The Impact of the Coronary Artery Calcium Score on the Clinical Outcomes in Patients with Acute Myocardial Infarction
Abstract
:1. Introduction
2. Methods
2.1. Coronary Artery Calcium Score
2.2. Study Patient
2.3. Definitions
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thrane, P.G.; Olesen, K.K.W.; Thim, T.; Gyldenkerne, C.; Hansen, M.K.; Stodkilde-Jorgensen, N.; Jakobsen, L.; Bodtker Mortensen, M.; Dalby Kristensen, S.; Maeng, M. 10-Year Mortality After ST-Segment Elevation Myocardial Infarction Compared to the General Population. J. Am. Coll. Cardiol. 2024, 83, 2615–2625. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.K.; Waken, R.J.; Wang, F.; Wolfe, J.D.; Robbins, K.; Fanous, E.; Vader, J.M.; Schilling, J.D.; Joynt Maddox, K.E. The Association of the UNOS Heart Allocation Policy Change With Transplant and Left Ventricular Assist Device Access and Outcomes. Am. J. Cardiol. 2023, 204, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D. Epidemiological Features of Cardiovascular Disease in Asia. JACC Asia 2021, 1, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, F.; Butrymovich, V.; Kelbaek, H.; Wachtell, K.; Helqvist, S.; Kastrup, J.; Holmvang, L.; Clemmensen, P.; Engstrom, T.; Grande, P.; et al. Short- and long-term cause of death in patients treated with primary PCI for STEMI. J. Am. Coll. Cardiol. 2014, 64, 2101–2108. [Google Scholar] [CrossRef]
- Klein, F.; Crooijmans, C.; Peters, E.J.; van t‘ Veer, M.; Timmermans, M.J.C.; Henriques, J.P.S.; Verouden, N.J.W.; Kraaijeveld, A.O.; Bunge, J.J.H.; Lipsic, E.; et al. Impact of symptom duration and mechanical circulatory support on prognosis in cardiogenic shock complicating acute myocardial infarction. Neth. Heart J. 2024, 32, 290–297. [Google Scholar] [CrossRef]
- Saito, Y.; Tsujita, K.; Kobayashi, Y. No standard modifiable cardiovascular risk factors in acute myocardial infarction: Prevalence, pathophysiology, and prognosis. Cardiovasc. Interv. Ther. 2024, 39, 403–411. [Google Scholar] [CrossRef]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef]
- Osawa, K.; Nakanishi, R.; Budoff, M. Coronary Artery Calcification. Glob. Heart 2016, 11, 287–293. [Google Scholar] [CrossRef]
- Gaine, S.P.; Blumenthal, R.S.; Sharma, G. Coronary Artery Calcium Score as a Graded Decision Tool. JACC Adv. 2023, 2, 100664. [Google Scholar] [CrossRef]
- Peng, A.W.; Dardari, Z.A.; Blumenthal, R.S.; Dzaye, O.; Obisesan, O.H.; Iftekhar Uddin, S.M.; Nasir, K.; Blankstein, R.; Budoff, M.J.; Bødtker Mortensen, M.; et al. Very High Coronary Artery Calcium (≥1000) and Association With Cardiovascular Disease Events, Non-Cardiovascular Disease Outcomes, and Mortality: Results From MESA. Circulation 2021, 143, 1571–1583. [Google Scholar] [CrossRef]
- Kobayashi, S.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Watanabe, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; Fujita, H. Comparison of door-to-balloon time and in-hospital outcomes in patients with ST-elevation myocardial infarction between before versus after COVID-19 pandemic. Cardiovasc. Interv. Ther. 2022, 37, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Wang, M.; Yang, N.; Luo, X.; Li, W.; Chen, X.; Liu, Y.; Ren, M.; Zhang, X.; Wang, L.; et al. Chest computed tomography for the diagnosis of patients with coronavirus disease 2019 (COVID-19): A rapid review and meta-analysis. Ann. Transl. Med. 2020, 8, 622. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC); American College of Cardiology (ACC); American Heart Association (AHA); et al. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef]
