Optical Attenuation Coefficient-Based En Face Optical Coherence Tomography Imaging for the Reliable Assessment of the Ellipsoid Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Evaluations
2.3. Image Acquisition
2.4. Image Analysis
2.5. Statistical Analyses
3. Results
3.1. Evaluation of OAC-Based EZ Assessment in Healthy Volunteer Eyes
3.2. Evaluation of OAC-Based EZ Assessment in Diseased Eyes
3.3. OAC-Based EZ En Face Imaging for Various Retinal Disorders
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hood, D.C.; Zhang, X.; Ramachandran, R.; Talamini, C.L.; Raza, A.; Greenberg, J.P.; Sherman, J.; Tsang, S.H.; Birch, D.G. The inner segment/outer segment border seen on optical coherence tomography is less intense in patients with diminished cone function. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9703–9709. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Heitkotter, H.; Carroll, J. Challenges associated with ellipsoid zone intensity measurements using optical coherence tomography. Transl. Vis. Sci. Technol. 2021, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Kessler, L.J.; Auffarth, G.U.; Bagautdinov, D.; Khoramnia, R. Ellipsoid zone integrity and visual acuity changes during diabetic macular edema therapy: A longitudinal study. J. Diabetes Res. 2021, 2021, 8117650. [Google Scholar] [CrossRef]
- Saßmannshausen, M.; Behning, C.; Isselmann, B.; Schmid, M.; Finger, R.P.; Holz, F.G.; Schmitz-Valckenberg, S.; Pfau, M.; MACUSTAR Consortium; Thiele, S. Relative ellipsoid zone reflectivity and its association with disease severity in age-related macular degeneration: A MACUSTAR study report. Sci. Rep. 2022, 12, 14933. [Google Scholar] [CrossRef]
- Rosenfeld, P.J.; Cheng, Y.; Shen, M.; Gregori, G.; Wang, R.K. Unleashing the power of optical attenuation coefficients to facilitate segmentation strategies in OCT imaging of age-related macular degeneration: Perspective. Biomed. Opt. Express 2023, 14, 4947–4963. [Google Scholar] [CrossRef]
- Litts, K.M.; Zhang, Y.; Freund, K.B.; Curcio, C.A. Optical coherence tomography and histology of age-related macular de-generation support mitochondria as reflectivity sources. Retina 2018, 38, 445–461. [Google Scholar] [CrossRef]
- Müller, S.; Charbel Issa, P.; Heeren, T.F.C.; Thiele, S.; Holz, F.G.; Herrmann, P. Macular pigment distribution as prognostic marker for disease progression in macular telangiectasia type 2. Am. J. Ophthalmol. 2018, 194, 163–169. [Google Scholar] [CrossRef]
- Ugwuegbu, O.; Uchida, A.; Singh, R.P.; Beven, L.; Hu, M.; Kaiser, S.; Srivastava, S.K.; Ehlers, J.P. Quantitative assessment of outer retinal layers and ellipsoid zone mapping in hydroxychloroquine retinopathy. Br. J. Ophthalmol. 2019, 103, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, N.; Sarraf, D.; Gunnemann, F.; Sadda, S.R.; Bansal, A.; Berger, A.R.; Wong, D.T.; Kohly, R.P.; Kertes, P.J.; Hillier, R.J.; et al. Longitudinal assessment of ellipsoid zone recovery using en face optical coherence tomography after retinal detachment repair. Am. J. Ophthalmol. 2022, 236, 212–220. [Google Scholar] [CrossRef]
- Scoles, D.; Sulai, Y.N.; Langlo, C.S.; Fishman, G.A.; Curcio, C.A.; Carroll, J.; Dubra, A. In vivo imaging of human cone photoreceptor inner segments. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4244–4251. [Google Scholar] [CrossRef]
