What Is New in Morphea—Narrative Review on Molecular Aspects and New Targeted Therapies
Abstract
:1. Introduction
2. Pathogenesis
2.1. Endothelial Cell Damage
2.2. Immune Dysfunction
2.3. Disorders of the Extracellular Matrix
2.4. Genetics Factors
2.4.1. HLA Involvement
2.4.2. Cutaneous Mosaicism
2.4.3. Transcriptome Alternations
2.5. Epigenetics Factors
2.5.1. DNA Methylation
2.5.2. MicroRNA
2.5.3. Circulating MicroRNAs
2.5.4. Long Non-Coding RNAs
2.6. Other Factors in the Pathogenesis of Morphea
3. Treatment
3.1. Biological Drugs and Small Molecules
3.2. Antifibrinolytic Agents
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Chiriac, A.; Brzezinski, P.; Chiriac, A.E.; Coroș, M.F.; Moldovan, C.; Podoleanu, C.; Stolnicu, S. The Value of Ultrasonography in the Diagnosis and Monitoring of Localized Morphea—Case Report. J. Interdiscip. Med. 2016, 1, 193–196. [Google Scholar] [CrossRef]
- Papara, C.; De Luca, D.A.; Bieber, K.; Vorobyev, A.; Ludwig, R.J. Morphea: The 2023 update. Front. Med. 2023, 10, 1108623. [Google Scholar] [CrossRef] [PubMed]
- Ferreli, C.; Gasparini, G.; Parodi, A.; Cozzani, E.; Rongioletti, F.; Atzori, L. Cutaneous Manifestations of Scleroderma and Scleroderma-Like Disorders: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2017, 53, 306–336. [Google Scholar] [CrossRef]
- Fett, N.; Werth, V.P. Update on morphea: Part I. Epidemiology, clinical presentation, and pathogenesis. J. Am. Acad. Dermatol. 2011, 64, 217–228. [Google Scholar] [CrossRef]
- Ihn, H.; Yazawa, N.; Kubo, M.; Yamane, K.; Sato, S.; Fujimoto, M.; Kikuchi, K.; Soma, Y.; Tamaki, K. Circulating levels of soluble CD30 are increased in patients with localized scleroderma and correlated with serological and clinical features of the disease. J. Rheumatol. 2000, 27, 698–702. [Google Scholar] [PubMed]
- Yamamoto, T. Chemokines and chemokine receptors in scleroderma. Int. Arch. Allergy Immunol. 2006, 140, 345–356. [Google Scholar] [CrossRef]
- Peterson, L.S.; Nelson, A.M.; Su, W.P.; Mason, T.; O’Fallon, W.M.; E Gabriel, S. The epidemiology of morphea (localized scleroderma) in Olmsted County 1960–1993. J. Rheumatol. 1997, 24, 73–80. [Google Scholar]
- Kreuter, A.; Krieg, T.; Worm, M.; Wenzel, J.; Moinzadeh, P.; Kuhn, A.; Aberer, E.; Scharffetter-Kochanek, K.; Horneff, G.; Reil, E.; et al. German guidelines for the diagnosis and therapy of localized scleroderma. J. Dtsch. Dermatol. Ges. 2016, 14, 199–216. [Google Scholar] [CrossRef]
- Christen-Zaech, S.; Hakim, M.D.; Afsar, F.S.; Paller, A.S. Pediatric morphea (localized scleroderma): Review of 136 patients. J. Am. Acad. Dermatol. 2008, 59, 385–396. [Google Scholar] [CrossRef]
- Leitenberger, J.J.; Cayce, R.L.; Haley, R.W.; Adams-Huet, B.; Bergstresser, P.R.; Jacobe, H.T. Distinct autoimmune syndromes in morphea: A review of 245 adult and pediatric cases. Arch. Dermatol. 2009, 145, 545–550. [Google Scholar] [CrossRef]
- Fett, N. Scleroderma: Nomenclature, etiology, pathogenesis, prognosis, and treatments: Facts and controversies. Clin. Dermatol. 2013, 31, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, A.; Krieg, T.; Worm, M.; Wenzel, J.; Gambichler, T.; Kuhn, A.; Aberer, E.; Scharffetter-Kochanek, K.; Hunzelmann, N. AWMF Guideline no. 013/066. Diagnosis and therapy of circumscribed scleroderma. J. Dtsch. Dermatol. Ges. 2009, 7 (Suppl. S6), S1–S14. [Google Scholar] [CrossRef] [PubMed]
- Knobler, R.; Moinzadeh, P.; Hunzelmann, N.; Kreuter, A.; Cozzio, A.; Mouthon, L.; Cutolo, M.; Rongioletti, F.; Denton, C.; Rudnicka, L.; et al. European Dermatology Forum S1-guideline on the diagnosis and treatment of sclerosing diseases of the skin, Part 1: Localized scleroderma, systemic sclerosis and overlap syndromes. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1401–1424. [Google Scholar] [CrossRef] [PubMed]
- Krasowska, D.; Rudnicka, L.; Dańczak-Pazdrowska, A.; Chodorowska, G.; Woźniacka, A.; Lis-Święty, A.; Czuwara, J.; Maj, J.; Majewski, S.; Sysa-Jędrzejowska, A.; et al. Localized scleroderma (morphea). Diagnostic and therapeutic recommendations of the Polish Dermatological Society. Dermatol. Rev. 2019, 106, 333–353. [Google Scholar] [CrossRef]
- Marzano, A.V.; Menni, S.; Parodi, A.; Borghi, A.; Fuligni, A.; Fabbri, P.; Caputo, R. Localized scleroderma in adults and children. Clinical and laboratory investigations on 239 cases. Eur. J. Dermatol. 2003, 13, 171–176. [Google Scholar]
