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Abstract: Thyroid cancer (TC) remains the most common cancer in endocrinology. Differentiated
thyroid cancer (DTC), the most common type of TC, generally has a favorable outlook with con-
ventional treatment, which typically includes surgery along with radioiodine (RAI) therapy and
thyroid-stimulating hormone (TSH) suppression through thyroid hormone therapy. However, a small
subset of patients (less than 5%) develop resistance to RAI. This resistance occurs due to the loss of
Na/I symporter (NIS) activity, which is crucial for iodine absorption in thyroid cells. The decline
in NIS activity appears to be due to gene modifications, reconfigurations with irregular stimulation
of signaling pathways such as MAPK and PI3K/Akt pathways. These molecular changes lead to a
diminished ability of DTC cells to concentrate iodine, which makes RAI therapy ineffective. As a
consequence, patients with radioiodine-refractory DTC require alternative treatments. Therapy with
tyrosine kinase inhibitors (TKIs) has emerged as the primary treatment option to inhibit proliferation
and growth of RAIR-DTC, targeting the pathways responsible for tumor progression. In this article,
we analyze molecular processes responsible for RAI resistance and explore both conventional and
emerging therapeutic strategies for managing RAIR-DTC, aiming to improve patient outcomes.

Keywords: differentiated thyroid cancer; RAIR-DTC; NIS; signal pathways; tyrosine kinase inhibitors;
surgery; iodine therapy

1. Introduction

Thyroid cancer (TC) is the most common endocrine tumor, and in most cases it is a
differentiated thyroid cancer (DTC) [1,2]. Less than 5% of the subjects with poorly DTC
have resistance to radioactive iodine therapy; thus, poor prediction is found, with an
average life expectancy of 3–5 years. A multidisciplinary approach is needed to establish a
personalized strategy [3,4].

The most prevalent forms of TC are papillary and follicular, making up over 90%
of cases and collectively classified as DTCs [5]. These DTCs are usually slow-growing
and have a favorable prognosis, with survival lasting 20 years or more after standard
treatment [6,7].
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For most patients with DTC, standard treatment—typically involving surgery followed
by radioiodine (RAI) ablation, risk-adjusted monitoring, and thyroid-stimulating hormone
(TSH) suppression treatment—is generally effective [8]. Nevertheless, local recurrence and
distant metastases can occur in approximately 20% and 10% of patients, respectively, within
the first decade after surgery [6]. Traditional treatment options for such cases include
repeated radioiodine treatment, surgical treatment of metastases, and external radiation.
Despite these interventions, about two-thirds of DTC cases eventually become resistant to
RAI therapy, which worsens prognosis and life expectancy [1]. Once resistance develops,
the survival rate at 10 years drops to about 20% [9].

In recent years, progress in genome sequencing has greatly improved our compre-
hension of the molecular pathways behind TC [3]. Most of the TC in this subgroup show
alterations in the MAPK and PI3K/mTOR/Akt signal pathways, which are essential for
regulating cell growth and division by transmitting signals from the cell membrane to the
nucleus [10,11].

The excessive activation of the MAPK pathway plays a key role in the onset of papillary
TC (PTC), often resulting from base substitutions in the BRAF oncogene. BRAF, part of
the RAF family of serine/threonine kinases that is downstream of RAS, is commonly
altered in PTC, associated with mutation rates reported between 29% and 83% [12–15]. This
mutation triggers transcription factors that drive processes like cell expansion, maturation,
cell division, and programmed cell death. While various pathogenic BRAF variants were
identified, the BRAFV600E mutation is the most common in classic PTC cases [16]. Research
has linked this variant to more aggressive disease characteristics, such as metastasis,
invasion, and recurrence [17]. BRAFV600E mutation also promotes modulating TGF-β
production, which suppresses sodium iodide symporter (NIS) expression, resulting in
resistance to RAI therapy [18].

Similarly, stimulation of PI3K/mTOR/Akt signaling cascade is crucial during follicular
TC (FTC) development. This pathway is activated due to mutations in the RAS, PIK3CA,
and AKT1 oncogenes or due to the loss of function of the PTEN oncogene, which normally
plays the part of a negative regulator. RAS pathogenic variants, which drive both MAPK
and PI3K-Akt signaling cascades, are commonly observed in FTC cases (between 28 and
68%), as well as in as many as 43% of the follicular-variant PTCs and 47% of non-invasive
follicular-variant PTCs [19,20]. However, RAS pathogenic variants alone appear to have a
relatively limited effect on clinical outcomes in TC [21].

As TC advances and loses differentiation, transforming into poorly DTC or anaplastic
thyroid cancer (ATC), additional pathogenic variants—such as those affecting the p53
and Wnt/β-catenin pathways—become involved. Recent research has also discovered
alterations in TERT promoter across every single TC variant, more frequently found in
aggressive and poorly DTC, underscoring their role in driving disease development [22–24].

As our understanding of the genetics of malignant thyroid disease advances, treatment
approaches have evolved from concentrating solely on tumor type and histological features
to targeting specific genetic alterations. This shift has resulted in the creation of new
targeted therapies aimed at patients with more aggressive forms of the disease [25,26].

Objective

This review outlines the molecular process behind TC that contributes to refractoriness
to RAI in DTC, as well as the modern diagnostic and treatment management strategies.
We highlight the specific genetic alterations associated with this resistance and examine
both conventional and emerging therapeutic approaches, including targeted therapies
and innovative strategies to address treatment challenges. Additionally, we discuss the
importance of precision medicine in optimizing patient outcomes and enhancing the
effectiveness of existing treatment options.
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2. Materials and Methods

An exhaustive search was made using PubMed, Scopus, and Google Scholar to identify
recent studies and guidelines focused on the molecular mechanisms and the management
of diagnosis and treatment for radioiodine-refractory DTC (RAIR-DTC). The search is a
narrative comprehensive review and targeted English-language publications from 1998 to
2024, with a focus on both experimental and clinical trials. The search strategy incorporated
key terms such as “differentiated thyroid cancer”, “RAIR-DTC”, “NIS”, “signal pathways”,
“tyrosine kinase inhibitors”, “surgery”, and “iodine therapy”.

