS-CoV-2 omicron (B.1.1.529) wave in 2022 in China: A longitudinal cohort study. Lancet Respir Med. 2024, 12, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-Month Consequences of COVID-19 in Patients Discharged from Hospital: A Cohort Study. Lancet 2023, 401, e21–e33. [Google Scholar] [CrossRef] [PubMed]
- Heesakkers, H.; van der Hoeven, J.G.; Corsten, S.; Janssen, I.; Ewalds, E.; Simons, K.S.; Westerhof, B.; Rettig, T.C.D.; Jacobs, C.; van Santen, S.; et al. Clinical Outcomes Among Patients With 1-Year Survival Following Intensive Care Unit Treatment for COVID-19. JAMA 2022, 327, 559. [Google Scholar] [CrossRef] [PubMed]
- Camporesi, A.; Morello, R.; La Rocca, A.; Zampino, G.; Vezzulli, F.; Munblit, D.; Raffaelli, F.; Valentini, P.; Buonsenso, D. Characteristics and Predictors of Long Covid in Children: A 3-Year Prospective Cohort Study. EClinicalMedicine 2024, 76, 102815. [Google Scholar] [CrossRef] [PubMed]
- Cogliandro, V.; Bonfanti, P. Long COVID: Lights and Shadows on the Clinical Characterization of This Emerging Pathology. New Microbiol. 2024, 47, 15–27. [Google Scholar]
- Jovanoski, N.; Chen, X.; Becker, U.; Zalocusky, K.; Chawla, D.; Tsai, L.; Borm, M.; Neighbors, M.; Yau, V. Severity of COVID-19 and Adverse Long-Term Outcomes: A Retrospective Cohort Study Based on a US Electronic Health Record Database. BMJ Open 2021, 11, e056284. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and Predictors of Long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef]
- Chan Sui Ko, A.; Candellier, A.; Mercier, M.; Joseph, C.; Schmit, J.-L.; Lanoix, J.-P.; Andrejak, C. Number of Initial Symptoms Is More Related to Long COVID-19 than Acute Severity of Infection: A Prospective Cohort of Hospitalized Patients. Int. J. Infect. Dis. 2022, 118, 220–223. [Google Scholar] [CrossRef]
- Mendelson, M.; Nel, J.; Blumberg, L.; Madhi, S.A.; Dryden, M.; Stevens, W.; Venter, F.W.D. Long-COVID: An Evolving Problem with an Extensive Impact. South Afr. Med. J. 2020, 111, 10. [Google Scholar] [CrossRef]
- Koc, H.C.; Xiao, J.; Liu, W.; Li, Y.; Chen, G. Long COVID and Its Management. Int. J. Biol. Sci. 2022, 18, 4768–4780. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Erinoso, O.; Osibogun, O.; Balakrishnan, S.; Yang, W. Long COVID among US Adults from a Population-Based Study: Association with Vaccination, Cigarette Smoking, and the Modifying Effect of Chronic Obstructive Pulmonary Disease (COPD). Prev. Med. 2024, 184, 108004. [Google Scholar] [CrossRef] [PubMed]
- Trofor, A.C.; Robu Popa, D.; Melinte, O.E.; Trofor, L.; Vicol, C.; Grosu-Creangă, I.A.; Crișan Dabija, R.A.; Cernomaz, A.T. Looking at the Data on Smoking and Post-COVID-19 Syndrome—A Literature Review. J. Pers. Med. 2024, 14, 97. [Google Scholar] [CrossRef] [PubMed]
- Syed, U.; Subramanian, A.; Wraith, D.C.; Lord, J.M.; McGee, K.; Ghokale, K.; Nirantharakumar, K.; Haroon, S. Incidence of Immune-Mediated Inflammatory Diseases Following COVID-19: A Matched Cohort Study in UK Primary Care. BMC Med. 2023, 21, 363. [Google Scholar] [CrossRef]
- Moro-García, M.A.; Echeverría, A.; Galán-Artímez, M.C.; Suárez-García, F.M.; Solano-Jaurrieta, J.J.; Avanzas-Fernández, P.; Díaz-Molina, B.; Lambert, J.L.; López-Larrea, C.; Morís de la Tassa, C.; et al. Immunosenescence and Inflammation Characterize Chronic Heart Failure Patients with More Advanced Disease. Int. J. Cardiol. 2014, 174, 590–599. [Google Scholar] [CrossRef]