- Marsol, I.B. Update on the classification and treatment of localized scleroderma. Actas Dermosifiliogr. 2013, 104, 654–666. [Google Scholar] [CrossRef]
- Dańczak-Pazdrowska, A.; Cieplewicz, P.; Żaba, R.; Adamski, Z.; Polańska, A. Controversy around the morphea. Postep. Dermatol. Allergol. 2021, 38, 716–720. [Google Scholar] [CrossRef]
- Sharma, P.; Khullar, G.; Nagia, S.; Sharma, S. Clinical, histopathological and dermatoscopic overlap of lichen sclerosus and morphea in the same lesion. Australas. J. Dermatol. 2023, 64, e292–e294. [Google Scholar] [CrossRef]
- Kreuter, A.; Wischnewski, J.; Terras, S.; Altmeyer, P.; Stücker, M.; Gambichler, T. Coexistence of lichen sclerosus and morphea: A retrospective analysis of 472 patients with localized scleroderma from a German tertiary referral center. J. Am. Acad. Dermatol. 2012, 67, 1157–1162. [Google Scholar] [CrossRef]
- Papini, M.; Russo, A.; Simonetti, O.; Borghi, A.; Corazza, M.; Piaserico, S.; Feliciani, C.; Calzavara-Pinton, P. Diagnosis and management of cutaneous and anogenital lichen sclerosus: Recommendations from the Italian Society of Dermatology (SIDeMaST). Ital. J. Dermatol. Venereol. 2021, 156, 519–533. [Google Scholar] [CrossRef]
- Wallace, H.J. Lichen sclerosus et atrophicus. Trans. St. Johns Hosp. Dermatol. Soc. 1971, 57, 9–30. [Google Scholar] [PubMed]
- Kirtschig, G.; Becker, K.; Günthert, A.; Jasaitiene, D.; Cooper, S.; Chi, C.; Kreuter, A.; Rall, K.; Aberer, W.; Riechardt, S.; et al. Evidence-based (S3) Guideline on (anogenital) Lichen sclerosus. J. Eur. Acad. Dermatol. Venereol. 2015, 29, e1–e43. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Ghatage, P. Etiology, Clinical Features, and Diagnosis of Vulvar Lichen Sclerosus: A Scoping Review. Obstet. Gynecol. Int. 2020, 2020, 7480754. [Google Scholar] [CrossRef] [PubMed]
- Krapf, J.M.M.; Smith, A.B.; Cigna, S.T.; Goldstein, A.T. Presenting Symptoms and Diagnosis of Vulvar Lichen Sclerosus in Premenopausal Women: A Cross-Sectional Study. J. Low. Genit. Tract Dis. 2022, 26, 271–275. [Google Scholar] [CrossRef]
- Kizer, W.S.; Prarie, T.; Morey, A.F. Balanitis xerotica obliterans: Epidemiologic distribution in an equal access health care system. South. Med. J. 2003, 96, 9–11. [Google Scholar] [CrossRef]
- Powell, J.; Wojnarowska, F. Childhood vulvar lichen sclerosus: An increasingly common problem. J. Am. Acad. Dermatol. 2001, 44, 803–806. [Google Scholar] [CrossRef]
- Becker, K. Lichen sclerosus in boys. Dtsch. Ärzteblatt Int. 2011, 108, 53–58. [Google Scholar] [CrossRef]
- Wortsman, X.; Wortsman, J.; Sazunic, I.; Carreño, L. Activity assessment in morphea using color Doppler ultrasound. J. Am. Acad. Dermatol. 2011, 65, 942–948. [Google Scholar] [CrossRef]
- Polańska, A.; Dańczak-Pazdrowska, A.; Silny, W.; Sadowska, A.; Jenerowicz, D.; Osmola-Mańkowska, A.; Olek-Hrab, K. High-frequency ultrasonography in monitoring the effects of treatment of selected dermatoses. Post. Dermatol. Alergol. 2011, 28, 255–260. [Google Scholar]
- Salgueiro, C.; Baeza, J.; Moll, C.; Alfaro-Sepúlveda, D.; Mellado, G.; Villaseca-Hernández, M.; Vera-Kellet, C.; Wortsman, X. Sun Sign in the Ultrasound Diagnosis and Activity Assessment of Morphea. J. Ultrasound Med. 2022, 41, 1817–1824. [Google Scholar] [CrossRef]
- Pain, C.E.; Murray, A.; Dinsdale, G.; Marsden, A.; Manning, J.; Riley, P.; Leone, V.; Amin, T.; Zulian, F.; Herrick, A.L. Non-invasive imaging and clinical skin scores in juvenile localized scleroderma. Rheumatology 2024, 63, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
- Narbutt, J.; Hołdrowicz, A.; Lesiak, A. Morphea—Selected local treatment methods and their effectiveness. Reumatologia 2017, 55, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Dańczak-Pazdrowska, A.; Kowalczyk, M.J.; Szramka-Pawlak, B.; Gornowicz-Porowska, J.; Szewczyk, A.; Silny, W.; Olewicz-Gawlik, A.; Molińska-Glura, M.; Żaba, R.; Hrycaj, P. Clinical immunology Interleukin 1β in morphea. Cent. Eur. J. Immunol. 2012, 3, 247–252. [Google Scholar] [CrossRef]
- Dańczak-Pazdrowska, A.; Kowalczyk, M.; Szramka-Pawlak, B.; Gornowicz-Porowska, J.; Szewczyk, A.; Silny, W.; Olewicz-Gawlik, A.; Molińska-Glura, M.; Żaba, R.; Hrycaj, P. Interleukin-17A and interleukin-23 in morphea. Arch. Med. Sci. 2012, 8, 1089–1095. [Google Scholar] [CrossRef]