Table 1 lists the inclusion and exclusion criteria that formed the basis of this review.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria

Original studies

Topic: gene data, radiodiodine-refractory

Published in PubMed

Timeframe of search: 1998–2024

Exclusion criteria

Non-human data

Case report, case series

Editorial

Non-English paper

Pediatric data

Selective inhibitor of RET

Selective inhibitor of NTRK

RAI-avid

MTC
Abbreviations: RAI-avid—radioactive iodine-avid; MTC—medullary thyroid carcinoma.

3. Pathogenesis of RAIR-DTC

Resistance to RAI occurs as a result of losing thyroid differentiation. Dedifferentiation
is a consequence of damage to the NIS. Part of SLC5A5, NIS is a basolateral membrane
glycoprotein in follicular epithelial cells. Iodine, as a necessary component in the follic-
ular synthesis of thyroid hormones, enters the cell actively through NIS. Normally, NIS
transcription begins when TSH binds with the TSH receptor and the cAMP pathway is
immediately initiated. Then, cAMP enhances some activating pathways that contribute to
NIS upstream enhances (NUE) stimulation. Thus, this stimulation of NUE is performed
either in a PKA-dependent or PKA-non-dependent manner. For the case of the independent
PKA pathway, Paired box gene-8 (PAX8) is activated using Ref-1, thus linking to NUE. This
mechanism has a key role in the process of follicular cell differentiation. Regarding the
PKA-dependent route, aAMP-response element modulator (CREM) amplifies the NUE
function [27–29].

The decrease in the NIS signal, which is responsible for resistance to RAI, appears as
a result of modulation of signaling pathways, chromosomal rearrangements, or aberrant
gene methylation [27,29,30].

3.1. Molecular Genetic Characterisation
3.1.1. BRAF Pathogenic Variant and Rearrangement

BRAF, which is a proto-oncogene belonging to a family of serine/threonine kinases,
has fundamental importance of MAPKKK in the MAPK signaling cascade [30]. T1799A
point genetic alteration located in exon 15 is one of the most common mutations in the
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BRAF gene [31]. This missense mutation leads to a change in B-raf protein residue 600,
replacing glutamic acid with valine (V600E) and the persistent serine/threonine kinase
function that damages the suppression loop. As a result, BRAFV600E could initiate itself and
also the MAPK signaling cascade [30,32].

Undoubtedly, BRAFV600E remains the most common genetic mutation in thyroid can-
cers, being described in more than half of the DTCs [27]. According to clinical studies,
patients with PTC with BRAFV600E would have good prognoses. The synergistic action
of BRAFV600E with another gene mutation increases the aggressiveness. Studies suggest
that patients with PTC and BRAFV600E pathogenic variant develop aggressive pathological
features, high risk of recurrence, and lack of RAI capture. The co-association of BRAFV600E

and CYP2S1 adversely affects PTC. The presentation of CYP2S1 is controlled by the MAPK
signaling pathway mediated by BRAFV600E with the help of the AHR-dependent cascade.
The AHR/CYP2S1 feedback mechanism increases the impact of mutations on BRAFV600E.
Moreover, the BRAFV600E proto-oncogene can be connected with Wilm tumor gene1 (WT1),
which has a function in transcription of a gene that is important for cell viability, differenti-
ation, as well as proliferation [30,33,34].

BRAF fusion is an additional critical factor that determines TC progression. According
to a study conducted on 65 Ukrainian-American individuals with PTC subjected to the
effects of Chernobyl radiation, several alterations in MACF-BRAF, MBP-BRAF, and POR-
BRAF were discovered through next-generation sequencing (NGS) and RNA sequencing.
These may be responsible for the evolution of TC with radiation exposure [35].

3.1.2. NTRK Gene Fusion

NTRK (such as NTRK1, NTRK2, and NTRK3), is responsible for encoding tropomyosin
receptor kinase (TRK) fusion proteins [30,36,37]. NTRK fusion determines carcinogenic
effect in numerous tumors in both mature individuals and juveniles. Patients with DTC
and NTRK gene fusion have a higher chance of distant metastasis as well as RAI resistance
than those with DTC and BRAF or RAS pathogenic variants. Sequencing of tumor DNA
and RNA, and profiling of plasma cell-free DNA are used to detect these fusions [30,36,37].

3.1.3. TERT Promoter Mutation

TERT, a ribonucleoprotein polymerase, is capable of lengthening telomeres upon
activation. TERT reactivation that is present in many cancers is caused by the alteration
of the TERT promoter (TERTp). TERTp is linked to RAI resistance. Several publications
have shown that patients with simultaneously associated TERT and BRAFV600E mutations
do not respond to RAI therapy in contrast to patients with only BRAFV600E pathogenic
variant [30,38–41].

3.1.4. RAS Mutation

MAPK and PI3K cascades are activated by RAS. Proto-oncogenes are represented by
NRAS, HRAS, and KRAS. Among them, the most common RAS genetic alteration remains
NRAS codon 61 genetic alteration, proceeding with HRAS codon 61, KRAS codon 12/13,
and KRAS codon 61. The association between RAS genetic alteration and BRAF mutation
or RET/PTC rearrangement provides a negative prognosis [30,42,43].

3.1.5. ALK Gene Mutation and Fusion

ALK gene is known to be a partner in a genetic fusion of t (2;5) chromosome transloca-
tion in anaplastic large cell lymphoma. The components of the ALK membrane-binding
receptor are represented by extracellular receptor-binding domain, a transmembrane re-
gion and an intracellular kinase domain. The mutation or ALK gene fusion causes the
spontaneous activation of ALK leading to the stimulation of MAPK, PI3K-AKT, CRK-like
proto-oncogene, CRKL-C3G, MEKK2/3-MEK5-ERK5, and JAK-STAT cascades [30,44,45].