- Takakura, K.; Suka, M.; Kajihara, M.; Koido, S. Clinical Features, Therapeutic Outcomes, and Recovery Period of Long COVID. J. Med. Virol. 2023, 95, e28316. [Google Scholar] [CrossRef]
- Quan, S.F.; Weaver, M.D.; Czeisler, M.É.; Barger, L.K.; Booker, L.A.; Howard, M.E.; Jackson, M.L.; Lane, R.I.; McDonald, C.F.; Ridgers, A.; et al. Association of Obstructive Sleep Apnea with Post-Acute Sequelae of SARS-CoV-2 Infection. Am. J. Med. 2024, 137, 529–537.e3. [Google Scholar] [CrossRef]
- Matsuyama, E.; Miyata, J.; Terai, H.; Miyazaki, N.; Iwasaki, T.; Nagashima, K.; Watase, M.; Sunata, K.; Namkoong, H.; Asakura, T.; et al. Chronic Obstructive Pulmonary Disease, Asthma, and Mechanical Ventilation Are Risk Factors for Dyspnea in Patients with Long COVID: A Japanese Nationwide Cohort Study. Respir. Investig. 2024, 62, 1094–1101. [Google Scholar] [CrossRef]
- Notarte, K.I.; de Oliveira, M.H.S.; Peligro, P.J.; Velasco, J.V.; Macaranas, I.; Ver, A.T.; Pangilinan, F.C.; Pastrana, A.; Goldrich, N.; Kavteladze, D.; et al. Age, Sex and Previous Comorbidities as Risk Factors Not Associated with SARS-CoV-2 Infection for Long COVID-19: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7314. [Google Scholar] [CrossRef]
- Philip, K.E.J.; Buttery, S.; Williams, P.; Vijayakumar, B.; Tonkin, J.; Cumella, A.; Renwick, L.; Ogden, L.; Quint, J.K.; Johnston, S.L.; et al. Impact of COVID-19 on People with Asthma: A Mixed Methods Analysis from a UK Wide Survey. BMJ Open Respir. Res. 2022, 9, e001056. [Google Scholar] [CrossRef]
- Wolff, D.; Drewitz, K.P.; Ulrich, A.; Siegels, D.; Deckert, S.; Sprenger, A.A.; Kuper, P.R.; Schmitt, J.; Munblit, D.; Apfelbacher, C. Allergic Diseases as Risk Factors for Long-COVID Symptoms: Systematic Review of Prospective Cohort Studies. Clin. Exp. Allergy 2023, 53, 1162–1176. [Google Scholar] [CrossRef] [PubMed]
- Teles, M.S.; Brundage, J.; Chiang, T.P.-Y.; Alejo, J.L.; Henriquez, N.; Wallwork, R.; Christopher-Stine, L.; Massie, A.; Segev, D.L.; Connolly, C.M.; et al. Prevalence and Risk Factors of Postacute Sequelae of COVID-19 in Adults With Systemic Autoimmune Rheumatic Diseases. J. Rheumatol. 2024, 51, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Ju, H.J.; Han, J.H.; Lee, J.H.; Lee, W.-S.; Bae, J.M.; Lee, S. Autoimmune and Autoinflammatory Connective Tissue Disorders Following COVID-19. JAMA Netw. Open 2023, 6, e2336120. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M. Individuals with Obesity and COVID-19: A Global Perspective on the Epidemiology and Biological Relationships. Obes. Rev. 2020, 21, e13128. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Birkenfeld, A.L.; Schulze, M.B.; Ludwig, D.S. Obesity and Impaired Metabolic Health in Patients with COVID-19. Nat. Rev. Endocrinol. 2020, 16, 341–342. [Google Scholar] [CrossRef]
- Reese, J.T.; Blau, H.; Casiraghi, E.; Bergquist, T.; Loomba, J.J.; Callahan, T.J.; Laraway, B.; Antonescu, C.; Coleman, B.; Gargano, M.; et al. Generalisable Long COVID Subtypes: Findings from the NIH N3C and RECOVER Programmes. EBioMedicine 2023, 87, 104413. [Google Scholar] [CrossRef]
- Kruglikov, I.L.; Scherer, P.E. The Role of Adipocytes and Adipocyte-Like Cells in the Severity of COVID-19 Infections. Obesity 2020, 28, 1187–1190. [Google Scholar] [CrossRef]
