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Abstract: Background: Laparoscopic surgery demands high precision and skill, necessitating effective
training protocols that account for factors such as hand dominance. This study investigates the
impact of hand dominance on the acquisition and proficiency of laparoscopic surgical skills, utilizing
a novel assessment method that combines Network Models and electromyography (EMG) data.
Methods: Eighteen participants, comprising both medical and non-medical students, engaged in
laparoscopic simulation tasks, including peg transfer and wire loop tasks. Performance was assessed
using Network Models to analyze EMG data, capturing muscle activity and learning progression.
The NASA Task Load Index (TLX) was employed to evaluate subjective task demands and workload
perceptions. Results: Our analysis revealed significant differences in learning progression and
skill proficiency between dominant and non-dominant hands, suggesting the need for tailored
training approaches. Network Models effectively identified patterns of skill acquisition, while NASA-
TLX scores correlated with participants’ performance and learning progression, highlighting the
importance of considering both objective and subjective measures in surgical training. Conclusions:
The study underscores the importance of hand dominance in laparoscopic surgical training and
suggests that personalized training protocols could enhance surgical precision, efficiency, and patient
outcomes. By leveraging advanced analytical techniques, including Network Models and EMG
data analysis, this research contributes to optimizing clinical training methodologies, potentially
revolutionizing surgical education and improving patient care.

Keywords: laparoscopic surgery; surgical simulation; hand dominance; learning progression;
network models; NASA-TLX scores

1. Introduction

Surgical simulation training has become increasingly popular over the years as it
provides a safe environment for medical professionals to gain experience and improve their
skills without putting patients at risk [1,2]. Laparoscopic surgery, a minimally invasive
surgical technique, requires specialized skills and hand-eye coordination [3]. The use of
simulation training for laparoscopic surgery has been widely adopted as it allows trainees
to develop their psychomotor skills and improve their overall performance in a controlled
and safe environment [4].

One of the major challenges in surgical simulation training is to develop effective meth-
ods to assess the learning progression of trainees. Traditional methods of assessment rely
on subjective evaluations by expert surgeons and can be time-consuming and costly [5,6].
The most used method of assessing performance in laparoscopic surgical simulation tasks
is to use objective measures such as time to complete a task or error rates [7]. While these
measures provide valuable information about trainees’ performance, they do not provide a
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complete picture of the learning progression of trainees in laparoscopic surgical simulation
tasks [8,9]. There is a need for new methods to assess the learning progression of trainees in
laparoscopic surgical simulation tasks. Such methods should consider the subjective experi-
ence of the trainees themselves, as well as objective measures of performance. The inclusion
of subjective measures of performance is particularly important in laparoscopic surgery,
where the subjective experience of the participant can impact their performance [10,11].
Additionally, laparoscopic surgery requires the use of both dominant and non-dominant
hands to manipulate instruments and perform surgical tasks. It is essential to assess the
learning progression of both hands to ensure that surgical trainees develop the necessary
skills and proficiency [12,13].

In recent years, there has been a growing interest in using objective and quantitative
methods to assess the learning progression of trainees. Network Models have emerged
as a promising approach for analyzing and visualizing complex data [14,15]. The use of
Network Models to assess the learning progression of laparoscopic surgical simulation
tasks is a novel approach that provides a more comprehensive and objective assessment
of surgical skills. Network Models can represent complex interactions between different
components of a surgical task and can provide valuable insights into the development of
surgical skills over time [16]. This research paper proposes a novel assessment method
utilizing Network Models to evaluate the learning progression of 20 trainees performing
a set of laparoscopic surgical simulation tasks using their dominant and non-dominant
hands. The proposed model is populated using the participants’ electromyography (EMG)
data, which is used to track their muscle activity during the task performance. Additionally,
the NASA Task Load Index (NASA-TLX) score is used to analyze participants’ subjective
task demands, allowing for an examination of the impact of participants’ perception of their
mental demand, physical demand, temporal demand, performance, effort, and frustration
on their simulation task performance.

EMG measures the electrical activity of muscles, providing a quantitative measure of
muscle activation and fatigue [17,18]. EMG data has been used to assess the performance
of surgical trainees in various surgical procedures, including laparoscopic surgery [17,19].
By analyzing EMG data, the assessment method can identify areas where surgical trainees
may need further training or support to improve their surgical skills [20–22]. The use of the
NASA-TLX score to analyze participants’ subjective task demands is a valuable addition to
the assessment method by including insights into the psychological factors that can affect
surgical performance [23–25].

Assessing both dominant and non-dominant hand use in laparoscopic surgery is
important since it is a critical aspect of surgical performance [26–28]. Previous research
has shown that the use of the non-dominant hand can significantly impact surgical perfor-
mance, and the development of skills with the non-dominant hand can improve overall
surgical proficiency [29,30]. The assessment method developed in this research can provide
valuable insights into the learning progression of surgical trainees in laparoscopic surgery,
particularly in the development of skills with both dominant and non-dominant hands.
The use of Network Models and EMG data can provide an objective and comprehensive
assessment of surgical skills [16], this assessment method has the potential to improve the
training and support provided to surgical trainees, leading to better patient outcomes.

