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Abstract: Obstructive sleep apnea (OSA) affects almost a billion people worldwide and is associated
with a myriad of adverse health outcomes. Among the most prevalent and morbid are cardiovascular
diseases (CVDs). Nonetheless, randomized controlled trials (RCTs) of OSA treatment have failed
to show improvements in CVD outcomes. A major limitation in our field is the lack of precision in
defining OSA and specifically subgroups with the potential to benefit from therapy. Further, this has
called into question the validity of using the time-honored apnea–hypopnea index as the ultimate
defining criteria for OSA. Recent applications of advanced statistical methods and machine learning
have brought to light a variety of OSA endotypes and phenotypes. These methods also provide an
opportunity to understand the interaction between OSA and comorbid diseases for better CVD risk
stratification. Lastly, machine learning and specifically heterogeneous treatment effects modeling
can help uncover subgroups with differential outcomes after treatment initiation. In an era of data
sharing and big data, these techniques will be at the forefront of OSA research. Advanced data science
methods, such as machine-learning analyses and artificial intelligence, will improve our ability to
determine the unique influence of OSA on CVD outcomes and ultimately allow us to better determine
precision medicine approaches in OSA patients for CVD risk reduction. In this narrative review, we
will highlight how team science via machine learning and artificial intelligence applied to existing
clinical data, polysomnography, proteomics, and imaging can do just that.

Keywords: obstructive sleep apnea; cardiovascular disease; machine learning; artificial intelligence;
heterogeneity of treatment effects; ethics in machine learning and artificial intelligence

1. Introduction

Obstructive sleep apnea (OSA) affects almost one billion people worldwide and
24 million people in the United States alone [1]. Despite the magnitude of this disorder,
there remains a considerable knowledge gap in how we address its implications. The
belief that all OSA patients require treatment has been questioned due to the lack of
concrete evidence supporting this stance [2,3]. For instance, while continuous positive
airway pressure (CPAP) enhances measures of sleepiness, blood pressure, and overall
quality of life [4,5], its positive influence on cardiovascular disease (CVD) risk has not
been consistently demonstrated, especially among nonsleepy OSA patients [6–8]. This
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inconsistency in outcomes suggests that the OSA population is heterogeneous and that not
all patients derive equal benefits from CPAP.

Moreover, there is an absence of clinical risk-prediction tools specifically for CVD in
OSA patients, though there are ongoing efforts within this domain [9,10]. Clinicians find
it challenging to prioritize treatment for those at elevated risk, underscoring the need for
more sophisticated, data-driven solutions. The current challenges focus on optimizing
treatment plans, discerning those at increased risk of primary and recurrent CVD events,
and identifying those patients who might benefit from interventions like CPAP for CVD risk
mitigation. The significance of developing machine learning (ML)/artificial intelligence
(AI)-based prediction tools for CVD risk reduction especially in asymptomatic OSA patients
cannot be overstated. Randomized clinical trials (RCTs), unfortunately, do not always
provide clarity on the full scope of treatment benefits. Though the major RCTs have
not shown significant advantages of CPAP in decreasing CVD events in nonsleepy OSA
patients, we speculate that this may be partially due to heterogeneity in treatment responses,
i.e., not everyone with OSA will experience CVD risk reduction when CPAP is applied.

