Influence of Obstructive Apnea Index on Persistent Left Ventricular Dysfunction in Patients with ST-Segment Elevation Myocardial Infarction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical, Laboratory, and Instrumental Data
2.3. Statistical Analyses
3. Results
3.1. Baseline Characteristics of Subjects
3.2. Relationship between SDB and 2DE Parameters
3.3. Multiple Regression Analyses for the Prediction of LV-GLS at One Week and Seven Months
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, C.H.; Sethi, R.; Li, R.; Ho, H.H.; Hein, T.; Jim, M.H.; Loo, G.; Koo, C.Y.; Gao, X.F.; Chandra, S.; et al. Obstructive Sleep Apnea and Cardiovascular Events After Percutaneous Coronary Intervention. Circulation 2016, 133, 2008–2017. [Google Scholar] [CrossRef]
- Mazaki, T.; Kasai, T.; Yokoi, H.; Kuramitsu, S.; Yamaji, K.; Morinaga, T.; Masuda, H.; Shirai, S.; Ando, K. Impact of Sleep-Disordered Breathing on Long-Term Outcomes in Patients with Acute Coronary Syndrome Who Have Undergone Primary Percutaneous Coronary Intervention. J. Am. Heart Assoc. 2016, 5, e003270. [Google Scholar] [CrossRef]
- Buchner, S.; Satzl, A.; Debl, K.; Hetzenecker, A.; Luchner, A.; Husser, O.; Hamer, O.W.; Poschenrieder, F.; Fellner, C.; Zeman, F.; et al. Impact of Sleep-Disordered Breathing on Myocardial Salvage and Infarct Size in Patients with Acute Myocardial Infarction. Eur. Heart J. 2014, 35, 192–199. [Google Scholar] [CrossRef]
- Fisser, C.; Götz, K.; Hetzenecker, A.; Debl, K.; Zeman, F.; Hamer, O.W.; Poschenrieder, F.; Fellner, C.; Stadler, S.; Maier, L.S.; et al. Obstructive Sleep Apnoea but Not Central Sleep Apnoea Is Associated with Left Ventricular Remodelling after Acute Myocardial Infarction. Clin. Res. Cardiol. 2021, 110, 971–982. [Google Scholar] [CrossRef]
- Florés, M.; de Batlle, J.; Sánchez-De-La-Torre, A.; Sánchez-De-La-Torre, M.; Aldomá, A.; Worner, F.; Galera, E.; Seminario, A.; Torres, G.; Dalmases, M.; et al. Central Sleep Apnoea Is Related to the Severity and Short-Term Prognosis of Acute Coronary Syndrome. PLoS ONE 2016, 11, e0167031. [Google Scholar] [CrossRef] [PubMed]
- Solin, P.; Bergin, P.; Richardson, M.; Kaye, D.M.; Walters, E.H.; Naughton, M.T. Influence of Pulmonary Capillary Wedge Pressure on Central Apnea in Heart Failure. Circulation 1999, 99, 1574–1579. [Google Scholar] [CrossRef]
- Resnick, H.E.; Redline, S.; Shahar, E.; Gilpin, A.; Newman, A.; Walter, R.; Ewy, G.A.; Howard, B.V.; Punjabi, N.M. Diabetes and Sleep Disturbances: Findings from the Sleep Heart Health Study. Diabetes Care 2003, 26, 702–709. [Google Scholar] [CrossRef]
- Stone, G.W.; Selker, H.P.; Thiele, H.; Patel, M.R.; Udelson, J.E.; Ohman, E.M.; Maehara, A.; Eitel, I.; Granger, C.B.; Jenkins, P.L.; et al. Relationship Between Infarct Size and Outcomes Following Primary PCI: Patient-Level Analysis from 10 Randomized Trials. J. Am. Coll. Cardiol. 2016, 67, 1674–1683. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, N.; Kirigaya, J.; Abe, T.; Horii, M.; Toya, N.; Hanajima, Y.; Takahashi, H.; Akiyama, E.; Okada, K.; Matsuzawa, Y.; et al. Impact of Three-Dimensional Global Longitudinal Strain for Patients with Acute Myocardial Infarction. Eur. Heart J. Cardiovasc. Imaging 2020, 22, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Cimino, S.; Canali, E.; Petronilli, V.; Cicogna, F.; de Luca, L.; Francone, M.; Sardella, G.; Iacoboni, C.; Agati, L. Global and Regional Longitudinal Strain Assessed by Two-Dimensional Speckle Tracking Echocardiography Identifies Early Myocardial Dysfunction and Transmural Extent of Myocardial Scar in Patients with Acute ST Elevation Myocardial Infarction and Relatively Preserved LV Function. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 805–811. [Google Scholar] [CrossRef]
- Collier, P.; Phelan, D.; Klein, A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. J. Am. Coll. Cardiol. 2017, 69, 1043–1056. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Kimura, T.; Ishihara, M.; Nakagawa, Y.; Nakao, K.; Miyauchi, K.; Sakamoto, T.; Tsujita, K.; Hagiwara, N.; Miyazaki, S.; et al. JCS 2018 Guideline on Diagnosis and Treatment of Acute Coronary Syndrome. Circ. J. 2019, 83, 1085–1196. [Google Scholar] [CrossRef]
- Finan, P.H.; Richards, J.M.; Gamaldo, C.E.; Han, D.; Leoutsakos, J.M.; Salas, R.; Irwin, M.R.; Smith, M.T. Validation of a Wireless, Self-Application, Ambulatory Electroencephalographic Sleep Monitoring Device in Healthy Volunteers. J. Clin. Sleep Med. 2016, 12, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Levendowski, D.J.; Ferini-Strambi, L.; Gamaldo, C.; Cetel, M.; Rosenberg, R.; Westbrook, P.R. The Accuracy, Night-to-Night Variability, and Stability of Frontopolar Sleep Electroencephalography Biomarkers. J. Clin. Sleep Med. 2017, 13, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef]
- Sakane, K.; Miyoshi, T.; Doi, M.; Hirohata, S.; Kaji, Y.; Kamikawa, S.; Ogawa, H.; Hatanaka, K.; Kitawaki, T.; Kusachi, S.; et al. Association of New Arterial Stiffness Parameter, the Cardio-Ankle Vascular Index, with Left Ventricular Diastolic Function. J. Atheroscler. Thromb. 2008, 15, 261–268. [Google Scholar] [CrossRef]
- Roman, M.J.; Ganau, A.; Saba, P.S.; Pini, R.; Pickering, T.G.; Devereux, R.B. Impact of Arterial Stiffening on Left Ventricular Structure. Hypertension 2000, 36, 489–494. [Google Scholar] [CrossRef]
- Usui, K.; Bradley, T.D.; Spaak, J.; Ryan, C.M.; Kubo, T.; Kaneko, Y.; Floras, J.S. Inhibition of Awake Sympathetic Nerve Activity of Heart Failure Patients with Obstructive Sleep Apnea by Nocturnal Continuous Positive Airway Pressure. J. Am. Coll. Cardiol. 2005, 45, 2008–2011. [Google Scholar] [CrossRef]
- Peled, N.; Abinader, E.G.; Pillar, G.; Sharif, D.; Lavie, P. Nocturnal Ischemic Events in Patients with Obstructive Sleep Apnea Syndrome and Ischemic Heart Disease: Effects of Continuous Positive Air Pressure Treatment. J. Am. Coll. Cardiol. 1999, 34, 1744–1749. [Google Scholar] [CrossRef]
- Hetzenecker, A.; Buchner, S.; Greimel, T.; Satzl, A.; Luchner, A.; Debl, K.; Husser, O.; Hamer, O.W.; Fellner, C.; Riegger, G.A.J.; et al. Cardiac Workload in Patients with Sleep-Disordered Breathing Early after Acute Myocardial Infarction. Chest 2013, 143, 1294–1301. [Google Scholar] [CrossRef]