- Sawano, M.; Yamaji, K.; Kohsaka, S.; Inohara, T.; Numasawa, Y.; Ando, H.; Iida, O.; Shinke, T.; Ishii, H.; Amano, T. Contemporary use and trends in percutaneous coronary intervention in Japan: An outline of the J-PCI registry. Cardiovasc. Interv. Ther. 2020, 35, 218–226. [Google Scholar] [CrossRef]
- Kasahara, T.; Sakakura, K.; Hori, N.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Watanabe, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; et al. Comparison of in-hospital outcomes of acute myocardial infarction between patients with cardiogenic shock and with cardiac arrest. Heart Vessels. 2023, 38, 139–146. [Google Scholar] [CrossRef]
- Murakami, T.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Watanabe, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; Fujita, H. Acute Ischemic Stroke and Transient Ischemic Attack in ST-Segment Elevation Myocardial Infarction Patients Who Underwent Primary Percutaneous Coronary Intervention. J. Clin. Med. 2023, 12, 840. [Google Scholar] [CrossRef]
- Aono-Setoguchi, H.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Watanabe, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; Fujita, H. Factors associated with intensive care unit delirium in patients with acute myocardial infarction. Heart Vessels. 2023, 38, 478–487. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Chesebro, J.H.; Knatterud, G.; Roberts, R.; Borer, J.; Cohen, L.S.; Dalen, J.; Dodge, H.T.; Francis, C.K.; Hillis, D.; Ludbrook, P. Thrombolysis in Myocardial Infarction (TIMI) Trial, Phase I: A comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation 1987, 76, 142–154. [Google Scholar] [CrossRef]
- Wayhs, R.; Zelinger, A.; Raggi, P. High coronary artery calcium scores pose an extremely elevated risk for hard events. J. Am. Coll. Cardiol. 2002, 39, 225–230. [Google Scholar] [CrossRef]
- Detrano, R.; Guerci, A.D.; Carr, J.J.; Bild, D.E.; Burke, G.; Folsom, A.R.; Liu, K.; Shea, S.; Szklo, M.; Bluemke, D.A.; et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 2008, 358, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Polonsky, T.S.; McClelland, R.L.; Jorgensen, N.W.; Bild, D.E.; Burke, G.L.; Guerci, A.D.; Greenland, P. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 2010, 303, 1610–1616. [Google Scholar] [CrossRef] [PubMed]
- McClelland, R.L.; Jorgensen, N.W.; Budoff, M.; Blaha, M.J.; Post, W.S.; Kronmal, R.A.; Bild, D.E.; Shea, S.; Liu, K.; Watson, K.E.; et al. 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study). J. Am. Coll. Cardiol. 2015, 66, 1643–1653. [Google Scholar]
- Azour, L.; Kadoch, M.A.; Ward, T.J.; Eber, C.D.; Jacobi, A.H. Estimation of cardiovascular risk on routine chest CT: Ordinal coronary artery calcium scoring as an accurate predictor of Agatston score ranges. J. Cardiovasc. Comput. Tomogr. 2017, 11, 8–15. [Google Scholar] [CrossRef]