- Gu, Y.S.; Kong, J.; Cheema, G.S.; Keen, C.L.; Wick, G.; Gershwin, M.E. The immunobiology of systemic sclerosis. Semin. Arthritis Rheum. 2008, 38, 132–160. [Google Scholar] [CrossRef] [PubMed]
- Schoenherr, C.; Weiskirchen, R.; Haan, S. Interleukin-27 acts on hepatic stellate cells and induces signal transducer and activator of transcription 1-dependent responses. Cell Commun. Signal. 2010, 8, 19. [Google Scholar] [CrossRef]
- Shabgah, A.G.; Fattahi, E.; Shahneh, F.Z. Interleukin-17 in human inflammatory diseases. Postep. Dermatol. Alergol. 2014, 31, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Shimozato, O.; Sato, A.; Kawamura, K.; Chiyo, M.; Ma, G.; Li, Q.; Tagawa, M. The secreted form of p28 subunit of interleukin (IL)-27 inhibits biological functions of IL-27 and suppresses anti-allogeneic immune responses. Immunology 2009, 128, e816–e825. [Google Scholar] [CrossRef]
- Kahaleh, M.B.; Sherer, G.K.; LeRoy, E.C. Endothelial injury in scleroderma. J. Exp. Med. 1979, 149, 1326–1335. [Google Scholar] [CrossRef]
- Gupta, R.A.; Fiorentino, D. Localized scleroderma and systemic sclerosis: Is there a connection? Best Pract. Res. Clin. Rheumatol. 2007, 21, 1025–1036. [Google Scholar] [CrossRef]
- Mertens, J.S.; Seyger, M.M.B.; Thurlings, R.M.; Radstake, T.R.D.J.; De Jong, E.M.G.J. Morphea and Eosinophilic Fasciitis: An Update. Am. J. Clin. Dermatol. 2017, 18, 491–512. [Google Scholar] [CrossRef] [PubMed]
- Inoshita, T.; Whiteside, T.L.; Rodnan, G.P.; Taylor, F.H. Abnormalities of T lymphocyte subsets in patients with progressive systemic sclerosis (PSS, scleroderma). J. Lab. Clin. Med. 1981, 97, 264–277. [Google Scholar] [PubMed]
- Keystone, E.; Lau, C.; Gladman, D.; Wilkinson, S.; Lee, P.; Shore, A. Immunoregulatory T cell subpopulations in patients with scleroderma using monoclonal antibodies. Clin. Exp. Immunol. 1982, 48, 443–488. [Google Scholar] [PubMed]
- Mirizio, E.; Marathi, A.; Hershey, N.; Ross, C.; Schollaert, K.; Salgado, C.; Reyes-Mugica, M.; Torok, K.S. Identifying the Signature Immune Phenotypes Present in Pediatric Localized Scleroderma. J. Investig. Dermatol. 2019, 139, 715–718. [Google Scholar] [CrossRef]
- Carol, M.A. Immunology of systemic sclerosis. Front. Biosci. 2005, 10, 1707–1719. [Google Scholar] [CrossRef]
- Torok, K.S.; Kurzinski, K.; Kelsey, C.; Yabes, J.; Magee, K.; Vallejo, A.N.; Medsger, T.; Feghali-Bostwick, C.A. Peripheral blood cytokine and chemokine profiles in juvenile localized scleroderma: T-helper cell-associated cytokine profiles. Semin. Arthritis Rheum. 2015, 45, 284–293. [Google Scholar] [CrossRef]
- O’brien, J.C.; Rainwater, Y.B.; Malviya, N.; Cyrus, N.; Auer-Hackenberg, L.; Hynan, L.S.; Hosler, G.A.; Jacobe, H.T. Transcriptional and Cytokine Profiles Identify CXCL9 as a Biomarker of Disease Activity in Morphea. J. Investig. Dermatol. 2017, 137, 1663–1670. [Google Scholar] [CrossRef]
- Rongioletti, F.; Ferreli, C.; Atzori, L.; Bottoni, U.; Soda, G. Scleroderma with an update about clinico-pathological correlation. Ital. J. Dermatol. Venereol. 2018, 153, 208–215. [Google Scholar] [CrossRef]
- Fertin, C.; Nicolas, J.F.; Gillery, P.; Kalis, B.; Banchereau, J.; Maquart, F.X. Interleukin-4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents. Cell Mol. Biol. 1991, 37, 823–829. [Google Scholar]
- Lee, J.S.; Park, H.; Yoon, H.; Chung, J.H.; Cho, S. CD34 stromal expression is inversely proportional to smooth muscle actin expression and extent of morphea. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 2208–2216. [Google Scholar] [CrossRef]
- Osmola-Mańkowska, A.; Teresiak-Mikołajczak, E.; Dańczak-Pazdrowska, A.; Kowalczyk, M.; Żaba, R.; Adamski, Z. The role of dendritic cells and regulatory T cells in the pathogenesis of morphea. Cent. Eur. J. Immunol. 2015, 40, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y.; Ihn, H.; Jinnin, M.; Mimura, Y.; Tamaki, K. Involvement of alphavbeta5 integrin in the establishment of autocrine tgf-β signaling in dermal fibroblasts derived from localized scleroderma. J. Investig. Dermatol. 