- Favre, G.; Legueult, K.; Pradier, C.; Raffaelli, C.; Ichai, C.; Iannelli, A.; Redheuil, A.; Lucidarme, O.; Esnault, V. Visceral Fat Is Associated to the Severity of COVID-19. Metabolism 2021, 115, 154440. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Guijarro, C.; Torres-Macho, J.; Velasco-Arribas, M.; Plaza-Canteli, S.; Hernández-Barrera, V.; Arias-Navalón, J.A. Diabetes and the Risk of Long-Term Post-COVID Symptoms. Diabetes 2021, 70, 2917–2921. [Google Scholar] [CrossRef]
- Tsampasian, V.; Elghazaly, H.; Chattopadhyay, R.; Debski, M.; Naing, T.K.P.; Garg, P.; Clark, A.; Ntatsaki, E.; Vassiliou, V.S. Risk Factors Associated with Post−COVID-19 Condition. JAMA Intern. Med. 2023, 183, 566. [Google Scholar] [CrossRef]
- Rayner, D.G.; Wang, E.; Su, C.; Patel, O.D.; Aleluya, S.; Giglia, A.; Zhu, E.; Siddique, M. Risk Factors for Long COVID in Children and Adolescents: A Systematic Review and Meta-Analysis. World J. Pediatr. 2023, 20, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shi, F.; Zhang, H.; Giang, W.A.; Kaur, A.; Chen, H.; Li, X. Long COVID among People with HIV: A Systematic Review and Meta-analysis. HIV Med. 2024; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Serapide, F.; Quirino, A.; Tarsitano, M.G.; Marascio, N.; Serraino, R.; Rotundo, S.; Matera, G.; Trecarichi, E.M.; Torti, C. Microbiological and Clinical Findings of SARS-CoV-2 Infection after 2 Years of Pandemic: From Lung to Gut Microbiota. Diagnostics 2022, 12, 2143. [Google Scholar] [CrossRef] [PubMed]
- Tziolos, N.-R.; Ioannou, P.; Baliou, S.; Kofteridis, D.P. Long COVID-19 Pathophysiology: What Do We Know So Far? Microorganisms 2023, 11, 2458. [Google Scholar] [CrossRef] [PubMed]
- Diar Bakerly, N.; Smith, N.; Darbyshire, J.L.; Kwon, J.; Bullock, E.; Baley, S.; Sivan, M.; Delaney, B. Pathophysiological Mechanisms in Long COVID: A Mixed Method Systematic Review. Int. J. Environ. Res. Public Health 2024, 21, 473. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Sivan, M.; Perlowski, A.; Nikolich, J.Ž. Long COVID: A Clinical Update. Lancet 2024, 404, 707–724. [Google Scholar] [CrossRef]
- Pelle, M.C.; Tassone, B.; Ricchio, M.; Mazzitelli, M.; Davoli, C.; Procopio, G.; Cancelliere, A.; La Gamba, V.; Lio, E.; Matera, G.; et al. Late-onset myocardial infarction and autoimmune haemolytic anaemia in a COVID-19 patient without respiratory symptoms, concomitant with a paradoxical increase in inflammatory markers: A case report. J. Med. Case Rep. 2020, 14, 246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cervia-Hasler, C.; Brüningk, S.C.; Hoch, T.; Fan, B.; Muzio, G.; Thompson, R.C.; Ceglarek, L.; Meledin, R.; Westermann, P.; Emmenegger, M.; et al. Persistent Complement Dysregulation with Signs of Thromboinflammation in Active Long Covid. Science 2024, 383, eadg7942. [Google Scholar] [CrossRef]
- Russo, A.; Serraino, R.; Serapide, F.; Bruni, A.; Garofalo, E.; Longhini, F.; Trecarichi, E.M.; Torti, C. COVID-19-Associated Pulmonary Aspergillosis in Intensive Care Unit: A Real-Life Experience. Heliyon 2024, 10, e24298. [Google Scholar] [CrossRef]
- Evans, R.A.; Leavy, O.C.; Richardson, M.; Elneima, O.; McAuley, H.J.C.; Shikotra, A.; Singapuri, A.; Sereno, M.; Saunders, R.M.; Harris, V.C.; et al. Clinical Characteristics with Inflammation Profiling of Long COVID and Association with 1-Year Recovery Following Hospitalisation in the UK: A Prospective Observational Study. Lancet Respir. Med. 2022, 10, 761–775. [Google Scholar] [CrossRef]