Additionally, the clinical significance of refining laparoscopic training cannot be under-
stated. Enhanced training protocols, informed by objective assessments of hand dominance
and skill acquisition, have the potential to directly impact surgical efficiency, reduce opera-
tive times, and minimize the likelihood of complications. By advancing our understanding
of how surgeons develop and refine their skills, particularly in manipulating instruments
with both hands, we can tailor educational interventions that better prepare surgical trainees
for the demands of minimally invasive procedures. Ultimately, this leads to safer surgical
practices, improving patient outcomes and aligning with the goals of patient-centered care.
The development and application of the proposed assessment method, therefore, not only
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contribute to the academic and practical realms of surgical education but also promise
substantial benefits to the quality of surgical care delivered to patients.

Problem Statement

The assessment of learning progression and proficiency in surgical simulation training
presents a substantial challenge, as current methods relying on subjective evaluations or
limited objective measures fail to provide a comprehensive understanding of trainees’
performance [5–7]. Moreover, the assessment of both dominant and non-dominant hand
proficiency and the consideration of subjective workload often overlooked. Consequently,
this study aims to overcome these limitations by introducing an innovative assessment
method that integrates objective performance measures, subjective workload evaluation,
and analysis of both hand proficiencies. By adopting this comprehensive approach, the
study aims to offer a holistic assessment of surgical trainees’ learning progression. The
proposed method would inform targeted training interventions and enhance proficiency
outcomes in surgical education.

2. Materials and Methods
2.1. Subjects

We recruited twenty participants (8 female and 12 male) from various disciplines.
However, due to incomplete data on performances, participants 19 and 20 were excluded
from the analysis. The final analysis included eighteen participants, consisting of nine
medical students (or fellows) and nine non-medical students (health professional students
in kinesiology, physical therapy, nursing, or radiology). All participants were recruited from
the university campus and had no prior experience with the research training simulator
or recent upper arm injuries. Each participant confirmed that their right hand was their
dominant hand.

2.2. Tasks

All participants completed a set of basic laparoscopic surgical simulation training
tasks, including the peg transfer, needle passing, and wire loop tasks as shown in Figure 1.
The peg transfer task involves transferring small pegs from one location to another using
laparoscopic instruments, simulating the precision required in surgical procedures. The
needle passing task involves manipulating a needle through specific targets using laparo-
scopic instruments to assess participants’ hand-eye coordination and dexterity. The wire
loop task requires participants to maneuver a wire through a series of loops, testing their
dexterity and hand-eye coordination.
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Loop Task.

In this study, we investigated the effect of hand dominance on laparoscopic surgical
performance by analyzing the Peg transfer Task and Wire Loop task. While the Needle
passing task is a commonly used laparoscopic surgical simulation task, it was excluded
from our analysis. The decision to exclude the Needle passing task was based on several
considerations. Firstly, our primary research focus was to explore the influence of hand
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dominance on tasks that inherently require differentiated hand functions. The Needle
passing task may not exhibit significant differences in hand requirements, where proficiency
can be achieved using either the dominant or non-dominant hand [16]. By focusing on
the Peg transfer Task and Wire Loop task, we can provide a targeted investigation into
the impact of hand dominance on these specific tasks, shedding light on the role of hand
dominance in laparoscopic surgical performance. This approach enhances the precision
of our study’s findings and contributes to a comprehensive understanding of how hand
dominance affects surgical skill development.

2.3. Experiment Setup

The experiment spanned a 4-week period and consisted of one pretraining test, three
training sessions, and one post-training test. Participants completed the full set of basic
training tasks in each session, with each task repeated five times. Data on performance
were collected during three sessions: a baseline session, a session one week after baseline,
and a session four weeks after baseline. Following the completion of each task, participants
provided feedback on their physical and mental demands using NASA-TLX scores.

2.4. Data Collection

Ethical considerations were strictly adhered to in line with the Declaration of Helsinki,
receiving approval from the Institutional Review Board of the University (IRB # 103-12-EX).
Our study employed the Trigno Wireless System [16], for surface electromyography (EMG)
to record muscle activities, focusing on critical muscles including the Biceps Brachii, Triceps
Brachii, Extensor Digitorum, and Flexor Carpi Radialis. EMG sensors were meticulously
positioned to ensure accurate data capture. The raw EMG signals, acquired at a 2000 Hz
sampling rate and band-pass filtered from 20 to 300 Hz, were processed with a root-mean-
square (RMS) technique using a 150-ms moving window, enabling precise computation of
muscle activation and fatigue.

To mitigate inter-subject variability and enhance the reliability of our EMG data analy-
sis, maximal voluntary contraction (MVC) measurements were obtained from each muscle
group. This standardization allowed for the normalization of EMG signals, providing a
consistent baseline for comparing muscle activity levels across participants. Additionally,
kinematic data, including task completion time, speed, and distance, were meticulously
collected for each task, offering quantitative measures of task performance.