2006, 126, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Tomimura, S.; Ogawa, F.; Iwata, Y.; Komura, K.; Hara, T.; Muroi, E.; Takenaka, M.; Shimizu, K.; Hasegawa, M.; Fujimoto, M.; et al. Autoantibodies against matrix metalloproteinase-1 in patients with localized scleroderma. J. Dermatol. Sci. 2008, 52, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Fawzi, M.; Tawfik, S.; Eissa, A.; El-Komy, M.; Abdel-Halim, M.; Shaker, O. Expression of insulin-like growth factor-I in lesional and non-lesional skin of patients with morphoea. Br. J. Dermatol. 2008, 159, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Yurtsever, I.; Łukomska, M.; Sobolewski, P.; Szymańska, E.; Owczarek, W.; Walecka, I. Familial localized scleroderma with paediatric onset: A review. Postep. Dermatol. Allergol. 2021, 38, 193–197. [Google Scholar] [CrossRef]
- Medhasi, S.; Chantratita, N. Human Leukocyte Antigen (HLA) System: Genetics and Association with Bacterial and Viral Infections. J. Immunol. Res. 2022, 2022, 9710376. [Google Scholar] [CrossRef]
- Jacobe, H.; Ahn, C.; Arnett, F.C.; Reveille, J.D. Major histocompatibility complex class I and class II alleles may confer susceptibility to or protection against morphea: Findings from the Morphea in Adults and Children cohort. Arthritis Rheumatol. 2014, 66, 3170–3177. [Google Scholar] [CrossRef]
- Schutt, C.; Mirizio, E.; Salgado, C.; Reyes-Mugica, M.; Wang, X.; Chen, W.; Grunwaldt, L.; Schollaert, K.L.; Torok, K.S. Transcriptomic Evaluation of Juvenile Localized Scleroderma Skin with Histologic and Clinical Correlation. Arthritis Rheumatol. 2021, 73, 1921–1930. [Google Scholar] [CrossRef]
- Saracino, A.; Denton, C.; Orteu, C. The molecular pathogenesis of morphoea: From genetics to future treatment targets. Br. J. Dermatol. 2017, 177, 34–46. [Google Scholar] [CrossRef]
- Thorpe, J.; Osei-Owusu, I.A.; Avigdor, B.E.; Tupler, R.; Pevsner, J. Mosaicism in Human Health and Disease. Annu. Rev. Genet. 2020, 54, 487–510. [Google Scholar] [CrossRef]
- Molho-Pessach, V.; Schaffer, J.V. Blaschko lines and other patterns of cutaneous mosaicism. Clin. Dermatol. 2011, 29, 205–225. [Google Scholar] [CrossRef] [PubMed]
- Kouzak, S.S.; Mendes, M.S.T.; Costa, I.M.C. Cutaneous mosaicisms: Concepts, patterns and classifications. An. Bras. Dermatol. 2013, 88, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Aluri, J.; Cooper, M.A. Genetic Mosaicism as a Cause of Inborn Errors of Immunity. J. Clin. Immunol. 2021, 41, 718–728. [Google Scholar] [CrossRef]
- Lee, J.S.; Park, H.-S.; Cho, S.; Yoon, H.-S. Concurrence of Circumscribed Morphea and Segmental Vitiligo: A Case Report. Ann. Dermatol. 2018, 30, 708–711. [Google Scholar] [CrossRef]
- Pedowska, M.; Ptasiewicz, M.; Szumiło, J.; Chałas, R. Morphological and clinical picture of the morphea in the oral cavity. Folia Morphol. 2022, 81, 544–550. [Google Scholar] [CrossRef]
- Weibel, L.; Harper, J. Linear morphoea follows Blaschko’s lines. Br. J. Dermatol. 2008, 159, 175–181. [Google Scholar] [CrossRef]
- Chen, H.W.; Zhu, J.L.; Martyanov, V.; Tsoi, L.C.; Johnson, M.E.; Barber, G.; Popovich, D.; O’brien, J.C.; Coias, J.; Cyrus, N.; et al. Gene Expression Signatures in Inflammatory and Sclerotic Morphea Skin and Sera Distinguish Morphea from Systemic Sclerosis. J. Investig. Dermatol. 2023, 143, 1886–1895.e10. [Google Scholar] [CrossRef] [PubMed]
- Mirizio, E.; Liu, C.; Yan, Q.; Waltermire, J.; Mandel, R.; Schollaert, K.L.; Konnikova, L.; Wang, X.; Chen, W.; Torok, K.S. Genetic Signatures from RNA Sequencing of Pediatric Localized Scleroderma Skin. Front. Pediatr. 2021, 9, 669116. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Y.; Zhu, H.; Zhao, M.; Lu, Q. The Pathogenic Role of Dysregulated Epigenetic Modifications in Autoimmune Diseases. Front. Immunol. 2019, 10, 2305. [Google Scholar] [CrossRef]
- Coit, P.; Schollaert, K.L.; Mirizio, E.M.; Torok, K.S.; Sawalha, A.H. DNA methylation patterns in juvenile systemic sclerosis and localized scleroderma. Clin. Immunol. 2021, 228, 108756. [Google Scholar] [CrossRef]
- Wolska-Gawron, K.; Bartosińska, J.; Krasowska, D. MicroRNA in localized scleroderma: A review of literature. Arch. Dermatol. Res. 2020, 312, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Babalola, O.; Mamalis, A.; Lev-Tov, H.; Jagdeo, J. The role of microRNAs in skin fibrosis. Arch. Dermatol. Res. 2013, 305, 763–776. [Google Scholar] [CrossRef]