Fusion of ALK, which is rare in PTC, was found in thyroid carcinoma through RNA
sequencing analysis. Furthermore, a correlation was observed between ALK fusion and
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aggressive thyroid carcinoma. The most common fusion is represented by ALK and STRN
gene. It was found that STRN-ALK dimerization leads to ALK kinase activation. Thus,
targeted therapies on ALK fusion are being tried. A novel ALK gene fusion, CCD149-ALK,
was reported using NGS in a woman with RAIR-DTC with disseminated metastasis [30,44,45].

3.1.6. RET Rearrangement

RET rearrangement is situated on the long arm of chromosome 10 (10q11.2) and is
found in 20% of PTC. It is responsible for encoding TKR of GFL. While RET normally con-
tributes to the formation of the kidney and enteric nervous systems during embryogenesis,
various factors including ionizing radiation or replication-related stress in DNA fragile sites
can lead to DSBs. These breaks can cause RET gene fusion, maintaining the kinase domain,
which then activates RET protein aberrantly. This activation promotes cell proliferation,
differentiation, and development through downstream signaling pathways. Importantly,
RET fusion also affects the production of thyroid cell-specific genes. Consequently, RET
fusion serves as a carcinogen in PTC, non-small cell lung cancer, and various other ma-
lignancies. RET/PTC1 and RET/PTC3 rearrangements are the most frequent RET/PTC
rearrangements [30,46–52].

3.1.7. PAX8/PPARγ

PAX8, which is a component of the transcription factors family, plays a role in pro-
moting the activation of numerous thyroid-specific genes within mature thyroid cells
through binding to their promoters. These genes include those that code for thyroglobulin,
thyroid peroxidase, and NIS. On the other hand, Peroxisome Proliferator-Activated Recep-
tor Gamma (PPARγ), part of the nuclear receptor group of transcription factors, governs
systemic fat metabolism and insulin responsiveness [30,53].

The combination of PAX8 and PPARγ, known as PAX8/PPARγ rearrangement, arises
from a relocation between chromosome regions 2q13 and 3p25. The combination results in
the creation of a fusion transcript that codes for PPFP. In addition, PPFP is found in around
30–35% of FTCs and PTCs [30,53].

Functioning as a cancer-associated protein, PPFP can promote cell proliferation, inhibit
cell death, as well as enhance DNA replication in the G0/G1 quiescent phase. Notably,
the expression of PPFP in human thyroid cancer cell cultures modulates the regulation of
thyroid-specific genes, including SLC5A5, TPO, TG, and TSHR, that are regulated through
PAX8 to different levels. Dysregulation of these PAX8 target sequences as well as their
associated pathways is believed to underlie the carcinogenic effects of PPFP [30,53].

3.1.8. SWI/SNF Complex Alteration

SWI/SNF chromatin remodeling complex alteration is a highly conserved molecular
complex comprising 10–15 subunits. It associates with histones and transcription regulators
and is categorized into BAF, PBAF, and ncBAF complexes. While these complexes contain
shared subunits like SMARCC1/2 and SMARCD1/2/3, they additionally possess specific
subunits like ARID1A or ARID1B [30,54,55].

Gene mutations leading to SWI/SNF complex deletion result in decreased chromatin
accessibility, thereby weakening the regulation of thyroid-specific transcription factors (TF)
such as Foxe1, Nkx2–1, and PAX8, crucial for iodization. Deletion of specific subunits like
ARID1A, ARID2, or SMARCB1 has been linked to the progression of BRAFV600E-driven
mouse TC. Furthermore, absence of the SWI/SNF complex can counteract the treatment
efficacy of MAPK blockers and re-differentiation treatments [30,54,55].

3.2. Regulation of Signaling Pathways
3.2.1. TSHR Pathway Activation

TSH regulates the regulation of NIS within thyroid follicular cells. TSH links to its
receptor (TSHR), a glycoprotein receptor belonging to the G protein-coupled receptor
(GPCR) class, located on the cell surface. Stimulation of TSHR through TSH or other
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signaling factors triggers various G proteins and subsequent pathways, influencing thyroid
cell proliferation and the synthesis and hormonal secretion from the thyroid [30,56–59].

The relationship between TSH and TC cells operates on two levels. From one perspec-
tive, it aids therapy by activating pathways like cAMP, promoting activation of thyroid-
specific genes like NIS. On the other hand, TSH can stimulate cancer cell growth through
pathways like PI3K and MAPK. Moreover, the TSH-TSHR signaling pathway can facilitate
immune evasion by tumor cells by inducing expression of tumor PD-L1, suppressing T cell
killing effects [30,56–59].

3.2.2. MAPK Pathway

The MAPK pathway, crucial for regulating thyroid-specific gene expression, is fre-
quently implicated in TC development. The MAPK family comprises ERK, JNK/SAPK,
and p38 MAPK, facilitating signal transmission from the extracellular environment to intra-
cellular targets [30,59–63]. In TC, aberrant MAPK pathway activation governs cell division,
expansion, and viability. Notably, MAPK activation promotes dedifferentiation of DTC,
marked by reduced expression of thyroid hormone production genes including NIS, TPO,
and TG, often via downregulation of histone acetylation in NIS gene promoters [30,59–63].