- Nakashima, H.; Muto, S.; Amenomori, K.; Shiraishi, Y.; Nunohiro, T.; Suzuki, S. Impact of Obstructive Sleep Apnea on Myocardial Tissue Perfusion in Patients with ST-Segment Elevation Myocardial Infarction. Circ. J. 2011, 75, 890–896. [Google Scholar] [CrossRef]
- Arzt, M.; Hetzenecker, A.; Steiner, S.; Buchner, S. Sleep-Disordered Breathing and Coronary Artery Disease. Can. J. Cardiol. 2015, 31, 909–917. [Google Scholar] [CrossRef]
- Raut, S.; Gupta, G.; Narang, R.; Ray, A.; Pandey, R.M.; Malhotra, A.; Sinha, S. The Impact of Obstructive Sleep Apnoea Severity on Cardiac Structure and Injury. Sleep Med. 2021, 77, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Arzt, M.; Oldenburg, O.; Graml, A.; Schnepf, J.; Erdmann, E.; Teschler, H.; Schoebel, C.; Woehrle, H. Prevalence and Predictors of Sleep-Disordered Breathing in Chronic Heart Failure: The SchlaHF-XT Registry. ESC Heart Fail 2022, 9, 4100–4111. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Li, B.; Kajstura, J.; Li, P.; Wolin, M.S.; Sonnenblick, E.H.; Hintze, T.H.; Olivetti, G.; Anversa, P. Stretch-Induced Programmed Myocyte Cell Death. J. Clin. Investig. 1995, 96, 2247–2259. [Google Scholar] [CrossRef] [PubMed]
- Arzt, M.; Hetzenecker, A.; Lévy, P. Obstructive Sleep Apnoea in Acute Coronary Syndrome: The Invisible Threat? Eur. Respir. J. 2017, 49, 1602539. [Google Scholar] [CrossRef] [PubMed]
- Randerath, W.J.; Nothofer, G.; Priegnitz, C.; Anduleit, N.; Treml, M.; Kehl, V.; Galetke, W. Long-Term Auto-Servoventilation or Constant Positive Pressure in Heart Failure and Coexisting Central with Obstructive Sleep Apnea. Chest 2012, 142, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Pusalavidyasagar, S.S.; Olson, E.J.; Gay, P.C.; Morgenthaler, T.I. Treatment of Complex Sleep Apnea Syndrome: A Retrospective Comparative Review. Sleep Med. 2006, 7, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Chew, D.S.; Heikki, H.; Schmidt, G.; Kavanagh, K.M.; Dommasch, M.; Bloch Thomsen, P.E.; Sinnecker, D.; Raatikainen, P.; Exner, D.v. Change in Left Ventricular Ejection Fraction Following First Myocardial Infarction and Outcome. JACC Clin. Electrophysiol. 2018, 4, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-de-la-Torre, M.; Sánchez-de-la-Torre, A.; Bertran, S.; Abad, J.; Duran-Cantolla, J.; Cabriada, V.; Mediano, O.; Masdeu, M.J.; Alonso, M.L.; Masa, J.F.; et al. Effect of Obstructive Sleep Apnoea and Its Treatment with Continuous Positive Airway Pressure on the Prevalence of Cardiovascular Events in Patients with Acute Coronary Syndrome (ISAACC Study): A Randomised Controlled Trial. Lancet Respir. Med. 2020, 8, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Peker, Y.; Glantz, H.; Eulenburg, C.; Wegscheider, K.; Herlitz, J.; Thunström, E. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Javaheri, S.; Rapoport, D.M.; Schwartz, A.R. Distinguishing central from obstructive hypopneas on a clinical polysomnogram. J. Clin. Sleep Med. 2023, 19, 823–834. [Google Scholar] [CrossRef] [PubMed]