- Badenes Bonet, D.; Caguana Vélez, O.A.; Duran Jordà, X.; Comas Serrano, M.; Posso Rivera, M.; Admetlló, M.; Herranz Blasco, A.; Cuadrado Godia, E.; Marco Navarro, E.; Martin Ezquerra, G.; et al. Treatment of COVID-19 during the Acute Phase in Hospitalized Patients Decreases Post-Acute Sequelae of COVID-19. J. Clin. Med. 2023, 12, 4158. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Raveendran, A.V.; Giordano, R.; Arendt-Nielsen, L. Long COVID or Post-COVID-19 Condition: Past, Present and Future Research Directions. Microorganisms 2023, 11, 2959. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-Acute COVID-19 Syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Antar, A.A.R.; Yu, T.; Demko, Z.O.; Hu, C.; Tornheim, J.A.; Blair, P.W.; Thomas, D.L.; Manabe, Y.C. Long COVID Brain Fog and Muscle Pain Are Associated with Longer Time to Clearance of SARS-CoV-2 RNA from the Upper Respiratory Tract during Acute Infection. Front. Immunol. 2023, 14, 1147549. [Google Scholar] [CrossRef] [PubMed]
- McMillan, P.; Turner, A.J.; Uhal, B.D. Mechanisms of Gut-Related Viral Persistence in Long COVID. Viruses 2024, 16, 1266. [Google Scholar] [CrossRef] [PubMed]
- Roden, A.C.; Boland, J.M.; Johnson, T.F.; Aubry, M.C.; Lo, Y.-C.; Butt, Y.M.; Maleszewski, J.J.; Larsen, B.T.; Tazelaar, H.D.; Khoor, A.; et al. Late Complications of COVID-19. Arch. Pathol. Lab. Med. 2022, 146, 791–804. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Torres-Macho, J.; Catahay, J.A.; Macasaet, R.; Velasco, J.V.; Macapagal, S.; Caldararo, M.; Henry, B.M.; Lippi, G.; Franco-Moreno, A.; et al. Is Antiviral Treatment at the Acute Phase of COVID-19 Effective for Decreasing the Risk of Long-COVID? A Systematic Review. Infection 2024, 52, 43–58. [Google Scholar] [CrossRef]
- Català, M.; Mercadé-Besora, N.; Kolde, R.; Trinh, N.T.H.; Roel, E.; Burn, E.; Rathod-Mistry, T.; Kostka, K.; Man, W.Y.; Delmestri, A.; et al. The Effectiveness of COVID-19 Vaccines to Prevent Long COVID Symptoms: Staggered Cohort Study of Data from the UK, Spain, and Estonia. Lancet Respir. Med. 2024, 12, 225–236. [Google Scholar] [CrossRef]
- Azzolini, E.; Levi, R.; Sarti, R.; Pozzi, C.; Mollura, M.; Mantovani, A.; Rescigno, M. Association Between BNT162b2 Vaccination and Long COVID After Infections Not Requiring Hospitalization in Health Care Workers. JAMA 2022, 328, 676. [Google Scholar] [CrossRef]
- Li, Y.; Schneider, A.M.; Mehta, A.; Sade-Feldman, M.; Kays, K.R.; Gentili, M.; Charland, N.C.; Gonye, A.L.K.; Gushterova, I.; Khanna, H.K.; et al. SARS-CoV-2 Viremia Is Associated with Distinct Proteomic Pathways and Predicts COVID-19 Outcomes. J. Clin. Investig. 2021, 131, e148635. [Google Scholar] [CrossRef]
- Siberry, V.G.R.; Rowe, P.C. Pediatric Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Pediatr. Infect. Dis. J. 2022, 41, e139–e141. [Google Scholar] [CrossRef]
- Howard-Jones, A.R.; Burgner, D.P.; Crawford, N.W.; Goeman, E.; Gray, P.E.; Hsu, P.; Kuek, S.; McMullan, B.J.; Tosif, S.; Wurzel, D.; et al. COVID-19 in Children. II: Pathogenesis, Disease Spectrum and Management. J. Paediatr. Child. Health 2022, 58, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Bai, L.; Tang, H. Epstein-Barr Virus Infection: The Micro and Macro Worlds. Virol. J. 2023, 20, 220. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.K.C.; Lam, J.M.; Barankin, B. Infectious Mononucleosis: An Updated Review. Curr. Pediatr. Rev. 2024, 20, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Peluso, M.J.; Deeks, S.G. Mechanisms of Long COVID and the Path toward Therapeutics. Cell 2024, 187, 5500–5529. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major Findings, Mechanisms and Recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Peluso, M.J.; Deveau, T.-M.; Munter, S.E.; Ryder, D.; Buck, A.; Beck-Engeser, G.; Chan, F.; Lu, S.; Goldberg, S.A.; Hoh, R.; et al. Chronic Viral Coinfections Differentially Affect the Likelihood of Developing Long COVID. J. Clin. Investig. 2023, 133, e163669. [Google Scholar] [CrossRef]