ML and AI present promising avenues for advancing our understanding and treatment
of OSA. Both the National Institutes of Health (NIH) and the American Heart Association
(AHA) have recognized the potential of ML/AI for advancing our understanding of how
sleep disorders impact cardiovascular health and the need for fine-tuning treatment person-
alization [11,12]. Incorporating ML into medical research has led to the discovery of novel
causal contributors to adverse outcomes [13,14]. For example, in the PARADIGM registry,
ML models outperformed conventional statistical models and atherosclerotic CVD risk
scores in identifying individuals at risk of rapid progression of coronary atherosclerosis [15].
In the Multi-Ethnic Study of Atherosclerosis (MESA), ML more accurately predicted the
CVD event rate compared to traditional risk scores [16]. The heterogeneity of OSA disease
presentations, risk factors, overlapping comorbidities, and treatment outcomes make it an
ideal condition for the application of ML/AI. Vast clinical, biomedical, and polysomno-
graphic information in OSA patients often remains underutilized in current analyses due to
the magnitude of and interdependencies within the data. There has been significant interest
and progress in employing ML/AI to develop more effective diagnostic and monitoring
programs for OSA. However, striking the right balance between ideal methods and practical
constraints is essential in this pursuit. Furthermore, the application of ML in sleep medicine
opens new avenues of investigation into the issue of treatment heterogeneity. Current
projects within our group are applying ML to RCT data to develop advanced decision tools
to identify nonsleepy OSA patient subgroups with differential treatment responses, a task
that has been challenging using traditional methodologies. Furthermore, new advanced AI
technologies, such as transformer-based neural networks, can augment ML-based applica-
tions. Transformers can effectively process raw image data, such as computed tomography
(CT) scans of the face, oral cavity, or chest, or polysomnographic (PSG) data, enabling the
automated recognition and categorization of prevalent sleep apnea-related patterns.

However, a major hurdle of ML/AI is the “black box” phenomenon, where the process
from input to outcome remains obscured. This opaqueness can deter trust in the system,
particularly for clinicians, researchers, and educators unfamiliar with ML/AI and its
strengths and weaknesses. Thoroughly evaluating the output of ML is just as crucial as
crafting the model itself, especially when considering its potential integration into clinical
practice. Addressing this requires a team-science approach, blending the expertise of
clinicians, data scientists, statisticians, and clinical bioinformaticians. The objective is to
produce robust, high-performance prediction models that can be readily translated into
clinical practice.

This review will focus on the crucial role of ML/AI in achieving a more patient-
centered diagnosis of OSA by replacing traditional diagnostic metrics, as well as its applica-
tion in understanding treatment heterogeneity. We believe that harnessing state-of-the-art
ML/AI techniques to analyze extensive OSA datasets will usher in the long-awaited era of
personalized medicine for OSA.
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2. Statistical Methodology and Machine Learning Algorithms

ML, a subset of AI, uses computer algorithms to identify complex interactions in large,
multidimensional datasets that might elude human analysis. There are currently three
important forms of ML/AI currently in use: supervised, unsupervised, and reinforcement
learning frameworks. Supervised approaches are characterized by their ability to learn the
underlying relationships between predictor variables and known outcomes [17]. These
types of analyses can be used in medicine for risk assessment, diagnosis, and predicting
treatment outcomes. This category includes both models that are intuitive and easy to
interpret, such as linear models and decision trees, as well as those that capture more
complex interactions between predictor and outcome variables. Simpler models offer
intuitive and more easily interpretable predictions based on patient features, but they often
lack robustness and are sensitive to random perturbations in the data. More complex
algorithms, including the support vector machine, random forest, and deep learning, can
be very powerful and robust but difficult to understand. For example, a random forest
model built using data from the Sleep Heart Health Study was more accurate in predicting
10-year CVD risk than the Framingham Risk Score (FRS) [18]. However, it is not possible
to understand all the ways in which variables within the model interact to produce its
predictions. Therefore, using such a model, it is not easy to identify specific clinical features
to target for intervention. Users can only feed a patient’s data into the model to obtain a
risk prediction. Conversely, for the FRS, each variable and its weighted importance (i.e.,
the number of points it contributes to the score) are published. Thus, a clinician can assess
which variables from an individual patient’s history are contributing to a given score and
tally their score manually. An ensemble method such as random forests improves the
algorithm accuracy by stabilizing the model performance through averaging the outcomes
of multiple decision trees. However, explaining the interaction between features within the
model can still be problematic. Lastly, even more advanced methods like survival forests
use similar ensemble methods but focus on time-to-event data, providing a measure of risk
over time [19].