The predominant driver of MAPK pathway perturbation observed in RAIR-DTC is the
BRAFV600E pathogenic variant, complemented by a spectrum of BRAF genetic alterations,
RAS genetic alterations, as well as mutations in the MEK gene [29,30,59–63] (Figure 1).
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3.2.3. PI3K Cascade

The PI3K signaling pathway contributes significantly to the development of RAIR-
DTC, governing critical cellular processes including cellular growth, differentiation, and
metastasis in TC. Comprising PI3K, AKT, and mTOR, activation of this pathway, along with
the cAMP-independent pathway, counteracts the cAMP-dependent pathway’s promotion
of thyroid-specific protein expression like NIS [30,64,65].
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Besides the RAS genetic alteration and phospholipase C activation, IGF-2 has a major
impact on PI3K initiation. RAIR-DTC cells exhibit high expression levels of IGF-2 and its
receptor IR-A. While there are no specific inhibitors for IR-A, dynamic interaction between
insulin/IGF systems and discoid-domain-containing receptor (DDRs) has been found.
Inhibition or decrease in DDR1 expression notably reduces IR-A and IGF-2 production,
causing an elevation in thyroid-related gene expression [30,66,67].

AKT activation drives mTOR signaling and simultaneously alters RUNX2 by phos-
phorylation. RUNX2 modulates various cellular processes including chondrocyte prolif-
eration, maturation, as well as hypertrophy in endochondral ossification. Furthermore,
it governs gene activity implicated in TC progression, infiltration, and metastasis. Exces-
sive AKT activity leads to increased expression patterns and transcriptional processes of
RUNX2, subsequently amplifying PI3K, AKT, and mTOR expression. This interplay be-
tween PI3K/AKT/mTOR cascade and RUNX2 significantly drives cancer growth. MAPK4,
a distinct MAPK, can activate AKT through binding to it directly and promoting phospho-
rylation at threonine 308. Additionally, MAPK4 activates mTORC2, facilitating serine 473
phosphorylation of AKT. Hence, targeting MAPK4 may provide a novel treatment option
for RAIR-DTC [30,68–71].

The mTOR protein, situated under the influence of the PI3K/AKT signaling cascade,
works as a serine-threonine protein kinase crucial for regulating various cellular activities
such as metabolism, cell division, and longevity, alongside modulating gene expression of
key thyroid factors including NIS, essential for RAI uptake. Research has shown that sup-
pression of mTOR with an mTOR inhibitor enhances iodine absorption in TSH-stimulated
PCCL3-derived cells from thyroid. However, the impact of rapamycin on iodine uptake
appears to be less pronounced compared to inhibition of PI3K, suggesting that mTOR
regulates both cell survival and the iodine absorption capacity of thyroid cells [30,72].

3.2.4. TGF-β Pathway

Aberrant TGF-β signaling is linked to multiple diseases, particularly cancer. In human
thyroid malignancies, TGF-β is upregulated and serves as a strong promoter in tumor
formation and metastasis. In PTC, the BRAFV600E alteration stimulates active TGF-β1, initi-
ating TGF-β-induced autocrine loop. This mutation also increases levels of both total and
phosphorylated Smad3. Initiation of the TGF-β/Smad signaling pathway enhances NOX4
gene expression, which, in turn, forms a heterodimeric complex with p22phox, a regulatory
subunit of NOX. This complex regulates the TGF-β/Smad3 cascade by generating ROS.
ROS generated by NOX4 act as second messengers, suppressing the progression of TC,
especially the expression of NIS, while promoting their proliferation and metastasis. Thus,
BRAFV600E-induced RAIR-DTC is significantly influenced by the TGF-β/Smad signaling
pathway [30,73,74].

3.2.5. Wnt/β-Catenin Pathway

Wnt glycoproteins release the transcription factor β-catenin from a protein complex
by interacting with Frizzled and LDL receptor-related proteins. This prevents β-catenin’s
phosphorylation and degradation, allowing it to enter the nucleus and regulate gene expres-
sion by binding to T cell factor (TCF) [30,75,76]. The Wnt/β-catenin pathway significantly
influences TC growth and differentiation. In cancer stem cells (CSCs), β-catenin is up-
regulated, enhancing CSC self-renewal and proliferation, which drives TC progression.
Increased lysine-specific histone demethylase 1A (LSD1) in CSCs upregulates β-catenin
by downregulating adenomatous polyposis coli 2 (APC2) and Dickkopf-related protein 1
(DKK1), both of which normally promote β-catenin degradation. This pathway activation
increases CSCs and contributes to TC’s chemotherapy resistance [30,77,78].

The Wnt/β-catenin signaling supports TC cell proliferation with BRAFV600E mutations.
Knocking out β-catenin slows tumor growth and reduces papillary structures. Additionally,
treatment with PKF118-310, a β-catenin-specific inhibitor, enhances the responsiveness
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of these cancer cells to the BRAFV600E inhibitor PLX4720, leading to substantial growth
arrest, cell apoptosis in vitro, and tumor regression and differentiation in vivo [30,79,80].

The β-catenin pathway’s activation can cause disrupted membrane targeting of NIS,
contributing significantly to 131I resistance in thyroid cancer cells [30,81].

3.2.6. Notch-Related Pathway

The Notch receptor functions as a multifunctional transmembrane protein and is
involved in regulating cell maturation, development, replication, and survival. Humans
possess four Notch receptors (Notch1-4) and five ligands (δ-like 1, 3, 4, and Jagged-1, -2).
When a Notch receptor interacts with its ligand, it undergoes cleavage by the γ-secretase
protease complex, which releases a cytoplasmic segment that moves into the nucleus to
modulate gene transcription [30,82–84].

In DTC, the levels of Notch receptors and other components of the Notch signaling
pathway are markedly reduced in comparison to normal thyroid tissue. Increased expres-
sion of Notch receptors in DTC can induce them to regain differentiation by enhancing
thyroid-specific genes such as NIS and TPO. Additionally, Notch can reduce cancer cell
growth and proliferation rates. Therefore, Notch acts as a crucial controller of thyroid-
specific genes and a tumor suppressor in DTC cells [30,82,85–87].

3.3. Modulation of microRNAs

MicroRNAs (miRNAs) are small, unpaired noncoding RNAs that influence gene ex-
pression by attaching to the 3′-untranslated region (3′-UTR) of target mRNAs, disrupting
their integrity and inhibiting molecular translation [30,88].