- Sampson, D.M.; Alonso-Caneiro, D.; Chew, A.L.; Lamey, T.; McLaren, T.; De Roach, J.; Chen, F.K. Enhanced visualization of subtle outer retinal pathology by en face optical coherence tomography and correlation with multi-modal imaging. PLoS ONE 2016, 11, e0168275. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Moriguchi, Y.; Yeh, S.Y.; Matsumoto, A.; Shibutani, M.; Asao, T.; Mino, T.; Nakanishi, M.; Kubota, A.; Akiba, M. Sensorless astigmatism correction using a variable cross-cylinder for high lateral resolution optical coherence tomography in a human retina. Appl. Opt. 2021, 60, 9553–9559. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Shi, Y.; Zhou, X.; Wang, L.; Zhou, H.; Laiginhas, R.; Zhang, Q.; Cheng, Y.; Shen, M.; de Sisternes, L.; et al. Optical coherence tomography measurements of the retinal pigment epithelium to Bruch membrane thickness around geographic atrophy correlate with growth. Am. J. Ophthalmol. 2022, 236, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, K.A.; Mo, J.; Weda, J.J.; Lemij, H.G.; de Boer, J.F. Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography. Biomed. Opt. Express 2013, 5, 322–337. [Google Scholar] [CrossRef]
- Wang, Y.X.; Pan, Z.; Xue, C.C.; Xie, H.; Wu, X.; Jonas, J.B. Macular outer nuclear layer, ellipsoid zone and outer photoreceptor segment band thickness, axial length and other determinants. Sci. Rep. 2023, 13, 5386. [Google Scholar] [CrossRef]
- Shreyamsha Kumar, B.K. Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 2013, 7, 1211–1227. [Google Scholar] [CrossRef]
- Phansalkar, N.; More, S.; Sabale, A.; Joshi, M. Adaptive local thresholding for detection of nuclei in diversity stained cytology images. In Proceedings of the ICCSP 2011—2011 International Conference on Communications and Signal Processing, Kerala, India, 10–12 February 2011; pp. 218–220. [Google Scholar] [CrossRef]
- Chu, Z.; Cheng, Y.; Zhang, Q.; Zhou, H.; Dai, Y.; Shi, Y.; Gregori, G.; Rosenfeld, P.J.; Wang, R.K. Quantification of choriocapillaris with Phansalkar local thresholding: Pitfalls to avoid. Am. J. Ophthalmol. 2020, 213, 161–176. [Google Scholar] [CrossRef]
- Mehta, N.; Liu, K.; Alibhai, A.Y.; Gendelman, I.; Braun, P.X.; Ishibazawa, A.; Sorour, O.; Duker, J.S.; Waheed, N.K. Impact of binarization thresholding and brightness/contrast adjustment methodology on optical coherence tomography angiography image quantification. Am. J. Ophthalmol. 2019, 205, 54–65. [Google Scholar] [CrossRef]
- Thomseth, V.M.; Lindtjørn, B.; Ushakova, A.; Forsaa, V.A. Long-term changes in visual function and en face optical coherence tomography findings in fovea-off retinal detachment: A 2-year prospective study. Retina 2023, 43, 330–337. [Google Scholar] [CrossRef]
- Sun, L.W.; Johnson, R.D.; Langlo, C.S.; Cooper, R.F.; Razeen, M.M.; Russillo, M.C.; Dubra, A.; Connor, T.B., Jr.; Han, D.P.; Pennesi, M.E.; et al. Assessing photoreceptor structure in retinitis pigmentosa and Usher syndrome. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2428–2442. [Google Scholar] [CrossRef]
- Stiles, W.S.; Crawford, B.H. The luminous efficiency of rays entering the eye pupil as different points. Proc. R. Soc. Lond. B 1933, 112, 428–450. [Google Scholar] [CrossRef]
- Paques, M.; Rossant, F.; Finocchio, L.; Grieve, K.; Sahel, J.A.; Pedinielli, A.; Mrejen, S. Attenuation outer retinal bands on optical coherence tomography following macular edema: A possible manifestation of photoreceptor misalignment. Retina 2020, 40, 2232–2239. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.M.; Jia, Y.; Johnson, A.J.; Antony, B.J.; McDonald, H.R.; Johnson, R.N.; Lujan, B.J. Directional reflectivity of the ellipsoid zone in dry age-related macular degeneration. Ophthalmic Surg. Lasers Imaging Retin. 2021, 52, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Putnam, N.M.; Hammer, D.X.; Zhang, Y.; Merino, D.; Roorda, A. Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy. Opt. Express 2010, 18, 24902–24916. [Google Scholar] [CrossRef] [PubMed]