Upon the completion of each simulation task, participants engaged with the NASA
Task Load Index (TLX) survey, chosen for its robust ability to assess subjective workload
across six dimensions: mental demand, physical demand, temporal demand, performance,
effort, and frustration. The NASA TLX, developed by Hart and Staveland [23], remains a
validated and versatile instrument in various domains, including healthcare and surgical
training [25]. Its adoption in our study highlights our dedication to exploring the multi-
faceted experiences of trainees, aiming to uncover the cognitive and physical challenges
encountered during laparoscopic surgery training. Scores from the NASA TLX, ranging
from 0 to 10, offered nuanced insights into the subjective workload, with higher scores
indicating greater perceived effort.

The integration of detailed EMG data analysis with the multidimensional assessment
provided by the NASA TLX underscores the comprehensive nature of our research method-
ology. This combination offers a holistic examination of the physiological and cognitive
dimensions influencing surgical skill development. By capturing objective muscle activity
alongside subjective workload perceptions, our approach aims to optimize surgical training
protocols. This, in turn, is designed to enhance the efficacy of skill acquisition, contributing
to improved surgical performance and patient care outcomes, thereby addressing both the
immediate and long-term needs of surgical education.
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2.5. Network Models

In this study, we utilized Network Models to analyze and evaluate the learning
progression of laparoscopic surgical simulation tasks. Network Models are mathematical
representations that consist of nodes and edges, where nodes represent entities or elements,
and edges represent relationships or connections between those entities.

2.5.1. Nodes and Edges

In our Network Models, nodes represent the individual participants who engaged in
the laparoscopic surgical simulation tasks. Each node corresponds to a unique participant
and can be enriched with additional information, such as demographic data, experience
level, or performance metrics. On the other hand, edges in our study serve to capture the
connections or relationships between these participants. However, our approach diverges
from examining edges within the same network of participants. Instead, we focus on
comparing the similarity of networks formed across different sessions. These edges signify
the presence or absence of connections between networks established in various sessions,
enabling us to explore changes and patterns of connectivity over time. By emphasizing the
inter-session comparisons, our study unveils the dynamic nature of skill acquisition and
development, shedding light on how participants’ interaction patterns evolve throughout
their training journey.

2.5.2. Network Density

Network density, a fundamental measure in graph theory, was employed to assess
the overall connectivity and complexity of hand movements during the laparoscopic simu-
lation tasks. It is defined as the ratio of the number of actual edges in the network to the
total possible number of edges [31]. A higher network density indicates a greater level of
interconnectedness among participants’ hand movements, suggesting increased coordi-
nation and information flow within the network. In our study, network density served
as a quantitative indicator of the degree to which participants’ hand movements were
interconnected, providing valuable insights into the efficiency in performing laparoscopic
surgical simulation tasks. By analyzing network density, we were able to evaluate the
structural characteristics and overall efficiency of within the network of hand movements,
contributing to a comprehensive understanding of the participants’ performance and skill
development in the simulation environment.

2.5.3. Comparing Similarity of Networks Using Jaccard Similarity

To assess the similarity between networks, we employed the Jaccard similarity coeffi-
cient. It is defined as the ratio of the number of common edges between two networks to
the total number of edges in the two networks [32]. This coefficient measures the extent
of overlap between the edges of two networks, indicating the common connections they
share as shown in Equation (1). The Jaccard similarity coefficient ranges from 0 to 1, where
0 indicates no similarity and 1 indicates complete similarity between the networks.

J (G1, G2) = |E(G1) ∩ E(G2)|/|E(G1) ∪ E(G2)| (1)

where:
E(G1) represents the set of edges in network G1 for a specific session.
E(G2) represents the set of edges in network G2 for another session.
|E(G1) ∩ E(G2)| denotes the number of common edges between the two networks.
|E(G1) ∪ E(G2)| denotes the total number of distinct edges in both networks.
By applying the Jaccard similarity coefficient to compare networks formed in dif-

ferent sessions, we evaluated changes in the network structure and identified learning
progression among participants. A higher Jaccard similarity coefficient suggested a greater
similarity in the network structure between sessions, implying consistent patterns in the
connections formed at different time points. Conversely, a lower coefficient indicated



J. Clin. Med. 2024, 13, 1150 6 of 17

significant differences in the network structure, indicating learning progression or changes
in the connections between networks. Utilizing the Jaccard similarity coefficient provided
valuable insights into the evolution of network structure and the development of consistent
patterns or changes in muscle movement similarities among the surgical trainees across
different sessions. This analysis allowed us to quantify the degree of change or similarity
in network connections and further understand the learning dynamics in laparoscopic
surgical simulation tasks.