Several miRNAs, including miRNA-146b-3p as well as miRNA-339, regulate NIS expres-
sion in PTCs by binding to NIS mRNA 3′-UTR. MiRNAs such as miRNA-339-5p and miRNA-
195 also impact RAI uptake in PTCs, with miRNA-339-5p being moderately increased and
miRNA-195 significantly decreased in these cancers. Additionally, miRNA-146b-3p disrupts
RAI uptake by binding to PAX8 and NIS mRNA, contributing to cancer cell proliferation and
migration while inhibiting apoptosis. Further miRNAs, such as miRNA-106a, miRNA-let-7,
and miRNA-875, reduce NIS expression or affect its membrane localization, promoting
dedifferentiation in TC. Targeting these miRNAs to improve RAI uptake and NIS expression
offers a potential therapeutic strategy for TC [30,88–96].

4. Management of RAIR-DTC
4.1. Monitoring

RAIR-DTC is asymptomatic for years. Thus, a careful clinical and laboratory assess-
ment should be performed. Every patient with metastatic TC depends on thyroid function
regulation to keep the TSH value suppressed. Therefore, laboratory evaluations ought to
involve TSH, fT4, and calcium level post-surgery hypoparathyroidism every 6–12 months.
Tumor burden can be evaluated using Tg levels, knowing that Tg doubling time under
one year indicates negative predicted outcome and suggests rapid progression of the
disease [1,27,97–100].

Regular imaging every 6 to 12 months using CT scanning and implementing RECIST
criteria helps to evaluate the growth of neoplastic mass. Additionally, 18-FDG-PET/CT
scanning may provide prognostic indicators in advanced TC. According to studies, patients
with lesions with increased glucose uptake have negative prognoses and shorter survival
than patients with FDG-PET-negative tumor lesions. The extension of local tumor as well as
complications can also be appreciated by other imaging techniques such as bronchoscopy
or esophagoduodenoscopy [1,27,97–100].

4.2. Local Treatments

In order to sustain the patients’ standard of living, before starting targeted therapies
with tyrosine kinase inhibitors (TKIs), a complete anamnesis regarding age, medical history,
size, position, and rate of lesion progression should be completed. Surgery, including the
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dissection of the central and lateral regions, remains the standard in therapeutic manage-
ment of locoregional relapse every time the surgical procedure can be safely performed
amid re-intervention or distant spreading of the originating malignancy [101–103]. Studies
have demonstrated that surgery and external-beam radiation treatment (EBRT) in doses of
40–50 Gy for patients older than 45 years, offers a locoregional control and an overall good
prognosis in most cases. Local therapies are recommended before targeted therapies for
patients with lung nodules or bone metastasis [1,27,97–100].

In case of infiltration of the trachea, ablative laser therapy should be performed in
order to reduce the obstruction. This treatment can be repeated every 6 months. In case of a
compression of the trachea as a result of the local tumor mass, an endotracheal stent should
be used. Surgery is essential for the resection of bone and lung metastases [1,27,97,99,101].

Depending on the evolution of the TC and the behavior of metastases, percutaneous
interventional techniques may be vascular, ablative, or consolidative treatments. Trans-
arterial chemoembolization (TACE) is a vascular technique, and it is part of the category
of palliative therapies for both advanced hepatocellular cancers and aggressive TCs. This
procedure is used in the case of metastases that do not exceed 3 cm and with liver damage
of less than 30% [1,104,105].

Radiofrequency thermoablation uses electromagnetic waves that cause movement and
heating of the tumor cells. In other words, the technique is used to reduce the volume of
the metastatic lesion in the case of metastases involving the lymph nodes, bones, liver, and
lung [1,27,106–108].

Lymph nodes with metastases smaller than 1 cm may be monitored periodically every
6 months and if they increase in size, ultrasound-guided percutaneous ethanol ablation
can be performed. For bone metastases with osteolytic lesions, combinations of local and
palliative treatments such as cementoplasty can enhance the patient’s quality of life by
alleviating pain and ensuring bone stability [1,27,109].

4.3. TKIs as Targeted Therapies

Since RAIR-DTC does not respond to RAI due to the previously presented mechanisms,
clinical trials and preclinical studies are being conducted with new drugs that would be
successful in treating these patients. Currently, TKIs are now considered the first therapeutic
line to inhibit the expansion and progression of RAIR-DTC [1,28,30] (Figure 2).

Sorafenib, lenvatinib, and cabozantinib have been approved by the US Food and Drug
Administration (FDA) for treating RAIR-DTC [1,30,100] (Figures 3 and 4).

Sorafenib targets RAF and blocks VEGFR1/2/3, c-KIT, RET, PDGFR, and FLT receptors.
In the phase 3 DECISION trial, 417 subjects with advanced or metastatic DTC who had
progressive RAIR disease were administered 400 mg of sorafenib, taken twice a day. The
trial showed that 12.2% of patients receiving sorafenib achieved a partial response (PR),
compared to just 0.5% in the placebo group. Progression-free survival (PFS) improved from
5.8 months to 10.8 months, while overall survival (OS) remained stable. Notably, 78% of
subjects needed dose modifications due to side effects [1,4,28,30,110].

Lenvatinib (E7080), a multi-kinase oral inhibitor that targets VEGFR, FGFR, PDGFRα,
RET, and KIT, was approved by the FDA in 2015 for treating RAIR-DTC. In the phase
3 SELECT trial, lenvatinib significantly improved PFS and response rates compared to
placebo in RAIR-DTC patients. A sub-analysis revealed that while lenvatinib improved
PFS in both younger and older patients, older patients experienced more toxicity. Despite
allowing crossover after disease progression, an OS benefit was noted in older subjects.
However, lenvatinib used alone was found to be less effective for treating ATC, warranting
further investigation [1,4,28,30,108–114].