Parameter | No SDB (n = 5) | OSA (n = 79) | CSA (n = 31) | p Value |
---|---|---|---|---|
Age, years | 70 ± 12 | 66 ± 10 | 62 ± 13 | 0.260 |
Male, n (%) | 3 (60) | 68 (86) | 30 (96) | 0.045 |
Body mass index, kg/m2 | 21.9 ± 1.6 | 24.8 ± 4.5 | 25.4 ± 3.9 | 0.168 |
Killip class ≥ II, n (%) | 1 (20) | 13 (16) | 3 (9) | 0.629 |
Hypertension, n (%) | 2 (40) | 52 (65) | 19 (61) | 0.486 |
Diabetes mellitus, n (%) | 2 (40) | 28 (35) | 10 (32) | 0.922 |
Dyslipidemia, n (%) | 4 (80) | 61 (77) | 23 (74) | 0.928 |
Current smoker, n (%) | 1 (20) | 23 (29) | 16 (51) | 0.064 |
Reperfusion within 12 h from onset of STEMI, n (%) | 5 (100) | 70 (88) | 30 (96) | 0.306 |
Culprit LAD, n (%) | 3 (60) | 50 (63) | 12 (38) | 0.064 |
Multi-vessel disease, n (%) | 4 (80) | 28 (35) | 9 (29) | 0.087 |
Peak CK-MB, IU/L | 218 (170–548) | 198 (124–363) | 182 (90–361) | 0.6 |
eGFR, mL/min/1.73 m2 | 48 (44–67) | 64 (53–78) | 61 (54–75) | 0.272 |
Medication at discharge, n (%) | ||||
β-blocker | 2 (40) | 50 (64) | 22 (70) | 0.404 |
ACE-I/ARB | 4 (80) | 68 (86) | 27 (87) | 0.913 |
Statin | 5 (100) | 78 (98) | 28 (90) | 0.087 |
Aspirin | 4 (80) | 74 (93) | 30 (96) | 0.342 |
Arousal index | 8.8 (7.1–10.5) | 19.9 (12.9–28.2) | 18.7 (12.1–22.2) | 0.013 |
Mean SpO2, % | 98 (97–98) | 97 (95–98) | 97 (95–98) | 0.115 |
Minimum SpO2, % | 93 (63–93) | 83 (67–86) | 77 (69–87) | 0.184 |
3% ODI | 4.3 (1.8–16.1) | 31.7 (17.8–51.1) | 33.6 (14.4–57.4) | 0.017 |
Sleep stage (% sleep time) | ||||
N1 | 13.9 (7.1–31.3) | 30.5 (21.6–43.9) | 19.6 (43.7–27.1) | 0.173 |
N2 | 51.4 (38.9–63.4) | 46.8 (34.4–57.3) | 47.0 (25.8–52.4) | 0.713 |
N3 | 3.8 (0.1–13.8) | 0 (0–0.9) | 0 (0–0.5) | 0.229 |
REM | 23.9 (21.7–26.9) | 18.6 (13.8–26.3) | 19.2 (16.9–24.2) | 0.292 |
Obstructive apnea index | 0 (0–0.4) | 8.6 (3.4–20) | 2 (0.6–5.7) | <0.001 |
Central apnea index | 0 (0–0.8) | 0.3 (0–1.9) | 4.3 (1.5–19.8) | <0.001 |
Total apnea index | 0.4 (0.2–0.9) | 11.7 (3.9–22.6) | 9.4 (2.1–31.1) | 0.048 |
Hypopnea index | 3 (1.6–3.9) | 12.7 (9.0–19.1) | 10.6 (6.8–18.2) | 0.026 |
Apnea hypopnea index | 3.9 (1.9–4.2) | 29.3 (17.6–46.4) | 27.5 (15.9–46.8) | 0.001 |
Cheyne stokes respiration, % | 0 (0) | 7 (9) | 15 (48) | <0.001 |
Parameter | No SDB (n = 5) | OSA (n = 79) | CSA (n = 32) | p-Value |
---|---|---|---|---|
Echocardiography at 1 week | ||||
LVEF; % | 50 (31–54) | 49 (44–55) | 50 (43–54) | 0.604 |
LVEDVI (mL/m2) | 58 (49–68) | 59 (45–68) | 54 (43–71) | 0.961 |
LVESVI (mL/m2) | 24 (19–45) | 28 (21–37) | 26 (21–36) | 0.732 |
Deceleration time; msec | 193 (156–234) | 181 (152–216) | 181 (144–224) | 0.937 |
E/A | 0.85 (0.59–1.21) | 0.82 (0.66–1.12) | 0.76 (0.65–0.99) | 0.877 |
E/e’ (mean) | 11.3 (8.3–14.6) | 10.2 (8.6–12.9) | 9.6 (7.2–11.7) | 0.342 |
LAVI (mL/m2) | 35.7 (29.4–51.2) | 33.2 (26.8–41.5) | 30.8 (26.9–37.7) | 0.500 |
LV-GLS | −14.7 (−15.8–−10.9) | −13.3 (−15.3–−11.2) | −13.4 (−15.0–−12.6) | 0.816 |
Echocardiography at 7 months | ||||
LVEF; % | 47 (44–57) | 51 (44–57) | 51 (46–58) | 0.435 |