2.5.4. Global Clustering Coefficient

The global clustering coefficient assesses the extent to which nodes in the entire
network tend to form clusters or groups. It measures the overall cohesiveness or clustering
in the entire network. A global clustering coefficient of 0 suggests that nodes in the network
are not organized into clusters whereas a coefficient of 1 indicates that the network has a
high level of clustering, with many nodes forming tightly interconnected groups [33].

In our study, the global clustering coefficient serves as a crucial metric in unraveling
the intricacies of hand movement dynamics during laparoscopic surgical simulation tasks.
This coefficient quantifies the tendency of participants’ hand movements to cluster into
cohesive groups within the network. A high clustering coefficient indicates that partici-
pants are more likely to exhibit similar hand movement patterns, forming distinct clusters
within the network. Such clusters could signify specific groups of participants who share
similar strategies or skill development trajectories. Understanding the clustering coefficient
within our network sheds light on how participants’ hand movements tend to synchronize
and coordinate, highlighting the presence of subgroups or communities within the larger
network. This insight not only enriches our comprehension of the structural characteristics
of hand movement networks but also provides valuable information regarding skill acqui-
sition patterns among surgical trainees. Ultimately, the clustering coefficient serves as a
critical tool in deciphering the intricate learning dynamics that underlie the development
of laparoscopic surgical skills.

2.5.5. Modularity Coefficient

Modularity Coefficient quantifies the quality of the partitioning of our network into
modules or communities [34]. A positive modularity score signifies the presence of signifi-
cant and distinct communities within the network, where participants within a community
share similar hand movement patterns. In our study, the Modularity Coefficient measures
the extent to which our participants’ hand movement networks can be subdivided into
distinct, internally well-connected clusters. A higher Modularity Coefficient suggests
a stronger community structure within the network, indicating that participants’ hand
movements tend to form cohesive groups during the laparoscopic simulation tasks. By
evaluating modularity, we gain a deeper understanding of how the interactions and depen-
dencies between participants’ hand movements evolve throughout the training process.
This analysis enables us to identify potential patterns of coordination and cooperation
among participants, shedding light on the dynamics of skill acquisition in laparoscopic
surgical simulation tasks.

2.5.6. Network Model Creation and Comparative Analysis

In this study, we utilized a network-based approach as shown in Figure 2 to analyze
the correlations among participants’ electromyographic (EMG) data, allowing us to explore
the similarity and relationships between individuals. Each participant was represented
as a node in the correlation network graph, and edges were created to connect nodes that
exhibited a strong correlation in their EMG features.
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To assess the participants’ similarity, Pearson’s pairwise correlation coefficient (ρ)
is used, measuring the linear dependence between their EMG features. A correlation
coefficient of 0 indicates no meaningful relationship, while a coefficient of 1 represents an
extremely strong association.

SM (i, j) =
{

1, if (ρ(Pi, Pj)) ≥ k
0, For other Cases

(2)

By calculating the correlation coefficients for each pair of participants, a correlation
matrix (CM) is generated, reflecting the strength of the relationships. The correlation
criterion “k” is chosen to determine the level of similarity among participants. By solving
the Equation (2) and setting a threshold (e.g., 90%), a significance matrix (SM) is created,
representing the adjacency matrix of the correlation network graph. If SM [i, j] is 1, then
subjects i and j are linked in the network or else there is no edge or link between the subjects.

To enhance the visualization of our observations and facilitate a better understanding
of participant performance, we introduced color-coded nodes in the network. The purpose
of this color-coding was to highlight specific participants who demonstrated superior
performance during a critical phase of the study. We chose to identify the best-performing
participants based on their performance in the fifth trial of the third session.

There are several reasons behind this choice:

1. Stability of Skill: By the time participants reached the fifth repetition of the third
session, they had gained considerable experience and practice with the task. This
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phase represents a more stable level of skill compared to earlier repetitions, where
participants might still be improving and adapting to the task.

2. Consistency: Selecting the fifth repetition ensures that participants had repeated
the task multiple times, which allows us to observe their performance consistency.
Consistency is an essential factor in skill assessment and is often more informative
than isolated exceptional performances.

3. Focused Analysis: By focusing on the last session and repetition, we narrow our
analysis to the participants’ most recent and presumably refined skill levels. This
helps us pinpoint participants who have achieved a high level of proficiency by the
end of the study.

4. Practical Application: In real-world scenarios, such as surgical training or other
skill-based tasks, it is often essential to identify individuals who consistently per-
form well in critical moments. Emphasizing the last session’s task completion time
helps identify participants who can maintain superior performance even under
demanding circumstances.

5. Comparison Potential: By comparing the best-performing participants with others in
the network, we can gain insights into the characteristics or behaviors that distinguish
their superior performance. This comparison may provide valuable information for
identifying factors that contribute to overall success.

In conclusion, selecting the best-performing participants based on their task comple-
tion time in the fifth repetition of the third session allowed for a focused analysis, providing
insights into skill stability, consistency, and factors contributing to exceptional performance.
Furthermore, we expanded our analysis by color-coding nodes of participants who exhib-
ited improvement over time and shared similar hand movements with the best performers,
highlighting their progression. To investigate the impact of hand dominance on learning,
we constructed separate networks using dominant and non-dominant hand features. This
enabled us to evaluate which hand features better reflected participants’ learning progres-
sion. By integrating these additional elements into the network model, we aimed to gain
deeper insights into the relationship between participants’ performance, hand dominance,
and the corresponding network structures.