A phase 3 study (NCT02966093) was performed across 24 sites in China to investigate
the safety and efficacy of lenvatinib in treating RAIR-DTC in this population. The results
showed that a starting dose of 24 mg/day led to a significant improvement in PFS and
objective response rates compared to placebo, with no new or unexpected side effects
reported. These findings are consistent with the SELECT trial results [1,4,28,30,111–117].



J. Clin. Med. 2024, 13, 7161 10 of 22

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 10 of 23 
 

 

TCs. This procedure is used in the case of metastases that do not exceed 3 cm and with 
liver damage of less than 30% [1,104,105]. 

Radiofrequency thermoablation uses electromagnetic waves that cause movement 
and heating of the tumor cells. In other words, the technique is used to reduce the volume 
of the metastatic lesion in the case of metastases involving the lymph nodes, bones, liver, 
and lung [1,27,106–108]. 

Lymph nodes with metastases smaller than 1 cm may be monitored periodically 
every 6 months and if they increase in size, ultrasound-guided percutaneous ethanol 
ablation can be performed. For bone metastases with osteolytic lesions, combinations of 
local and palliative treatments such as cementoplasty can enhance the patient�s quality of 
life by alleviating pain and ensuring bone stability [1,27,109]. 

4.3. TKIs as Targeted Therapies 
Since RAIR-DTC does not respond to RAI due to the previously presented mecha-

nisms, clinical trials and preclinical studies are being conducted with new drugs that 
would be successful in treating these patients. Currently, TKIs are now considered the 
first therapeutic line to inhibit the expansion and progression of RAIR-DTC [1,28,30] 
(Figure 2). 

 
Figure 2. Treatment approach for advanced/metastatic DTC [1,28,30]. Abbreviations: 
RAI—radioactive iodine; RAI-avid—radioactive iodine-avid ; TKI—tyrosine kinase inhibitor. 

Sorafenib, lenvatinib, and cabozantinib have been approved by the US Food and 
Drug Administration (FDA) for treating RAIR-DTC [1,30,100] (Figures 3 and 4). 

Sorafenib targets RAF and blocks VEGFR1/2/3, c-KIT, RET, PDGFR, and FLT recep-
tors. In the phase 3 DECISION trial, 417 subjects with advanced or metastatic DTC who 
had progressive RAIR disease were administered 400 mg of sorafenib, taken twice a day. 
The trial showed that 12.2% of patients receiving sorafenib achieved a partial response 
(PR), compared to just 0.5% in the placebo group. Progression-free survival (PFS) im-

Figure 2. Treatment approach for advanced/metastatic DTC [1,28,30]. Abbreviations: RAI—
radioactive iodine; RAI-avid—radioactive iodine-avid; TKI—tyrosine kinase inhibitor.

Additionally, a correlation was found between lung metastases in RAIR-DTC patients
and reduced survival rates. A post hoc analysis by Tahara et al. (2021) of the SELECT
data indicated that lenvatinib led to improved OS in patients with lung metastases greater
than or equal to 1.0 cm, despite a crossover rate of 89%. Prompt initiation of treatment can
enhance outcomes in these patients [1,4,28,30,111–117].

While lenvatinib’s toxicity is usually manageable through dose adjustments, Tahara
et al. (2019) noted that shorter treatment interruptions were associated with better outcomes.
This emphasizes the significance of early management of lenvatinib-related side effects to
optimize its effectiveness in RAIR-DTC subjects [1,4,28,30,111–117].

Cabozantinib is an inhibitor targeting c-MET, RET, and VEGFR that has received FDA
approval for MTC after the phase 3 trial, demonstrating a 7.2-month rise in median PFS.
Initial phase 1 studies revealed a 62% objective response rate in eight subjects with DTC
who had undergone prior VEGFR-targeted treatment [1,4,28,30,118–122].

Building on these encouraging findings, a phase 2 study highlighted cabozantinib’s
efficacy in subjects with RAIR-DTC that had disease progression after previous treatments.
A later phase 3 trial further confirmed that cabozantinib significantly improved PFS among
RAIR-DTC subjects that lacked conventional treatment options [1,4,28,30,118–122].

On 17 September 2021, cabozantinib received FDA approval for use in adults and
pediatric patients 12 years and older with locally advanced or metastatic DTC who showed
progression following previous VEGFR-targeted therapy. This approval marked a sig-
nificant advancement in treatment options, providing hope for patients facing limited
alternatives and demonstrating the viability of cabozantinib in treating RAIR-DTC. Addi-
tionally, ongoing research is expected to further elucidate the long-term effects and potential
combination therapies involving cabozantinib to enhance outcomes for patients with this
challenging disease [1,4,28,30,118–122].

Vandetanib is an inhibitor that targets multiple pathways, including VEGFR2/3, EGFR,
c-KIT, and RET. Although its use in treating RAIR-DTC has not yet received approval, an
earlier phase 2 randomized trial indicated a favorable response in this subject population,
with a median PFS of 11.1 months in the vandetanib group, versus 5.9 months in the
placebo group. A phase 3 trial (VERIFY) was completed in 2020 with 119 patients suffering
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from progressive RAIR-DTCs. The preliminary data indicated no significant difference
in PFS between the vandetanib and placebo groups (10 months vs. 5.7 months, p = 0.08)
(NCT01876784, ClinicalTrials.gov accessed on 20 August 2024) [1,4,28,30,123].

Long-term use of TKIs in clinical practice can lead to moderate to severe adverse
effects, particularly in patients aged 65 and older, necessitating careful monitoring for
dosage adjustments [113]. Additionally, research showed that RAIR-TC patients often
develop TKI resistance, resulting in “tumor escape” due to alterations in alternative sig-
naling pathways, such as HER2/3 hyper-expression. Nonetheless, a retrospective analysis
indicates that RAIR-DTC refractory to initial TKI treatment may continue to show effective-
ness with salvage therapies, including candetanib, cabozantinib, sunitinib, pazopanib, and
vemurafenib [1,4,28,30,124,125].