- Einstein, A.J.; Johnson, L.L.; Bokhari, S.; Son, J.; Thompson, R.C.; Bateman, T.M.; Hayes, S.W.; Berman, D.S. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J. Am. Coll. Cardiol. 2010, 56, 1914–1921. [Google Scholar] [CrossRef]
- Cheng, Y.; Meng, X.; Gao, H.; Yang, C.; Li, P.; Li, H.; Chatterjee, S.; Rezende, P.C.; Bonnet, M.; Li, H.; et al. Long-term all-cause death prediction by coronary, aortic, and valvular calcification in patients with acute ST-segment elevation myocardial infarction. BMC Cardiovasc. Disord. 2024, 24, 117. [Google Scholar] [CrossRef]
- Groen, R.A.; Jukema, J.W.; van Dijkman, P.R.M.; Timmermans, P.T.; Bax, J.J.; Lamb, H.J.; de Graaf, M.A. Evaluation of Clinical Applicability of Coronary Artery Calcium Assessment on Non-Gated Chest Computed Tomography, Compared With the Classic Agatston Score on Cardiac Computed Tomography. Am. J. Cardiol. 2023, 208, 92–100. [Google Scholar] [CrossRef]
- Ishibashi, S.; Sakakura, K.; Asada, S.; Taniguchi, Y.; Jinnouchi, H.; Tsukui, T.; Watanabe, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; et al. Angiographic Coronary Calcification: A Simple Predictor of Long-Term Clinical Outcomes in Patients with Acute Myocardial Infarction. J. Atheroscler. Thromb. 2023, 30, 990–1001. [Google Scholar] [CrossRef]
- Kawashima, H.; Serruys, P.W.; Hara, H.; Ono, M.; Gao, C.; Wang, R.; Garg, S.; Sharif, F.; de Winter, R.J.; Mack, M.J.; et al. 10-Year All-Cause Mortality Following Percutaneous or Surgical Revascularization in Patients With Heavy Calcification. JACC Cardiovasc. Interv. 2022, 15, 193–204. [Google Scholar] [CrossRef]
- Vliegenthart, R.; Hollander, M.; Breteler, M.M.; van der Kuip, D.A.; Hofman, A.; Oudkerk, M.; Witteman, J.C. Stroke is associated with coronary calcification as detected by electron-beam CT: The Rotterdam Coronary Calcification Study. Stroke. 2002, 33, 462–465. [Google Scholar] [CrossRef]
- Shipe, M.E.; Maiga, A.W.; Deppen, S.A.; Edwards, G.C.; Marmor, H.N.; Pinkerman, R.; Smith, G.T.; Lio, E.; Wright, J.L.; Shah, C.; et al. Preoperative coronary artery calcifications in veterans predict higher all-cause mortality in early-stage lung cancer: A cohort study. J. Thorac. Dis. 2021, 13, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Ohmoto-Sekine, Y.; Yanagibori, R.; Amakawa, K.; Ishihara, M.; Tsuji, H.; Ogawa, K.; Ishimura, R.; Ishiwata, S.; Ohno, M.; Yamaguchi, T.; et al. Prevalence and distribution of coronary calcium in asymptomatic Japanese subjects in lung cancer screening computed tomography. J. Cardiol. 2016, 67, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Qian, H.; Lu, S.; Huang, H.; Wang, J.; Li, F.; Bian, A.; Ye, X.; Yang, G.; Ma, K.; et al. Predictive nomogram model for severe coronary artery calcification in end-stage kidney disease patients. Ren. Fail. 2024, 46, 2365393. [Google Scholar] [CrossRef]
- Bergamaschi, L.; Landi, A.; Maurizi, N.; Pizzi, C.; Leo, L.A.; Arangalage, D.; Iglesias, J.F.; Eeckhout, E.; Schwitter, J.; Valgimigli, M.; et al. Acute Response of the Noninfarcted Myocardium and Surrounding Tissue Assessed by T2 Mapping After STEMI. JACC Cardiovasc. Imaging 2024, 17, 610–621. [Google Scholar] [CrossRef]