3. Results

In this section, we present the 12 networks created based on the results of Peg Transfer
and Wire Loop tasks. For the Peg Transfer task, participants performed the task using
both their dominant and non-dominant hands. We formed six networks for each task
(Figures 3–6), with three networks utilizing dominant hand features and three networks
utilizing non-dominant hand features. These networks were created based on the EMG
values of each session.

3.1. Networks for Peg Transfer Task

The examination of the Peg Transfer task networks revealed interesting patterns,
particularly for Subjects 1 and 3, which were highlighted in green. These subjects exhib-
ited a clear learning progression when analyzing their non-dominant hand movements
(Figure 3a–c). The Jaccard Similarity, a measure of network overlap, between networks
formed in Session 1 versus Session 3 was 0.30 for the non-dominant hand and 0.63 for
the dominant hand (Table 1). This indicates that the networks formed in Session 3 differ
by 70% when compared to the networks formed in Session 1 for the non-dominant hand.
Conversely, for the dominant hand, the difference was only 27%, suggesting a higher level
of consistency in network formation between sessions. It is worth noting that the learning
progression of Subjects 1 and 3 was not as evident when using the dominant hand features
to build the network model (Figure 4a–c).
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Table 1. Comparison of Networks formed in each Session for Peg Transfer Task.

Parameter
Non-Dominant Hand Dominant Hand

Session 1-2 Session 2-3 Session 3-1 Session 1-2 Session 2-3 Session 3-1

Jaccard Similarity 0.35 0.53 0.30 0.59 0.59 0.63
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Although the best performers were identified using the task completion time in the
fifth trial of the third session, subject 4 is not connected to the other best performers in
the network model (Figure 3a–c). This is due to a different muscle activity pattern for
subject 4 compared to the rest of best performers. Looking at the completion time, we
noticed that subject 4 took much less time compared to the rest, meaning that this subject
is outperforming the others. Aside from analyzing each network in Figure 3, it is also
worth analyzing each sub-network. As it appears in the network models, there are two sub-
networks. If the subjects are learning how to perform the task and becoming closer to
the best performers, then the expectation would be to see a change in the density of sub-
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networks such that one gains more edges over time indicating that there are more subjects
with similar performance to the best performers. This pattern is exactly what we see in
Figure 3. We can see that over time the sub-network from Figure 3a, 3b, to 3c that include
more yellow nodes compared to the other sub-network, has more edges and consequently
a higher density, indicating that more subjects perform similar to best performers as they
practice over the training sessions.

In analyzing the Peg Transfer task networks, various network model parameters were
assessed as shown in Table 2. All networks shared a common composition of 18 nodes,
but significant disparities emerged when comparing dominant and non-dominant hand
networks. Dominant hand networks consistently boasted a higher number of edges (94,
97, and 83 for Sessions 1, 2, and 3) and network density (0.61, 0.63, and 0.54) in contrast to
non-dominant hand networks (edge counts of 41, 46, and 49 and network densities of 0.26,
0.30, and 0.32). Further examination of clustering coefficients unveiled that non-dominant
hand networks consistently exhibited denser local clusters (0.72, 0.69, and 0.73) compared
to their dominant hand counterparts (0.51, 0.55, and 0.57).

Table 2. Network Model Parameters for Peg Transfer Task.

Parameter
Non-Dominant Hand Dominant Hand

Session 1 Session 2 Session 3 Session 1 Session 2 Session 3

Number of Nodes 18 18 18 18 18 18
Number of Edges 41 46 49 94 97 83
Network Density 0.26 0.30 0.32 0.61 0.63 0.54

Clustering Coefficient 0.72 0.69 0.73 0.51 0.55 0.57
Modularity Coefficient 0.49 0.41 0.46 0.19 0.15 0.18

Furthermore, modularity values exhibited positive trends across Sessions 1, 2, and
3 for both non-dominant (0.49, 0.41, and 0.46) and dominant hand networks (0.19, 0.15,
and 0.18). These positive values indicate the presence of distinct communities within the
networks. However, it’s noteworthy that the tendency to form such communities appears
weaker in the case of dominant hand networks, as evidenced by their lower modularity
coefficients. These results provide valuable insights into the learning progression and
differences between the dominant and non-dominant hand networks in peg transfer task.

3.2. Networks for Wire Loop Task

For the Wire Loop task, participants were instructed to first perform the task using
their dominant hand (WR) and then repeat it using their non-dominant hand (WL). Similar
to the findings in the Peg Transfer task, we observed a distinct learning progression for
Subjects 1, 2, and 8, which were highlighted in green, when analyzing their non-dominant
hand movements (Figure 5a–c). It is also worth noting that the learning progression of
Subjects 1, 2 & 8, highlighted in green, was not as evident when using the dominant hand
features to build the network model (Figure 6a–c).