- Etoh, M.; Jinnin, M.; Makino, K.; Yamane, K.; Nakayama, W.; Aoi, J.; Honda, N.; Kajihara, I.; Makino, T.; Fukushima, S.; et al. microRNA-7 down-regulation mediates excessive collagen expression in localized scleroderma. Arch. Dermatol. Res. 2013, 305, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Makino, K.; Jinnin, M.; Hirano, A.; Yamane, K.; Eto, M.; Kusano, T.; Honda, N.; Kajihara, I.; Makino, T.; Sakai, K.; et al. The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J. Immunol. 2013, 190, 3905–3915. [Google Scholar] [CrossRef]
- Makino, T.; Jinnin, M.; Etoh, M.; Yamane, K.; Kajihara, I.; Makino, K.; Ichihara, A.; Igata, T.; Sakai, K.; Fukushima, S.; et al. Down-regulation of microRNA-196a in the sera and involved skin of localized scleroderma patients. Eur. J. Dermatol. 2014, 24, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Chen, J.; Li, W.; Bao, C.; Fu, Q. Correction: Corrigendum: Targeting miR-155 to Treat Experimental Scleroderma. Sci. Rep. 2016, 6, 21941. [Google Scholar] [CrossRef] [PubMed]
- Chouri, E.; Servaas, N.H.; Bekker, C.P.J.; Affandi, A.J.; Cossu, M.; Hillen, M.R.; Angiolilli, C.; Mertens, J.S.; van den Hoogen, L.L.; Silva-Cardoso, S.; et al. Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis. J. Autoimmun. 2018, 89, 162–170. [Google Scholar] [CrossRef]
- Pozniak, T.; Shcharbin, D.; Bryszewska, M. Circulating microRNAs in Medicine. Int. J. Mol. Sci. 2022, 23, 3996. [Google Scholar] [CrossRef]
- Wolska-Gawron, K.; Bartosińska, J.; Rusek, M.; Kowal, M.; Raczkiewicz, D.; Krasowska, D. Circulating miRNA-181b-5p, miRNA-223-3p, miRNA-210-3p, let 7i-5p, miRNA-21-5p and miRNA-29a-3p in patients with localized scleroderma as potential biomarkers. Sci. Rep. 2020, 10, 20218. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, H.; Li, G.; Sun, L. Identification of lncRNA expression profiles in pediatric localized scleroderma. J. Cosmet. Dermatol. 2022, 21, 6422–6427. [Google Scholar] [CrossRef]
- Longo, F.; Saletta, S.; Lepore, L.; Pennesi, M. Localized scleroderma after infection with Epstein-Barr virus. Clin. Exp. Rheumatol. 1993, 11, 681–683. [Google Scholar] [PubMed]
- Mihas, A.A.; Abou-Assi, S.G.; Heuman, D.M. Cutae morphea associated with chronic hepatitis C. J. Hepatol. 2003, 39, 458–459. [Google Scholar] [CrossRef] [PubMed]
- Soylu, S.; Gül, Ü.; Gönül, M.; Klç, A.; Çakmak, S.K.; Demiriz, M. An uncommon presentation of the co-existence of morphea and vitiligo in a patient with chronic hepatitis B virus infection: Is there a possible association with autoimmunity? Am. J. Clin. Dermatol. 2009, 10, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Spirer, Z.; Ilie, B.; Pick, I.A.; Yaron, M. Localized scleroderma following varicella in a three-year-old girl with IgA deficiency. Acta Paediatr. 1979, 68, 783–785. [Google Scholar] [CrossRef] [PubMed]
- Aberer, E.; Stanek, G.; Ertl, M.; Neumann, R. Evidence for spirochetal origin of circumscribed scleroderma (morphea). Acta Derm.-Venereol. 1987, 67, 225–231. [Google Scholar] [CrossRef]
- Canales, I.P.; Mas, I.B.; Bauza, F.M.; Armengod, F.S.; Vázquez, F.P.; Cardell, J.A. Determination of antibodies against Borrelia burgdorferi in patients with morphea, lichen sclerosus et atrophicus and erythema chronicum migrans. Rev. Clin. Esp. 1990, 186, 320–323. [Google Scholar]
- Raguin, G.; Boisnic, S.; Souteyrand, P.; Baranton, G.; Piette, J.; Godeau, P.; France, C. No evidence for a spirochaetal origin of localized scleroderma. Br. J. Dermatol. 1992, 127, 218–220. [Google Scholar] [CrossRef]
- Ranki, A.; Aavik, E.; Peterson, P.; Schauman, K.; Nurmilaakso, P. Successful amplification of DNA specific for Finnish Borrelia burgdorferi isolates in erythema chronicum migrans but not in circumscribed scleroderma lesions. J. Investig. Dermatol. 1994, 102, 339–345. [Google Scholar] [CrossRef]
- Alonso-Llamazares, J.; Persing, D.; Anda, P.; Gibson, L.; Rutledge, B.; Iglesias, L. No evidence for Borrelia burgdorferi infection in lesions of morphea and lichen sclerosus et atrophicus in Spain. A prospective study and literature review. Acta Derm.-Venereol. 1997, 77, 299–304. [Google Scholar] [CrossRef]
- Weide, B.; Walz, T.; Garbe, C. Is morphoea caused by Borrelia burgdorferi? A review. Br. J. Dermatol. 2000, 142, 636–644. [Google Scholar] [CrossRef]