Table 2 provides an overview of the targeted kinase inhibitors evaluated in randomized-
controlled trials for advanced, metastatic RAIR-DTC.

Table 2. FDA-approved TKIs for RAIR-DTC (PubMed search based on key terms “RAIR-DTC”,
“tyrosine kinase inhibitors”) [112,121,123].

Randomized Control Trial Drug Molecular Targets Phase Results: PFS ORR

DECISION [123] Sorafenib VEGFR, PDGFR, c-KIT,
RET, RAF III from 10.8 months to 5.8 months (placebo) 12.2% (vs. 0.5%)

SELECT
[112] Lenvatinib VEGFR, PDGFR, c-KIT,

RET, FGFR III 18.3 months vs. 3.6 months (placebo) 64.8% (vs. 1.5)

COSMIC-311
[121] Cabozantinib VEGFR, RET, c-MET,

FLT3, TEK III 11.0 months vs. 1.9 months placebo 15%

Abbreviations: PFS—progression-free survival; ORR—overall response rate, c-MET—hepatocyte growth factor
receptor or HGFR; c-KIT—stem cell factor receptor or SCFR; EGFR—epidermal growth factor receptor; FGFR—
fibroblast growth factor receptor; FLT3—FMS-like tyrosine kinase 3 (or CD135); PDGFR—platelet-derived growth
factor receptor; RET—ret proto-oncogene; RAF—rapidly accelerated fibrosarcoma; VEGFR—vascular endothelial
growth factor receptor.
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Figure 3. FDA-approved TKIs for RAIR-DTC [112,121,123]. Abbreviations: FDA—Food and Drug
Administration; c-MET—hepatocyte growth factor receptor or HGFR; c-KIT—stem cell factor receptor
or SCFR; EGFR—epidermal growth factor receptor; FGFR—fibroblast growth factor receptor; FLT3—
FMS-like tyrosine kinase 3 (or CD135); PDGFR—platelet-derived growth factor receptor; RET—ret
proto-oncogene; RAF—rapidly accelerated fibrosarcoma; VEGFR—vascular endothelial growth factor
receptor; DECISION ClinicalTrials.gov number, NCT00984282; SELECT ClinicalTrials.gov number,
NCT01321554; COSMIC-311 ClinicalTrials.gov number NCT03690388.
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4.4. Redifferentiation Therapy

In light of the pathophysiology associated with RAI refractoriness, research has fo-
cused on re-inducing NIS expression to restore RAI avidity. Inhibitors targeting the MAPK
pathway have demonstrated potential in facilitating redifferentiation process in RAIR-
DTC. For instance, the MEK inhibitor selumetinib increased RAI avidity in 12 out of
20 RAIR-DTC patients, enabling 8 of these subjects to receive RAI treatment, in which
7 exhibited a partial response; however, information on the duration of these responses is
not available [4,126,127].

Additionally, the application of BRAF inhibitors, including vemurafenib and dabrafenib,
has been investigated in patients with BRAF-mutated RAI-R TC, producing similar out-
comes. Nevertheless, it has been noted that thyroid cancers with BRAF pathogenic variants
tend to respond less favorably to redifferentiation therapies, suggesting that a stronger
inhibition of the MAPK pathway may be necessary, potentially through a dual therapy
of BRAF and MEK inhibitors. A short duration of these treatment regimens (typically
lasting 4–8 weeks in most studies) may lead to significantly lower toxicity compared to
long-term use of multi-kinase inhibitors (MKIs), thus alleviating some of the economic
burdens associated with treatment. While redifferentiation therapies appear promising, the
current evidence regarding their clinical efficacy remains preliminary, necessitating larger
clinical trials to confirm these results [4,126–134].

4.5. Immunotherapy

The introduction of checkpoint blockade therapies, such as anti-PD-1, PD-L1, and
PD-L1-4, marks a significant advancement in treating various tumors. Current research
indicates that PD-L1 could be used as a prognostic biomarker for PTC as well as indicate
recurrence in MTC. A retrospective analysis identified high PD-L1 level in ATC, correlating
with worse overall life expectancy plus PFS, positioning PD-L1 as a possible predictive
marker of ATC outcomes. Furthermore, immunotherapy approaches have been studied in
subjects with advanced RAIR-DTC [28,135–137].

The non-randomized phase Ib KEYNOTE-028 trial (NCT02054806) investigated the
effectiveness of pembrolizumab in 22 patients with advanced RAIR-DTC expressing PD-L1.
Pembrolizumab, a PD-1 antibody, was administered biweekly at a dose of 10 mg/kg for
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a maximum of 24 months. Among the participants, two patients (9%) showed a partial
response, with durations of response ranging from 8 to 20 months. Median PFS was
7 months, with the median OS yet to be reached. Adverse events occurred in 18 subjects
(82%), with gastrointestinal distress and tiredness being the most common [28,138].

A phase I/II trial (NCT02404441) involving 30 ATC patients treated with spartalizumab
(400 mg every 4 weeks) demonstrated an overall response rate (ORR) of 17% and disease
control in 27%. Common adverse events included gastrointestinal discomfort, such as
diarrhea, pruritus, fatigue, and hematologic and oncologic complications. In another
phase 2 trial led by Capdevila, 42 patients received spartalizumab (400 mg/month), with
an ORR of 19%. PD-L1-positive patients responded better (29% vs. 0%) and those with
the BRAF pathogenic variant had long-lasting responses, with a 1-year survival rate of
52.1% [28,139,140].

A phase 2 trial assessing pembrolizumab in combination with chemoradiotherapy in
three subjects with ATC initially showed favorable tumor reactions, but every patient died
within 6 months from metastases or pulmonary disorders, highlighting concerns over the
high toxicity of chemoradiotherapy in ATC [28,141]. According to very recent data, PD-L1
expression is not correlated with the response to combined treatment [142,143].