The Jaccard Similarity between Networks formed in Session 1 versus Session 3 was
0.38 for the non-dominant hand and 0.61 for the dominant hand (Table 3). This suggests that
the networks formed in Session 3 differed by 62% when compared to the networks formed
in Session 1 for the non-dominant hand. Conversely, for the dominant hand, the difference
was 39%, indicating a higher level of consistency in network formation between sessions.

Table 3. Comparison of Networks formed in each Session for Wire Loop Task.

Parameter
Non-Dominant Hand Dominant Hand

Session 1-2 Session 2-3 Session 3-1 Session 1-2 Session 2-3 Session 3-1

Jaccard Similarity 0.55 0.42 0.38 0.53 0.58 0.61
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Moreover, we conducted a comprehensive analysis of network model parameters
for the Wire Loop task networks, which is summarized in Table 4. Across all sessions,
the networks consistently comprised 18 nodes. Specifically, the dominant hand networks
exhibited edge counts of 104, 83, and 83 for Sessions 1, 2, and 3, respectively. In contrast,
the non-dominant hand networks had edge counts of 57, 49, and 55 for Sessions 1, 2, and 3,
respectively. Examining network density, we observed that the dominant hand networks
recorded values of 0.67, 0.54, and 0.54 across the three sessions, while the non-dominant
hand networks displayed densities of 0.37, 0.32, and 0.35. This pattern echoes the trends
observed in the Peg Transfer task, where networks formed using the dominant hand
consistently exhibited a higher number of edges and greater network density compared to
their non-dominant counterparts.

A closer examination of clustering coefficients in the wire loop task revealed a con-
sistent trend. Non-dominant hand networks consistently displayed denser local clusters
(0.69, 0.62, and 0.78) compared to their dominant hand counterparts (0.49, 0.42, and 0.37).
Additionally, when considering modularity values across Sessions 1, 2, and 3, we observed
similar positive trends for both non-dominant (0.54, 0.47, and 0.59) and dominant hand



J. Clin. Med. 2024, 13, 1150 12 of 17

networks (0.29, 0.23, and 0.21). These positive values signify the existence of distinct com-
munities within the networks. Nonetheless, it’s worth noting that the tendency to form
such communities appears less pronounced in the case of dominant hand networks, as
indicated by their comparatively lower modularity coefficients.

Table 4. Network Model Parameters for Wire Loop Task.

Parameter
Non-Dominant Hand Dominant Hand

Session 1 Session 2 Session 3 Session 1 Session 2 Session 3

Number of Nodes 18 18 18 18 18 18
Number of Edges 57 49 55 104 83 83
Network Density 0.37 0.32 0.35 0.67 0.54 0.54

Clustering Coefficient 0.69 0.62 0.78 0.49 0.42 0.37
Modularity Coefficient 0.54 0.47 0.59 0.29 0.23 0.21

These results offer valuable insights into the learning progression and disparities
observed in the Wire Loop task networks. The pronounced learning patterns exhibited
by Subjects 1, 2, and 8, highlighted in green, when analyzing their non-dominant hand
movements underscore the importance of considering hand dominance in performance
assessment. Our analysis of network model parameters further substantiates these findings,
revealing variations in edge counts and network density between dominant and non-
dominant hand networks.

In summary, our study emphasizes the significance of analyzing non-dominant hand
movements, particularly in tasks involving both hands, for distinguishing participants with
varying levels of learning proficiency. The disparities observed in networks formed during
different sessions provide valuable insights into the learning progression of participants
undertaking the Peg Transfer and Wire Loop tasks.

3.3. Enrichment Analysis with NASA-TLX Scores

Enrichment analysis was employed in this study to gain deeper insights into the rela-
tionship between subjective workload, perceived task demands, and participants’ learning
progression and performance in laparoscopic surgical tasks. This statistical technique
allowed us to explore the associations and patterns between the NASA-TLX scores and
participants’ outcomes. By comparing the scores of participants with different learning
progression levels or performance outcomes, we were able to identify potential factors
that contribute to enhanced learning and performance. The NASA-TLX assesses subjec-
tive workload and perceived task demands experienced by individuals, including mental
demand (MD), physical demand (PD), temporal demand (TD), performance, effort, and
frustration. Scores for each dimension range from 0 to 10, with 10 indicating the highest
subjective effort.

For the Peg Transfer task, participants who demonstrated a higher learning progres-
sion, such as Subjects 1 and 3, reported elevated physical demand average scores (e.g.,
PD = 7.2) indicating a higher perceived physical effort required to perform the task. Addi-
tionally, the best performers in the Peg Transfer task, highlighted in yellow, also reported
relatively high physical demand average scores (e.g., PD = 6.8) compared to other par-
ticipants. These findings suggest that a higher physical demand may be associated with
enhanced learning and performance.