- Dańczak-Pazdrowska, A.; Polańska, A.; Synakiewicz, J.; Gurgul, E.; Molińska-Glura, M.; Ruchała, M.; Żaba, R.; Adamski, Z. Morphea and antithyroid antibodies. Postep. Dermatol. Allergol. 2018, 35, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Zulian, F.; Vallongo, C.; Woo, P.; Russo, R.; Ruperto, N.; Harper, J.; Espada, G.; Corona, F.; Mukamel, M.; Vesely, R.; et al. Localized scleroderma in childhood is not just a skin disease. Arthritis Rheum. 2005, 52, 2873–2881. [Google Scholar] [CrossRef] [PubMed]
- Lutz, V.; Franc, C.; Bessis, D.; Cosnes, A.; Kluger, N.; Godet, J.; Sauleau, E.; Lipsker, D. High frequency of genital lichen sclerosus in a prospective series of 76 patients with morphea: Toward a better understanding of the spectrum of morphea. Arch. Dermatol. 2012, 148, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Vigneron, C.; Bauer, N.; Waisse, W.; Keller, A.; Pop, M.; Clavier, J.-B.; Salze, P.; Noël, G. Morphée du sein radio-induite: Une complication méconnue. Cancer Radiother. 2014, 18, 80. [Google Scholar] [CrossRef]
- Spalek, M.; Jonska-Gmyrek, J.; Gałecki, J. Radiation-induced morphea—A literature review. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 197–202. [Google Scholar] [CrossRef]
- Alexandrescu, D.T.; Bhagwati, N.S.; Wiernik, P.H. Chemotherapy-induced scleroderma: A pleiomorphic syndrome. Clin. Exp. Dermatol. 2005, 30, 141–145. [Google Scholar] [CrossRef]
- Lacombe, M.; Bedane, C.; Delaumenie, S.; Bernard, P. Nivolumab-induced multiple morphea associated with eosinophilic fasciitis. Eur. J. Dermatol. 2021, 31, 844–846. [Google Scholar] [CrossRef]
- Trattner, A.; David, M. Morphea and the isomorphic response of koebner. Int. J. Dermatol. 1991, 30, 747. [Google Scholar] [CrossRef]
- Toyama, S.; Sato, S.; Asano, Y. Localized scleroderma manifesting with skin lesions associated with mechanical stress. Eur. J. Dermatol. 2019, 29, 439–440. [Google Scholar] [CrossRef]
- Mehrtens, S.H.; Fleming, A.; Shall, L. A rare case of a tattoo-induced morphoea reaction. Clin. Exp. Dermatol. 2019, 44, 467–469. [Google Scholar] [CrossRef]
- Kreuter, A.; Hyun, J.; Stücker, M.; Sommer, A.; Altmeyer, P.; Gambichler, T. A randomized controlled study of low-dose UVA1, medium-dose UVA1, and narrowband UVB phototherapy in the treatment of localized scleroderma. J. Am. Acad. Dermatol. 2006, 54, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Zulian, F.; Culpo, R.; Sperotto, F.; Anton, J.; Avcin, T.; Baildam, E.M.; Boros, C.; Chaitow, J.; Constantin, T.; Kasapcopur, O.; et al. Consensus-based recommendations for the management of juvenile localised scleroderma. Ann. Rheum. Dis. 2019, 78, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Li, S.C.; Torok, K.S.; Pope, E.; Dedeoglu, F.; Hong, S.; Jacobe, H.T.; Rabinovich, C.E.; Laxer, R.M.; Higgins, G.C.; Ferguson, P.J.; et al. Development of consensus treatment plans for juvenile localized scleroderma: A roadmap toward comparative effectiveness studies in juvenile localized scleroderma. Arthritis Care Res. 2012, 64, 1175–1185. [Google Scholar] [CrossRef]
- Constantin, T.; Foeldvari, I.; Pain, C.E.; Pálinkás, A.; Höger, P.; Moll, M.; Nemkova, D.; Weibel, L.; Laczkovszki, M.; Clements, P.; et al. Development of minimum standards of care for juvenile localized scleroderma. Eur. J. Pediatr. 2018, 177, 961–977. [Google Scholar] [CrossRef] [PubMed]
- Careta, M.F.; Romiti, R. Localized scleroderma: Clinical spectrum and therapeutic update. An. Bras. Dermatol. 2015, 90, 62–73. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.; Long, X.; Zhang, M.; Huang, J.; Yu, N.; Xu, J. Supportive Use of Adipose-Derived Stem Cells in Cell-Assisted Lipotransfer for Localized Scleroderma. Plast. Reconstr. Surg. 2018, 141, 1395–1407. [Google Scholar] [CrossRef]
- Strong, A.L.; Adidharma, W.; Brown, O.H.; Cederna, P.S. Fat Grafting Subjectively Improves Facial Skin Elasticity and Hand Function of Scleroderma Patients. Plast. Reconstr. Surg.-Glob. Open 2021, 9, e3373. [Google Scholar] [CrossRef]
- Cardoneanu, A.; Burlui, A.M.; Macovei, L.A.; Bratoiu, I.; Richter, P.; Rezus, E. Targeting Systemic Sclerosis from Pathogenic Mechanisms to Clinical Manifestations: Why IL-6? Biomedicines 2022, 10, 318. [Google Scholar] [CrossRef]