LVEDVI (mL/m2) | 68 (48–70) | 62 (50–79) | 58 (46–74) | 0.563 |
LVESVI (mL/m2) | 37 (24–42) | 31 (24–39) | 25 (23–38) | 0.387 |
Deceleration time; msec | 224 (180–314) | 214 (179–260) | 251 (201–285) | 0.124 |
E/A | 0.82 (0.52–1.25) | 0.72 (0.61–0.89) | 0.80 (0.71–0.90) | 0.320 |
E/e’ (mean) | 10.3 (6.7–12.0) | 9.0 (6.8–11.5) | 9.9 (7.1–11.3) | 0.979 |
LAVI (mL/m2) | 40.0 (31.4–48.3) | 31.1 (25.5–40.0) | 31.0 (27.8–42.3) | 0.190 |
LV-GLS | −13.8 (−19.0–−11.0) | −14.9 (−16.2–−11.7) | −15.0 (−16.1–−13.1) | 0.938 |
Parameter | Obstructive Apnea Index | Central Apnea Index | ||
---|---|---|---|---|
R | p-Value | R | p-Value | |
Echocardiography at 1 week | ||||
LVEF; % | −0.15 | 0.105 | −0.02 | 0.799 |
LVEDVI (mL/m2) | 0.11 | 0.214 | 0.09 | 0.308 |
LVESVI (mL/m2) | 0.16 | 0.069 | 0.05 | 0.550 |
Deceleration time; msec | 0.01 | 0.836 | 0.09 | 0.326 |
E/A | −0.21 | 0.025 | −0.11 | 0.241 |
E/e’ (mean) | 0.21 | 0.024 | 0.004 | 0.959 |
LAVI (mL/m2) | −0.03 | 0.730 | −0.02 | 0.792 |
LV-GLS | 0.24 | 0.007 | 0.01 | 0.893 |
Echocardiography at 7 months | ||||
LVEF; % | −0.17 | 0.064 | −0.05 | 0.534 |
LVEDVI (mL/m2) | 0.22 | 0.014 | 0.11 | 0.209 |
LVESVI (mL/m2) | 0.26 | 0.004 | 0.10 | 0.277 |
Deceleration time; msec | 0.007 | 0.936 | 0.08 | 0.362 |
E/A | −0.30 | 0.001 | −0.02 | 0.787 |
E/e’ (mean) | 0.17 | 0.057 | 0.13 | 0.146 |
LAVI (mL/m2) | 0.006 | 0.943 | 0.15 | 0.098 |
LV-GLS | 0.21 | 0.020 | 0.04 | 0.619 |
Variables | Univariable | |
---|---|---|
Odds Ratio | p-Value | |
Arousal index | 1.00 (0.97–1.03) | 0.837 |
Mean SpO2; % | 0.80 (0.63–1.02) | 0.081 |
Minimum SpO2; % | 0.99 (0.97–1.01) | 0.653 |
3% ODI | 1.00 (0.99–1.02) | 0.635 |
Sleep stage N1 (%sleep time) | 1.01 (0.99–1.03) | 0.063 |
N2 | 0.98 (0.96–1.00) | 0.011 |
N3 | 0.89 (0.77–1.02) | 0.328 |
REM | 1.00 (0.96–1.04) | 0.842 |
OSA predominant | 0.74 (0.33–1.63) | 0.458 |
CSA predominant | 1.52 (0.66–3.49) | 0.319 |
Obstructive apnea index | 1.00 (0.98–1.03) | 0.527 |
Central apnea index | 1.00 (0.96–1.04) | 0.875 |
Total apnea index | 1.00 (0.98–1.02) | 0.555 |
Hypopnea index | 0.99 (0.96–1.03) | 0.933 |
Apnea hypopnea index | 1.00 (0.98–1.02) | 0.634 |
Cheyne stokes respiration; % | 1.22 (0.48–3.11) | 0.668 |
Variables | Univariate | Multivariate Model I | Multivariate Model II | Multivariate Model III | ||||
---|---|---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | β | p-Value | |
Peak CK-MB; per 1 IU/L | 0.46 | <0.001 | 0.30 | 0.001 | 0.26 | 0.004 | 0.27 | 0.002 |
Reperfusion within 12 h from onset of STEMI | 0.13 | 0.137 | ||||||
Culprit LAD | 0.2 | 0.027 | −0.15 | 0.063 | −2.08 | 0.040 | −0.16 | 0.038 |
Multi-vessel disease | −0.01 | 0.907 | ||||||
Age; per year | 0.01 | 0.899 | ||||||
Final TIMI flow grade = 3 | −0.13 | 0.159 | ||||||
Initial TIMI flow grade ≥ 2 | −0.41 | <0.001 | 0.29 | <0.001 | 0.37 | <0.001 | 0.31 | <0.001 |
AHI | 0.25 | 0.006 | 0.26 | <0.001 | ||||
OSA predominant | −0.05 | 0.536 | ||||||
CSA predominant | 0.05 | 0.585 | ||||||
Obstructive apnea index | 0.21 | 0.020 | 0.24 | 0.002 | ||||