In terms of mental demand, participants who exhibited a significant learning progres-
sion in both the Peg Transfer and Wire Loop tasks reported lower mental demand average
scores (e.g., MD = 3.5 for Peg Transfer, MD = 4.2 for Wire Loop) indicating a reduced
perceived cognitive effort. Similarly, the best performers in both tasks reported relatively
lower mental demand average scores (e.g., MD = 3.2 for Peg Transfer, MD = 4.0 for Wire
Loop). These findings suggest that a lower mental demand may contribute to improved
learning progression and performance.
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Regarding temporal demand, participants’ scores indicated a moderate perceived
pressure associated with task time constraints. However, no significant correlations were
observed between TD and learning progression or the identification of best performers in
either task. Furthermore, participants’ effort scores demonstrated a positive correlation
with learning progression. Subjects who exhibited a higher learning progression reported
increased effort average scores (e.g., Effort = 6.5) indicating a greater investment of energy
and motivation. The best performers in both tasks also reported relatively high effort
average scores (e.g., Effort = 6.2 on average). These findings suggest that participants who
exerted more effort during the tasks were more likely to show improved learning and
performance. Interestingly, frustration scores did not demonstrate a strong correlation with
learning progression or the identification of best performers in either task. Participants
reported moderate levels of frustration (e.g., Frustration = 4.0) across all sessions, suggesting
that frustration may not have significantly impacted learning progression or performance.

Overall, our enrichment analysis with NASA-TLX scores supports that specific dimen-
sion of task demands, such as physical demand, mental demand, and effort, are associated
with participants’ learning progression and the identification of best performers. Higher
physical demand and effort, combined with lower mental demand, appear to be linked to
enhanced learning and performance. These findings underscore the importance of consid-
ering task demands and subjective experiences in assessing participants’ performance and
designing effective laparoscopic surgical training programs.

4. Discussion

Our study presents a novel assessment method utilizing Network Models to eval-
uate the learning progression of laparoscopic surgical simulation tasks. By analyzing
participants’ electromyography (EMG) data and subjective task demands using the NASA-
TLX scores, we gained valuable insights into the development of surgical skills. This
approach holds significant implications for surgical education, providing educators with a
comprehensive understanding of trainees’ performance and needs.

The effectiveness of Network Models in assessing surgical skills was evident in our
study. The visualization of networks allowed for a comprehensive evaluation of per-
formance by capturing complex interactions within the surgical task performance. This
objective and quantitative approach aligns with the growing interest in utilizing advanced
methods for skill assessment in surgical simulation training [16]. By incorporating Network
Models, educators can identify trainees who may be lagging, require additional training, or
need more supports, enabling targeted interventions to optimize skill development.

The utilization of the NASA Task Load Index (TLX) in our study underscores the
importance of considering subjective workload in the evaluation of surgical training efficacy.
Despite being developed over three decades ago, the NASA TLX remains a gold standard
in workload assessment, owing to its robust validation and adaptability to various research
and clinical settings [23–25]. By incorporating the NASA TLX, we gained valuable insights
into the specific challenges and demands experienced by trainees, informing the design
of more nuanced and effective training protocols that cater to the cognitive and physical
capacities of learners.

Our findings emphasized the importance of assessing the learning progression of both
dominant and non-dominant hands in laparoscopic surgery. The non-dominant hand plays
a crucial role in supporting the camera or manipulating tissue, and the development of
proficiency with this hand is essential for overall surgical performance [26]. By considering
the learning progression of both hands, our assessment method ensures a well-rounded
development of skills among surgical trainees. This insight can guide educators in design-
ing training programs that address the specific needs of trainees in developing proficiency
with both hands.

The variability in EMG responses among participants, especially when performing
complex manipulations, presents a methodological challenge that we addressed through
careful data analysis and interpretation. By normalizing EMG data to individual MVC
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values, we minimized the impact of physiological differences on our results, allowing
us to focus on variations in muscle activity patterns related to learning progression and
task performance. Furthermore, our analysis considered the specific demands of laparo-
scopic surgical tasks, enabling us to distinguish between skill-related changes in muscle
activity and variability stemming from individual differences. Our study’s emphasis on
result-oriented analysis of EMG data underscores its potential to inform targeted training
interventions. By identifying specific muscle activity patterns associated with successful
task performance, we provide actionable insights that can be used to customize training
programs, addressing the unique needs of each trainee. This approach not only enhances
the precision of skill assessment in laparoscopic surgery but also contributes to the devel-
opment of more effective, personalized training methodologies.

The calculation of Jaccard similarity provided valuable insights into the differences
in network formation between sessions, particularly for the non-dominant hand. The
significant divergence in network formation between session 1 and session 3 indicated
substantial learning progression, highlighting the effectiveness of our assessment method.
In contrast, the dominant hand showed a lower difference in network formation, sug-
gesting that trainees exhibit more consistency in their performance with their dominant
hand. These comparative analyses provide educators with a deeper understanding of
trainees’ skill development and can inform targeted interventions. Overall including the
analysis of clustering coefficient and modularity highlights the existence of community
structures in the networks, indicating that participants’ hand movements tend to form
distinct communities with stronger connections among nodes within the same community.
This insight adds another layer of understanding to the organization of hand movements in
laparoscopic surgical tasks and underscores the relevance of community detection methods
in network analysis.