- Reumueller, A.; Schmidt-Erfurth, U.; Salas, M.; Sacu, S.; Drexler, W.; Pircher, M.; Pollreisz, A. Three-dimensional adaptive optics-assisted visualization of photoreceptors in healthy and pathologically aged eyes. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1144–1155. [Google Scholar] [CrossRef]
- Gong, P.; Almasian, M.; van Soest, G.; de Bruin, D.; van Leeuwen, T.; Sampson, D.; Faber, D. Parametric imaging of attenuation by optical coherence tomography: Review of models, methods, and clinical translation. J. Biomed. Opt. 2020, 25, 040901. [Google Scholar] [CrossRef]
- Kübler, J.; Zoutenbier, V.S.; Buist, G.; Fischer, J.; Amelink, A.; de Boer, J.F. Confocal corrected attenuation coefficient imaging in phantoms and in vivo using chromatic focal shift calibration. Biomed. Opt. Express 2023, 14, 5282–5297. [Google Scholar] [CrossRef]
Mean (%) | SD | Min | Max | CV | |
OAC(+) | 96.2 | 5.6 | 77.2 | 100 | 5.8 |
OAC(−) | 89.3 | 18.8 | 0.5 | 99.8 | 21.0 |
Mean difference | SE | 95% CI | p-value 1 | p-value 2 | |
6.9 | 3.2 | [0.5, 13.3] | 0.036 | 0.005 |
Mean (%) | SD | Min | Max | ||
OAC(+) | 60.1 | 18.2 | 18.2 | 90.5 | |
OAC(−) | 91.0 | 12.2 | 59.1 | 100 | |
Mean difference | SE | 95% CI | p-value 1 | p-value 2 | |
−31.0 | 4.1 | [−39.5, −22.5] | <0.0001 | <0.0001 |
Pt | Diagnosis | Sex | Age | Eye | BCVA | Black Area (%) | Therapeutic Intervention |
---|---|---|---|---|---|---|---|
1 | Bietti crystalline chorioretinal dystrophy | M | 62 | OS | 20/50 | 99.6 | None |
2 | Rod–cone dystrophy | F | 43 | OD | 20/50 | 92.4 | None |
3 | Macular hole | M | 74 | OS | 20/100 | 76.4 | 20 days after vitrectomy |
4 | Chronic central serous chorioretinopathy | M | 46 | OS | 20/25 | 54.9 | 31 months after half-dose PDT |
5 | Occult macular dystrophy | M | 79 | OS | 20/100 | 41.6 | None |
6 | Diabetic retinopathy | F | 59 | OD | 20/32 | 27.5 | After panretinal photocoagulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakai, H.; Kuji, R.; Moriguchi, Y.; Yamashita, S.; Takamori, A.; Tamura, M.; Mino, T.; Akiba, M.; Enaida, H. Optical Attenuation Coefficient-Based En Face Optical Coherence Tomography Imaging for the Reliable Assessment of the Ellipsoid Zone. J. Clin. Med. 2024, 13, 7140. https://doi.org/10.3390/jcm13237140
Sakai H, Kuji R, Moriguchi Y, Yamashita S, Takamori A, Tamura M, Mino T, Akiba M, Enaida H. Optical Attenuation Coefficient-Based En Face Optical Coherence Tomography Imaging for the Reliable Assessment of the Ellipsoid Zone. Journal of Clinical Medicine. 2024; 13(23):7140. https://doi.org/10.3390/jcm13237140
Chicago/Turabian StyleSakai, Hiroaki, Riku Kuji, Yoshikiyo Moriguchi, Shoko Yamashita, Ayako Takamori, Masato Tamura, Toshihiro Mino, Masahiro Akiba, and Hiroshi Enaida. 2024. "Optical Attenuation Coefficient-Based En Face Optical Coherence Tomography Imaging for the Reliable Assessment of the Ellipsoid Zone" Journal of Clinical Medicine 13, no. 23: 7140. https://doi.org/10.3390/jcm13237140
APA StyleSakai, H., Kuji, R., Moriguchi, Y., Yamashita, S., Takamori, A., Tamura, M., Mino, T., Akiba, M., & Enaida, H. (2024). Optical Attenuation Coefficient-Based En Face Optical Coherence Tomography Imaging for the Reliable Assessment of the Ellipsoid Zone. Journal of Clinical Medicine, 13(23), 7140. https://doi.org/10.3390/jcm13237140