- Shikova, E.; Reshkova, V.; Kumanova, A.; Raleva, S.; Alexandrova, D.; Capo, N.; Murovska, M.; on behalf of the European Network on ME/CFS (EUROMENE). Cytomegalovirus, Epstein-Barr Virus, and Human Herpesvirus-6 Infections in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J. Med. Virol. 2020, 92, 3682–3688. [Google Scholar] [CrossRef]
- Zhang, L.; Gough, J.; Christmas, D.; Mattey, D.L.; Richards, S.C.M.; Main, J.; Enlander, D.; Honeybourne, D.; Ayres, J.G.; Nutt, D.J.; et al. Microbial Infections in Eight Genomic Subtypes of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J. Clin. Pathol. 2010, 63, 156–164. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal Analysis Reveals High Prevalence of Epstein-Barr Virus Associated with Multiple Sclerosis. Science (1979) 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Lanz, T.V.; Brewer, R.C.; Ho, P.P.; Moon, J.-S.; Jude, K.M.; Fernandez, D.; Fernandes, R.A.; Gomez, A.M.; Nadj, G.-S.; Bartley, C.M.; et al. Clonally Expanded B Cells in Multiple Sclerosis Bind EBV EBNA1 and GlialCAM. Nature 2022, 603, 321–327. [Google Scholar] [CrossRef]
- Houen, G.; Trier, N.H. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front. Immunol. 2021, 11, 587380. [Google Scholar] [CrossRef] [PubMed]
- Yager, J.E.; Magaret, A.S.; Kuntz, S.R.; Selke, S.; Huang, M.-L.; Corey, L.; Casper, C.; Wald, A. Valganciclovir for the Suppression of Epstein-Barr Virus Replication. J. Infect. Dis. 2017, 216, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Poole, E.; Neves, T.C.; Oliveira, M.T.; Sinclair, J.; da Silva, M.C.C. Human Cytomegalovirus Interleukin 10 Homologs: Facing the Immune System. Front. Cell Infect. Microbiol. 2020, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yeh, W.; Chen, H.; Yong, S. Long-term Risk of Herpes Zoster Following COVID-19: A Retrospective Cohort Study of 2 442 686 Patients. J. Med. Virol. 2023, 95, e29101. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serapide, F.; Talarico, M.; Rotundo, S.; Pascale, V.; Serraino, R.; Trecarichi, E.M.; Russo, A. Lights and Shadows of Long COVID: Are Latent Infections the Real Hidden Enemy? J. Clin. Med. 2024, 13, 7124. https://doi.org/10.3390/jcm13237124
Serapide F, Talarico M, Rotundo S, Pascale V, Serraino R, Trecarichi EM, Russo A. Lights and Shadows of Long COVID: Are Latent Infections the Real Hidden Enemy? Journal of Clinical Medicine. 2024; 13(23):7124. https://doi.org/10.3390/jcm13237124
Chicago/Turabian StyleSerapide, Francesca, Marisa Talarico, Salvatore Rotundo, Vittorio Pascale, Riccardo Serraino, Enrico Maria Trecarichi, and Alessandro Russo. 2024. "Lights and Shadows of Long COVID: Are Latent Infections the Real Hidden Enemy?" Journal of Clinical Medicine 13, no. 23: 7124. https://doi.org/10.3390/jcm13237124
APA StyleSerapide, F., Talarico, M., Rotundo, S., Pascale, V., Serraino, R., Trecarichi, E. M., & Russo, A. (2024). Lights and Shadows of Long COVID: Are Latent Infections the Real Hidden Enemy? Journal of Clinical Medicine, 13(23), 7124. https://doi.org/10.3390/jcm13237124