Central apnea index | 0.01 | 0.893 | ||||||
Cheyne stokes respiration | 0.04 | 0.643 | ||||||
Minimum SpO2 | −0.18 | 0.053 | ||||||
Mean SpO2 | −0.03 | 0.710 | ||||||
Oxygen desaturation index 3% | 0.31 | <0.001 | ||||||
R2 | 0.295 | 0.354 | 0.298 | |||||
Adjusted R2 | 0.276 | 0.330 | 0.272 |
Variables | Univariate | Multivariate I | Multivariate II | Multivariate III | ||||
---|---|---|---|---|---|---|---|---|
Β | p-Value | β | p-Value | β | p-Value | β | p-Value | |
Peak CK-MB; per 1 IU/L | 0.45 | <0.001 | 0.26 | 0.004 | 0.23 | 0.011 | 0.24 | 0.007 |
Reperfusion within 12 h from onset of STEMI | 0.17 | 0.059 | ||||||
Culprit LAD | −0.23 | 0.011 | −0.17 | 0.034 | −0.18 | 0.021 | −0.19 | 0.017 |
Multi-vessel disease | −0.02 | 0.773 | ||||||
β-blocker on discharge | −0.23 | 0.013 | 0.08 | 0.297 | 0.07 | 0.352 | 0.06 | 0.439 |
Age; per year | 0.04 | 0.604 | ||||||
Final TIMI flow grade = 3 | 0.23 | 0.012 | 0.20 | 0.012 | 0.20 | 0.010 | 0.20 | 0.007 |
Initial TIMI flow grade ≥ 2 | 0.38 | <0.001 | 0.25 | 0.006 | 0.20 | 0.001 | 0.28 | 0.001 |
AHI | 0.21 | 0.021 | 0.22 | 0.004 | ||||
OSA predominant | −0.05 | 0.530 | ||||||
CSA predominant | 0.04 | 0.638 | ||||||
Obstructive apnea index | 0.21 | 0.020 | 0.20 | 0.008 | ||||
Central apnea index | 0.04 | 0.619 | ||||||
Cheyne stokes respiration | −0.07 | 0.407 | ||||||
Minimum SpO2 | −0.15 | 0.103 | ||||||
Mean SpO2 | 0.21 | 0.116 | ||||||
Oxygen desaturation index 3% | 0.24 | 0.008 | ||||||
R2 | 0.327 | 0.369 | 0.376 | |||||
Adjusted R2 | 0.296 | 0.334 | 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirigaya, J.; Iwahashi, N.; Ishigami, T.; Abe, T.; Gohbara, M.; Hanajima, Y.; Horii, M.; Okada, K.; Matsuzawa, Y.; Kosuge, M.; et al. Influence of Obstructive Apnea Index on Persistent Left Ventricular Dysfunction in Patients with ST-Segment Elevation Myocardial Infarction. J. Clin. Med. 2024, 13, 986. https://doi.org/10.3390/jcm13040986
Kirigaya J, Iwahashi N, Ishigami T, Abe T, Gohbara M, Hanajima Y, Horii M, Okada K, Matsuzawa Y, Kosuge M, et al. Influence of Obstructive Apnea Index on Persistent Left Ventricular Dysfunction in Patients with ST-Segment Elevation Myocardial Infarction. Journal of Clinical Medicine. 2024; 13(4):986. https://doi.org/10.3390/jcm13040986
Chicago/Turabian StyleKirigaya, Jin, Noriaki Iwahashi, Tomoaki Ishigami, Takeru Abe, Masaomi Gohbara, Yohei Hanajima, Mutsuo Horii, Kozo Okada, Yasushi Matsuzawa, Masami Kosuge, and et al. 2024. "Influence of Obstructive Apnea Index on Persistent Left Ventricular Dysfunction in Patients with ST-Segment Elevation Myocardial Infarction" Journal of Clinical Medicine 13, no. 4: 986. https://doi.org/10.3390/jcm13040986
APA StyleKirigaya, J., Iwahashi, N., Ishigami, T., Abe, T., Gohbara, M., Hanajima, Y., Horii, M., Okada, K., Matsuzawa, Y., Kosuge, M., Ebina, T., & Hibi, K. (2024). Influence of Obstructive Apnea Index on Persistent Left Ventricular Dysfunction in Patients with ST-Segment Elevation Myocardial Infarction. Journal of Clinical Medicine, 13(4), 986. https://doi.org/10.3390/jcm13040986