- Kreuter, A.; Hyun, J.; Skrygan, M.; Sommer, A.; Bastian, A.; Altmeyer, P.; Gambichler, T. Ultraviolet A1-induced downregulation of human beta-defensins and interleukin-6 and interleukin-8 correlates with clinical improvement in localized scleroderma. Br. J. Dermatol. 2006, 155, 600–607. [Google Scholar] [CrossRef]
- Preuss, C.V.; Anjum, F. Tocilizumab. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Khanna, D.; Denton, C.P.; Jahreis, A.; van Laar, J.M.; Frech, T.M.; Anderson, M.E.; Baron, M.; Chung, L.; Fierlbeck, G.; Lakshminarayanan, S.; et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): A phase 2, randomised, controlled trial. Lancet 2016, 387, 2630–2640. [Google Scholar] [CrossRef]
- Lythgoe, H.; Baildam, E.; Beresford, M.W.; Cleary, G.; McCann, L.J.; Pain, C.E. Tocilizumab as a potential therapeutic option for children with severe, refractory juvenile localized scleroderma. Rheumatology 2018, 57, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Nocton, J.; Chiu, Y. A Case of Pansclerotic Morphea Treated with Tocilizumab. JAMA Dermatol. 2019, 155, 388–389. [Google Scholar] [CrossRef] [PubMed]
- Martini, G.; Campus, S.; Raffeiner, B.; Boscarol, G.; Meneghel, A.; Zulian, F. Tocilizumab in two children with pansclerotic morphoea: A hopeful therapy for refractory cases? Clin. Exp. Rheumatol. 2017, 35 (Suppl. 106), 211–213. [Google Scholar] [PubMed]
- Lonowski, S.; Goldman, N.; Kassamali, B.; Shahriari, N.; LaChance, A.; Vleugels, R.A. Tocilizumab for refractory morphea in adults: A case series. JAAD Case Rep. 2022, 30, 27–29. [Google Scholar] [CrossRef]
- Aung, W.W.; Wang, C.; Xibei, J.; Horii, M.; Mizumaki, K.; Kano, M.; Okamura, A.; Kobayashi, T.; Matsushita, T. Immunomodulating role of the JAKs inhibitor tofacitinib in a mouse model of bleomycin-induced scleroderma. J. Dermatol. Sci. 2021, 101, 174–184. [Google Scholar] [CrossRef]
- Chakraborty, D.; Šumová, B.; Mallano, T.; Chen, C.-W.; Distler, A.; Bergmann, C.; Ludolph, I.; Horch, R.E.; Gelse, K.; Ramming, A.; et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat. Commun. 2017, 8, 1130. [Google Scholar] [CrossRef]
- Tang, J.; Zheng, W.; Yang, B. P08 Successful treatment of paediatric morphoea with tofacitinib. Br. J. Dermatol. 2023, 188 (Suppl. S4), ljad113.036. [Google Scholar] [CrossRef]
- Damsky, W.; Patel, D.; Garelli, C.J.; Garg, M.; Wang, A.; Dresser, K.; Deng, A.; Harris, J.E.; Richmond, J.; King, B. Jak Inhibition Prevents Bleomycin-Induced Fibrosis in Mice and Is Effective in Patients with Morphea. J. Investig. Dermatol. 2020, 140, 1446–1449.e4. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/health/documents/community-register/2017/20170725138407/anx_138407_pl.pdf (accessed on 14 September 2024).
- Stausbøl-Grøn, B.; Olesen, A.; Deleuran, B.; Deleuran, M. Abatacept is a Promising treatment for patients with disseminated morphea profunda: Presentation of two cases. Acta Derm.-Venereol. 2011, 91, 686–688. [Google Scholar] [CrossRef]
- Fage, S.; Arvesen, K.; Olesen, A. Abatacept Improves Skin-score and Reduces Lesions in Patients with Localized Scleroderma: A Case Series. Acta Derm.-Venereol. 2018, 98, 465–466. [Google Scholar] [CrossRef]
- Li, S.C.; Torok, K.S.; Ishaq, S.S.; Buckley, M.; Edelheit, B.; Ede, K.C.; Liu, C.; Rabinovich, C.E. Preliminary evidence on abatacept safety and efficacy in refractory juvenile localized scleroderma. Rheumatology 2021, 60, 3817–3825. [Google Scholar] [CrossRef] [PubMed]
- Distler, J.H.W.; Jüngel, A.; Huber, L.C.; Schulze-Horsel, U.; Zwerina, J.; Gay, R.E.; Michel, B.A.; Hauser, T.; Schett, G.; Gay, S.; et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. 2007, 56, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Akhmetshina, A.; Venalis, P.; Dees, C.; Busch, N.; Zwerina, J.; Schett, G.; Distler, O.; Distler, J.H.W. Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis Rheum. 2009, 60, 219–224. [Google Scholar] [CrossRef]
- Coelho-Macias, V.; Mendes-Bastos, P.; Assis-Pacheco, F.; Cardoso, J. Imatinib: A novel treatment approach for generalized morphea. Int. J. Dermatol. 2014, 53, 1299–1302. [Google Scholar] [CrossRef] [PubMed]
Localized (inflammatory lesions)
|
Localized (hyperpigmentation lesions)
|
Localized (atrophic lesions)
|
Localized (sclerosis)
|
Linear
|
Deep
|
Generalized
|
Authors | Number of Patients and Type of Morphea | Name of Drug | Prior Systemic/Topical Therapies | Dose of New Drug/or Median | Response and Total Time of Therapy/or Median | Adverse Events |