- Budoff, M.J.; Shaw, L.J.; Liu, S.T.; Weinstein, S.R.; Mosler, T.P.; Tseng, P.H.; Flores, F.R.; Callister, T.Q.; Raggi, P.; Berman, D.S. Long-term prognosis associated with coronary calcification: Observations from a registry of 25,253 patients. J. Am. Coll. Cardiol. 2007, 49, 1860–1870. [Google Scholar] [CrossRef]
All (n = 548) | High CACS Group (n = 137) | Low–Intermediate CACS Group (n = 411) | p-Value | |
---|---|---|---|---|
Age, years | 72.0 (61.0–79.0) | 77.0 (69.5–81.0) | 70.0 (59.0–78.0) | <0.001 |
Male, n (%) | 424 (77.4) | 105 (76.6) | 319 (75.2) | 0.814 |
Body weight, kg | 63.0 (55.0–71.9) | 60.0 (53.0–68.1) | 64.0 (55.0–73.0) | 0.003 |
Body mass index (kg/m2) | 23.7 (21.3–26.0) (n = 547) | 23.2 (20.8–24.7) (n = 136) | 23.9 (21.4–26.4) | 0.005 |
Comorbidities | ||||
Hypertension, n (%) | 418 (76.3) | 109 (79.6) | 309 (75.2) | 0.297 |
Hyperlipidemia, n (%) | 268 (49.1) (n = 546) | 65 (47.4) | 203 (49.6) (n = 409) | 0.657 |
Diabetes mellitus, n (%) | 222 (40.7) (n = 546) | 66 (48.2) | 156 (38.1) (n = 409) | 0.039 |
Current smoker, n (%) | 190 (34.8) (n = 546) | 35 (25.5) | 155 (37.9) (n = 409) | 0.009 |
Chronic renal failure on hemodialysis, n (%) | 39 (7.1) | 30 (21.9) | 9 (2.2) | <0.001 |
Cardiopulmonary arrest out of hospital, n (%) | 35 (6.4) | 9 (6.6) | 26 (6.3) | 0.920 |
Shock at admission, n (%) | 50 (9.1) | 21 (15.3) | 29 (7.1) | 0.004 |
Killip class | 0.127 | |||
Killip class 1 or 2, n (%) | 412 (75.2) | 95 (69.3) | 317 (77.1) | |
Killip class 3, n (%) | 64 (11.7) | 22 (16.1) | 42 (10.2) | |
Killip class 4, n (%) | 72 (13.1) | 20 (14.6) | 52 (12.7) | |
Region of infarction | 0.109 | |||
Anterior, n (%) | 288 (52.6) | 66 (48.2) | 222 (54.0) | |
Inferior, n (%) | 184 (33.6) | 54 (39.4) | 130 (31.6) | |
Posterior, n (%) | 75 (13.7) | 16 (11.7) | 59 (14.4) | |
Not determined, n (%) | 1 (0.2) | 1 (0.7) | 0 (0.0) | |
Vital signs at admission | ||||
Systolic blood pressure, mmHg | 140 (119–162) | 137 (112–158) | 141 (120–163) | 0.120 |
Diastolic blood pressure, mmHg | 86 (72–100) | 78 (66–96) | 88 (74–102) | <0.001 |
Pulse rate, bpm | 82 (70–98) | 82 (67–100) | 82 (70–98) | 0.620 |
Laboratory data | ||||
Hemoglobin levels, g/dL | 13.7 (12.1–15.0) | 12.5 (11.2–14.1) | 14.1 (12.7–15.2) | <0.001 |
Platelets, ×104/μL | 22.2 (18.4–26.3) | 19.8 (16.3–24.3) | 23.1 (19.2–27.2) | <0.001 |
Serum creatinine, mg/dL | 0.89 (0.71–1.17) | 1.03 (0.75–2.31) | 0.87 (0.70–1.07) | <0.001 |
eGFR, mL/min/1.73 m2 | 62.7 (45.7–79.5) | 51.0 (22.9–73.5) | 64.7 (49.7–80.7) | <0.001 |
Hemoglobin A1c, % | 6.1 (5.7–6.8) (n = 542) | 6.1 (5.8–6.9) (n = 136) | 6.0 (5.7–6.8) (n = 406) | 0.234 |
C-reactive protein, mg/dL | 0.22 (0.09–0.96) (n = 545) | 0.24 (0.11–1.49) (n = 135) | 0.21 (0.09–0.92) (n = 410) | 0.167 |
Brain natriuretic peptide, pg/mL | 138.5 (40.8–537.8) (n = 544) | 369.5 (120.3–973.7) (n = 136) | 97.1 (27.9–367.3) (n = 408) | <0.001 |
Peak creatine kinase, U/L | 890.5 (237.8–2535.5) | 521.0 (164.0–1751.0) | 1100.0 (267.0–2783.0) | <0.001 |
Peak creatine kinase-myocardial band, U/L | 76.0 (14.0–253.3) | 35.0 (11.0–153.0) | 90.0 (17.0–275.0) | 0.001 |
Left ventricular ejection fraction, % | 51.0 (39.5–61.1) (n = 529) | 47.4 (36.6–57.5) (n = 131) | 53.0 (40.5–62.2) (n = 398) | 0.001 |