The novelty of the topic is as follows: immunotherapy in radioiodine-refractory
thyroid cancer is an emerging and innovative area of research, offering new potential for
patient recruitment. Despite its limited accessibility, it provides an additional prognostic
approach and underscores the importance of a multidisciplinary team in optimizing patient
outcomes. [27,30,144,145].

5. Conclusions and Future Perspectives

Despite the generally good prognosis of thyroid tumors, a small portion of subjects
with advanced or progressive TC will not respond to radioiodine treatment, which is
responsible for the majority of TC-related deaths. Significant efforts have been devoted to
understanding the molecular mechanisms behind this, leading to notable advancements
in identifying the genetic and epigenetic changes associated with iodine resistance. This
progress has facilitated the development of several possible treatments for RAIR-DTC.

Three TKIs are approved for RAIR-DTC treatment, and several more are in clinical
trials. However, the considerable toxicity related to these drugs presents serious concerns.
Given this risk, the use of TKIs should be restricted to carefully selected patient populations,
with thorough evaluations and interdisciplinary input from experienced clinicians required
before personalizing treatment or considering clinical trial enrollment.

Redifferentiation therapies, particularly those involving BRAF and MEK antagonists,
have proven notable progress in enhancing responsiveness in RAIR-DTC patients, offering
comparable response to TKIs with reduced adverse effects. PD-1/PD-L1 blockade, a key
immunotherapeutic approach in oncology, shows promise, but its application in RAIR-DTC
is still not well established, requiring larger studies to evaluate its potential.

Looking ahead, the advancement of targeted therapies, such as TKIs, MAPK inhibitors,
and checkpoint inhibitors, holds significant promise for RAIR-DTC. Combination therapies
targeting different pathways may offer new treatment options, with dual targeting of key
molecules like BRAF and MEK potentially overcoming compensatory mechanisms that
lead to drug resistance.
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Abbreviations

TC Thyroid cancer
DTC Differentiated thyroid cancer
RAI Radioactive iodine
TSH Thyroid-stimulating hormone
MAPK Mitogen-activated protein kinase

PI3K/mTOR/Akt
Photoshatidyl-inositol-3-kinase/mammalian target of rapamycin/
protein kinase B

BRAF V-Raf mouse sarcoma virus oncogene homologous B1
TGF-β Transforming growth factor-β
NIS Sodium iodine symporter
PTEN Phosphatase and tensin homolog
ATC Anaplastic thyroid cancer
TERT Telomerase reverse transcriptase
RAIR-DTC Radioiodine-refractory differentiated thyroid cancer
SLC5A5 Solute carrier family 5A
cAMP Cyclic adenosine monophosphate
NUE NIS upstream enhances
PKA Protein kinase A
PAX8 Paired box gene-8
Ref-1 Redox effector factor-1
CREM aAMP-response element modulator
MAPKKK Mitogen activated protein kinase kinase kinase
V600E B-raf protein residue 600 from glutamic acid to valine
AHR Aromatic hydrocarbon receptor
WT1 Wilm tumor gene 1
NTRK Neurotrophic receptor tyrosine kinase
TRK Tropomyosin receptor kinase
TERTp TERT promoter
ALK Anaplastic lymphoma kinase
CRKL-C3G Adaptor protein-Rap guanine nucleotide exchange factor 1

MEKK2/3-MEK5-ERK5
Mitogen-activated protein kinase kinase kinase 2/3-Mitogen-activated
protein kinase kinase 5-extracellular signal regulated kinase 5

JAK-STAT Janus linase-signal transducer and activator of transcription
STRN Recurrent striatal protein
NGS Next-generation sequencing
TKR Tyrosine kinase membrane receptor
GDNK Glial cell line-derived neurotrophic factor
GFL GDNF family ligand
DSBs DNA double-strand breaks
PPAR-γ Peroxisome proliferator-activated receptor gamma
PPFP PAX8-PPAR-γ fusion protein
TPO Thyroid peroxidase
TG Thyroglobulin
TSHR Thyroid-stimulating hormone receptor
SWI/SNF SWItch/sucrose nonfermentable
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BAF BRG1/BRM related factor
PBAF Polybromine-related factor
ncBAf Atypical BAF
TF Transcription factors
GPCR G protein-coupled receptor
PD-L1 Tumor programmed death-ligand 1
ERK Extracellular-signal-regulated kinase
JNK/SAPK Jun kinase

MEK
Mitogen-activated protein kinase/extracellular signal-regulated
kinase kinase

IGF-2 Insulin-like growth factor 2
IR-A Insulin receptor subtype A
IIGFs Insulin/insulin-like growth factor systems
DDRs Discoid domain receptors
RUNX2 Runt-related transcription factor 2
mTORC2 mTOR complex 2
NADPH Nicotinamide adenine dinucleotide phosphate
NOX4 NADPH oxidase 4
ROS Reactive oxygen species
TCF T cell factor
CSCs Cancer stem cells
LSD1 Lysine-specific histone demethylase 1 A
APC2 Adenomatous polyposis coli 2
DKK1 Dickkopf-related protein 1
Notch1-4 Notch receptors
miRNAs MicroRNAs
3′-UTR 3′-untranslated region
fT4 Free thyroxine
TKIs Tyrosine kinase inhibitors
EBRT External-beam radiation therapy
TACE Trans-arterial chemoembolization
VEGFR1/2/3 Vascular endothelial growth factor receptor 1, 2, 3
c-KIT Cellular kit
PDGFR Platelet-derived growth factor receptor
FLT Fms-like tyrosine kinase
FDA Food and Drug Administration
PR Partial response
PFS Progression-free survival
OS Overall survival
FGFR Fibroblast growth factor receptor
c-MET Mesenchymal–epithelial transition factor
MTC Medullary thyroid carcinoma
EGFR Epidermal growth factor receptor
ORR Overall response rate
RAF Rapidly accelerated fibrosarcoma
MKIs Multi-kinase inhibitors
CTLA-4 Cytotoxic T-lymphocyte antigen 4
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