---|---|---|---|---|---|---|
Lythgoe (2018) [112] | 5 P, age btw 6–13 y Linear morphea | Tocilizumab | MTX—5, MMF—5, ETP—2, CSA—1 | 8 mg/kg for p ≥ 30 kg 12 mg/kg for p < 30 kg 0, 2 and 4 wks, and then at 4-wk intervals | RT—after 6 mth TT—btw 12–25 mth | None |
Lonowski et al. (2022) [115] | 3 F, age btw 41–69 y Linear morphea—1, generalized morphea—2 | Tocilizumab | PDN—2, MTX—2, MMF—1, MPDN—1, IVIG—1, RTX—1 | 162 mg/wk sc—2 8 mg/kg iv—1 | Median response—3 months MT—44.6 mth | Hyperlipidemia—1 |
Zhang et al. (2019) [113] | 1 F, 6 y Pansclerotic morphea | Tocilizumab | MTX, PDN, MPDN, MMF | 300 mg every 4 wks | mLoSSI—22 to 6 PGA—30 to 17 TT—18 mth | None |
Martini et al. (2017) [114] | 1 F, 1 M (children) Pansclerotic morphea | Tocilizumab | MTX—2, PDN—2, MMF—2, MPDN—2, IMB—1 | 8 mg/kg every 4 wks | F—after 18 mth, LoSCAT from 58 to 47 TT—N/A | F—one episode of pneumonia |
M—TT—6 mth, after 30 mth LoSCAT from 57 to 43 | ||||||
Li et al. (2018) [123] | 18 P, mean age 13,4 y (12 F, 6 M) Linear morphea—12, Deep morphea—1, generalized morphea—1, mixed—5 | Abatacept | MTX—17, MMF—16, GKS—18, HCQ—2, IMB—2, TA—2, LNLD—1, Biologics (ADA, INF, Tocilizumab)—1, PUVA—1 | Median—10 mg/kg iv and sc | After 12 mth, 15 (83%) P MT—23.2 mth | Mood and/or behavioral issue—2 |
Fage et al. (2018) [122] | 13 adults (11 F, 2 M) Morphea | Abatacept | N/A | 500 mg < 60 kg or 750 mg > 60 kg iv on days 1, 15, 30 and thereafter every 4–6 wks | RT btw 3 to 32 mth Overall, an improvement/reduction in size of lesions or mRSS/mLoSSI score were observed Total—N/A | Fatigue 1–3 days after infusion, nausea, diarrhea (in some cases with fever) Withholding treatment—2 1-fatigue, tingling and aching sensation 2—colitis ulcerosa |
Stausbøl-Grøn et al. (2011) [121] | 47 y, F disseminated morphea | Abatacept | PCL—2, PDN—2, CSA—2, TA—1, UVA1—1 | 750 mg iv on days 1, 15 and 30, and thereafter every 4–6 wks (20 drug administration) | mRSS—18 to 1 TT-19 mth | 1- Hypertension |
38 y, F Morphea profunda | 500 mg iv on day 1, 15, 30, and thereafter every 4 wks | mRSS—13 to 6 TT—2.5 mth | treatment had to be stopped after 2.5 mth, patient had a breast cancer | |||
Tang et al. (2023) [118] | 6 y, F Linear morphea | Tofacitinib | MTX—1, TA—1, GLC—1, HCQ—1, UVA1—2, TCS—2 | 2 mth on 2.5 mg twice daily, 4 mth on 2.5 mg/d and 2 mth on 2.5 mg/d every other day | mLoSSI—6 to 1 LosDi—7 to 2 TT—8 mth | None |
13 y, M Linear morphea | 2 mth on 5 mg twice daily, 3 mth on 5 mg/d | mLoSSI—7 to 1 LosDi—7 to 2 TT—5 mth | ||||
Damsky et al. (2020) [119] | 54 y, M Generalized morphea | Baricitinib | ECP, PDN | 2 mg daily | Resolution of erythema after 2 mth Improvement in mobility after 6 mth TT—12 mth | None |
Coehlo-Macias et al. (2014) [126] | 50 y, M Generalized morphea with ulceration on the extremities | Imatinib | PTX | 3 mth on 200 mg/d and 9 mth on 300 mg/d | Skin biopsy after 12—dermal thickness from 5 to 4 mm Improvement of joint mobility; left knee maximum extension went from initial 110° to 130° TT—12 mth | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stein, T.; Cieplewicz-Guźla, P.; Iżykowska, K.; Pieniawska, M.; Żaba, R.; Dańczak-Pazdrowska, A.; Polańska, A. What Is New in Morphea—Narrative Review on Molecular Aspects and New Targeted Therapies. J. Clin. Med. 2024, 13, 7134. https://doi.org/10.3390/jcm13237134
Stein T, Cieplewicz-Guźla P, Iżykowska K, Pieniawska M, Żaba R, Dańczak-Pazdrowska A, Polańska A. What Is New in Morphea—Narrative Review on Molecular Aspects and New Targeted Therapies. Journal of Clinical Medicine. 2024; 13(23):7134. https://doi.org/10.3390/jcm13237134
Chicago/Turabian StyleStein, Tomasz, Paulina Cieplewicz-Guźla, Katarzyna Iżykowska, Monika Pieniawska, Ryszard Żaba, Aleksandra Dańczak-Pazdrowska, and Adriana Polańska. 2024. "What Is New in Morphea—Narrative Review on Molecular Aspects and New Targeted Therapies" Journal of Clinical Medicine 13, no. 23: 7134. https://doi.org/10.3390/jcm13237134
APA StyleStein, T., Cieplewicz-Guźla, P., Iżykowska, K., Pieniawska, M., Żaba, R., Dańczak-Pazdrowska, A., & Polańska, A. (2024). What Is New in Morphea—Narrative Review on Molecular Aspects and New Targeted Therapies. Journal of Clinical Medicine, 13(23), 7134. https://doi.org/10.3390/jcm13237134