Medication at admission | ||||
Aspirin, n (%) | 68 (12.6) (n = 539) | 32 (23.5) (n = 136) | 36 (8.9) (n = 403) | <0.001 |
Thienopyridine, n (%) | 33 (6.1) (n = 539) | 18 (13.2) (n = 136) | 15 (3.7) (n = 403) | <0.001 |
Statin, n (%) | 130 (24.1) (n = 539) | 50 (36.8) (n = 136) | 80 (19.9) (n = 403) | <0.001 |
ACE inhibitors or ARBs, n (%) | 200 (37.2) (n = 537) | 63 (46.3) (n = 136) | 137 (34.2) (n = 401) | 0.011 |
Beta-blocker, n (%) | 81 (15.1) (n = 537) | 44 (32.4) (n = 136) | 37 (9.2) (n = 401) | <0.001 |
Calcium channel blocker, n (%) | 199 (37.1) (n = 537) | 60 (44.1) (n = 136) | 139 (34.7) (n = 401) | 0.049 |
Diuretics, n (%) | 110 (20.5) (n = 537) | 51 (37.5) (n = 136) | 59 (14.7) (n = 401) | <0.001 |
Oral antidiabetic, n (%) | 143 (26.5) (n = 539) | 47 (34.6) (n = 136) | 96 (23.8) (n = 403) | 0.014 |
Insulin, n (%) | 28 (5.2) (n = 539) | 11 (8.1) (n = 136) | 17 (4.2) (n = 403) | 0.079 |
Direct oral anticoagulants., n (%) | 21 (3.9) (n = 539) | 9 (6.6) (n = 136) | 12 (3.0) (n = 403) | 0.058 |
Warfarin, n (%) | 4 (0.7) (n = 539) | 3 (2.2) (n = 136) | 1 (0.2) (n = 403) | 0.021 |
All (n = 548) | High CACS Group (n = 137) | Low–Intermediate CACS Group (n = 411) | p-Value | |
---|---|---|---|---|
Number of narrowed coronary arteries | <0.001 | |||
Single, n (%) | 285 (52.0) | 49 (35.8) | 236 (57.4) | |
Double, n (%) | 169 (30.8) | 50 (36.5) | 119 (29.0) | |
Triple, n (%) | 94 (17.2) | 38 (27.7) | 56 (13.6) | |
Infarct-related artery | 0.149 | |||
Left main-left anterior descending artery, n (%) | 290 (52.9) | 66 (48.2) | 224 (54.5) | |
Right coronary artery, n (%) | 183 (33.4) | 55 (40.1) | 128 (31.1) | |
Left circumflex artery, n (%) | 75 (13.7) | 16 (11.7) | 59 (14.4) | |
Bypass graft, n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Not determined, n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
50% ≥ stenosis at left main, n (%) | 52 (9.5) | 23 (16.8) | 29 (7.1) | 0.001 |
First TIMI flow grade | 0.002 | |||
0, n (%) | 211 (38.5) | 34 (24.8) | 177 (43.1) | |
1, n (%) | 37 (6.8) | 12 (8.8) | 25 (6.1) | |
2, n (%) | 90 (16.4) | 25 (18.2) | 65 (15.8) | |
3, n (%) | 210 (38.3) | 66 (48.2) | 144 (35.0) | |
Final TIMI flow grade | 0.824 | |||
0, n (%) | 2 (0.4) | 1 (0.7) | 1 (0.2) | |
1, n (%) | 6 (1.1) | 1 (0.7) | 5 (1.2) | |
2, n (%) | 23 (4.2) | 6 (4.4) | 17 (4.1) | |
3, n (%) | 517 (94.3) | 129 (94.2) | 388 (94.4) | |
CTO in non-culprit arteries, n (%) | 66 (12.0) | 25 (18.2) | 41 (10.0) | 0.010 |
Use of aspiration catheter, n (%) | 29 (5.3) | 5 (3.6) | 24 (5.8) | 0.321 |
Final PCI Procedure | 0.003 | |||
POBA only, n (%) | 19 (3.5) | 6 (4.4) | 13 (3.2) | |
Aspiration only, n (%) | 2 (0.4) | 0 (0.0) | 2 (0.5) | |
Drug-coated balloon, n (%) | 21 (3.8) | 13 (9.5) | 8 (1.9) | |
Bare metal stent, n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Drug-eluting stent, n (%) | 497 (90.7) | 116 (84.7) | 381 (92.7) | |
POBA and aspiration, n (%) | 7 (1.3) | 1 (0.7) | 6 (1.5) | |
Other, n (%) | 2 (0.4) | 1 (0.7) | 1 (0.2) | |
Approach site | <0.001 | |||
Radial artery, n (%) | 431 (78.6) | 84 (61.3) | 347 (84.4) | |
Brachial artery, n (%) | 3 (0.5) | 2 (1.5) | 1 (0.2) | |
Femoral artery, n (%) | 114 (20.8) | 51 (37.2) | 63 (15.3) | |
Guide-Catheter size (Fr) | <0.001 | |||