Our comprehensive assessment method, which combines Network Models, EMG
data, and subjective task demands assessment, offers several advantages over traditional
methods of skill assessment. While traditional methods rely on subjective evaluations by
expert surgeons or objective measures such as task completion time or error rates [5–7], our
method provides a more holistic and multi-dimensional assessment. It considers objective
performance metrics as well as subjective experiences, providing a more comprehensive
picture of the learning progression of surgical trainees.

Moreover, our exploration into the use of Network Models and EMG data analysis
offers a complementary perspective to the structured, measurable feedback provided by
contemporary laparoscopy training systems, such as the DaVinci training complex and
LapSim [35,36]. These advanced systems have set a high standard in surgical education
by enabling precise assessment of a trainee’s performance across a variety of tasks, thus
facilitating immediate and targeted feedback [35,36]. However, by delving into the physio-
logical underpinnings of surgical skill acquisition, particularly the role of hand dominance,
our study broadens the scope of surgical training evaluation. It introduces a dimension
that goes beyond the immediate feedback on task execution to include an analysis of mus-
cle engagement and neuromotor control, essential factors in the development of surgical
competence. This nuanced approach not only enhances our understanding of the complex
interplay between physical and cognitive demands in surgical training but also suggests
avenues for integrating our findings with existing laparoscopy training technologies. For
instance, insights from our method could be utilized to refine the feedback mechanisms
of these systems, offering a more holistic view of trainee performance that encompasses
both the outcomes of surgical tasks and the physiological strategies employed during
task execution. Such integration promises to tailor training more closely to individual
needs, thereby optimizing skill development and enhancing the overall efficacy of surgical
education. This potential for synergy between traditional training systems and our novel
assessment method underscores the value of interdisciplinary approaches in advancing
surgical training and ultimately improving patient care.



J. Clin. Med. 2024, 13, 1150 15 of 17

4.1. Limitations

While our study proposes an innovative and comprehensive approach to evaluating
the learning progression of students in surgical simulation tasks, there are certain limitations
to consider. Firstly, the sample size of 18 participants may limit the generalizability of our
findings. A larger sample size would provide a more representative sample and increase
the statistical power of our study. Secondly, the use of EMG data may not capture all
aspects of the participants’ performance. While EMG data provides valuable data on
muscle activity, other factors such as hand-eye coordination, dexterity, and overall skill
level may also impact performance. Thirdly, the NASA-TLX score, while useful, relies
on self-reporting by participants and may be subject to biases or inaccuracies. Lastly, our
research does not directly assess their ability to perform in real-life surgical scenarios.
Future research could explore the transferability of skills learned through simulation tasks
to actual surgical procedures.

4.2. Future Directions

Building on the current study, future research should aim to expand the assessment
method to incorporate additional objective measures and subjective evaluations. This
could include integrating other physiological data, such as heart rate or eye-tracking,
to provide a more comprehensive assessment of surgical performance. Additionally, an
exciting avenue for future research is the development of a decision support system based
on our assessment methodology. By leveraging the insights gained from Network Models,
EMG data, and subjective overload levels, a decision support system could provide real-
time feedback and recommendations to surgical trainees. This system could analyze
performance patterns, identify areas of improvement, and offer tailored interventions to
enhance skill development.

5. Conclusions

In this study, we proposed a novel assessment method utilizing Network Models to
evaluate the learning progression of laparoscopic surgical simulation tasks. Analyzing
participants’ EMG data and subjective task demands using the NASA-TLX score provided
us with valuable insights into the development of surgical skills. This method, by capturing
the complex interactions between different components of the surgical task and objec-
tively assessing participants’ muscle activation and fatigue, offers quantitative measures
of their performance. Furthermore, the inclusion of subjective task demands, assessed
through the NASA-TLX score, shed light on the psychological factors that can influence
surgical performance.

Our findings underscore the potential of this assessment method to significantly en-
hance the training and support provided to surgical trainees. By highlighting the learning
progression of both dominant and non-dominant hands, this research emphasizes the
critical need for developing proficiency in both hands to improve laparoscopic surgery
outcomes. This comprehensive approach, grounded in a deep understanding of the physio-
logical and psychological aspects of surgical training, has the potential to transform surgical
education. By ensuring that trainees acquire the necessary skills and dexterity, we can
ultimately lead to safer surgical procedures and better patient outcomes. The clinical impli-
cations of our study extend beyond the academic domain, offering a promising avenue for
the application of Network Model-based assessments in surgical simulation tasks. These
advancements could revolutionize surgical training, making it more personalized and
effective, thereby contributing to the enhancement of patient care in the realm of minimally
invasive surgery.
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