6Fr, n (%) | 423 (77.2) | 77 (56.2) | 346 (84.2) | |
7Fr, n (%) | 121 (22.1) | 58 (42.3) | 63 (15.3) | |
8Fr, n (%) | 4 (0.7) | 2 (1.5) | 2 (0.5) |
All (n = 548) | High CACS Group (n = 137) | Low–Intermediate CACS Group (n = 411) | p-Value | |
---|---|---|---|---|
MACE, n (%) | 150 (27.4) | 58 (42.3) | 92 (16.8) | <0.001 |
All-cause death, n (%) | 68 (12.4) | 29 (21.2) | 39 (9.5) | <0.001 |
Re-admission for heart failure, n (%) | 32 (5.8) | 13 (9.5) | 19 (4.6) | 0.035 |
Non-fatal MI, n (%) | 34 (6.2) | 8 (5.8) | 26 (6.3) | 0.838 |
Target vessel revascularization, n (%) | 59 (10.8) | 20 (14.6) | 39 (9.5) | 0.095 |
Composite Endpoint | Hazard Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
MACE | |||
Low–intermediate CACS group | Reference | ||
Unadjusted high CACS group | 2.236 | 1.608–3.108 | <0.001 |
Adjusted high CACS group | 1.597 | 1.081–2.358 | 0.019 |
Component Endpoint | Hazard Ratio | 95% Confidence Interval | p-Value |
All-cause death | |||
Low–intermediate CACS group | Reference | ||
Unadjusted high CACS group | 2.420 | 1.496–3.914 | <0.001 |
Adjusted high CACS group | 1.173 | 0.658–2.091 | 0.589 |
Re-admission for heart failure | |||
Low–intermediate CACS group | Reference | ||
Unadjusted high CACS group | 2.451 | 1.209–4.969 | 0.013 |
Adjusted high CACS group | 1.576 | 0.671–3.704 | 0.297 |
Non-fatal MI | |||
Low–intermediate CACS group | Reference | ||
Unadjusted high CACS group | 0.986 | 0.442–2.198 | 0.972 |
Adjusted high CACS group | 0.905 | 0.354–2.315 | 0.835 |
Target vessel revascularization | |||
Low–intermediate CACS group | Reference | ||
Unadjusted high CACS group | 1.723 | 1.005–2.956 | 0.048 |
Adjusted high CACS group | 1.595 | 0.826–3.080 | 0.164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, H.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Yamamoto, K.; Tsukui, T.; Hatori, M.; Kasahara, T.; Watanabe, Y.; Ishibashi, S.; et al. The Impact of the Coronary Artery Calcium Score on the Clinical Outcomes in Patients with Acute Myocardial Infarction. J. Clin. Med. 2024, 13, 7136. https://doi.org/10.3390/jcm13237136
Sato H, Sakakura K, Jinnouchi H, Taniguchi Y, Yamamoto K, Tsukui T, Hatori M, Kasahara T, Watanabe Y, Ishibashi S, et al. The Impact of the Coronary Artery Calcium Score on the Clinical Outcomes in Patients with Acute Myocardial Infarction. Journal of Clinical Medicine. 2024; 13(23):7136. https://doi.org/10.3390/jcm13237136
Chicago/Turabian StyleSato, Hisashi, Kenichi Sakakura, Hiroyuki Jinnouchi, Yousuke Taniguchi, Kei Yamamoto, Takunori Tsukui, Masashi Hatori, Taku Kasahara, Yusuke Watanabe, Shun Ishibashi, and et al. 2024. "The Impact of the Coronary Artery Calcium Score on the Clinical Outcomes in Patients with Acute Myocardial Infarction" Journal of Clinical Medicine 13, no. 23: 7136. https://doi.org/10.3390/jcm13237136
APA StyleSato, H., Sakakura, K., Jinnouchi, H., Taniguchi, Y., Yamamoto, K., Tsukui, T., Hatori, M., Kasahara, T., Watanabe, Y., Ishibashi, S., Seguchi, M., & Fujita, H. (2024). The Impact of the Coronary Artery Calcium Score on the Clinical Outcomes in Patients with Acute Myocardial Infarction. Journal of Clinical Medicine, 13(23), 7136. https://doi.org/10.3390/jcm13237136