Unsupervised learning attempts to learn patterns from seemingly random data within
large datasets [20]. This takes on two main forms: (1) the clustering of participants based
on underlying data and (2) dimensionality reduction, which uncovers a smaller number of
hidden features that best represent and summarize the data without loss of information.
Clustering methods are useful for identifying disease phenotypes and subgroups with
similar characteristics, and have evolved from commonly used methods, such as latent class
analysis (LCA), hierarchical clustering, and K-means clustering, to more advanced deep
learning-based approaches. A study by Bailly et al. represents a prime example of clustering
within OSA utilizing multiple data domains, including clinical and PSG data, from a large
European database [21]. Using LCA, the authors found eight distinct phenotypes among
23,139 OSA patients. Further, they found that the rate of CPAP prescription varied between
groups, with overweight men and women having some of the lowest prescription rates
(57% and 49%, respectively), while younger/sleepier obese patients as well as older obese
men had the highest rates of CPAP prescription (94% and 93%, respectively). The second
category of unsupervised learning, dimensionality reduction, includes methods such as the
linear principal component analysis (PCA), the nonlinear uniform manifold approximation
and projection (UMAP), and more complex deep learning-based autoencoders. These types
of analyses are useful for identifying a parsimonious list of features that represent the data
while reducing the redundancy present with other methods, such as clustering. PSG is
a great example of high-dimensional data capturing a multitude of physiologic signals.
Dimensionality reduction techniques allow us to combine and pare down this information.
For example, PCA can be applied to clinical [22] and/or PSG [23] data to reduce the number
of features, and combined with clustering methods to identify unique patient subgroups
from immense streams of data, which would be missed by conventional clinical scores and
traditional PSG criteria.
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While both the aforementioned supervised and unsupervised ML methods are static,
reinforcement learning is a dynamic learning method by which an algorithm continues to
evolve using feedback from past experiences to improve its performance [24]. Autotitrating
CPAP is an excellent candidate for the application of reinforcement learning. Currently,
autotitrating CPAP responds to flow limitation from a fixed scanning window. However,
using the principles of reinforcement learning, it is possible to develop a system that
could also learn patterns within or across nights to better optimize continuous pressure
adjustment adapted to an individual patient in a certain position at a given time during
sleep. This technique has not been utilized as much within sleep medicine as yet. However,
there is great potential for its application in the future.

Lastly, though not a separate category of ML, transfer learning is another technique
that must be mentioned and can be used in combination with any of the above forms of
ML. Transfer learning is the application of models designed for one task/environment
to another, enabling more rapid development of ML in a new setting [25,26]. As AI
continues to advance, existing ML/AI models trained on large comprehensive datasets
offer researchers and clinicians a strong foundation for creating new, more specialized,
and effective diagnostic and treatment decision tools in other datasets. For example, a
supervised learning model that was developed in a large clinical cohort predominantly
comprised of white males may perform poorly if applied directly to other cohorts. Transfer
learning allows us to retrain and adjust this existing model in a cohort that has a higher
percentage of women and racial/ethnic diversity. Transfer learning can also improve ML
performance when applied to smaller cohorts in a phenotypic subgroup; for example,
as it uses the robust model initially developed within a larger population but tailored
to this subgroup. Not only does transfer learning accelerate the development process,
but it also produces more precise and efficient solutions, particularly in these types of
data-limited scenarios.

3. Applying Machine Learning and Artificial Intelligence to Obstructive Sleep Apnea
Data Domains
3.1. Assessment of Clinical Data

While the power of ML really shines when analyzing high-dimensional data, such
as PSG, or handling multiple large data streams, it can still be useful in developing risk-
prediction tools based solely on clinical data. Holfinger et al. used several supervised
learning approaches, including the support vector machine, random forest, and artificial
neural networks, to predict OSA diagnosis within the clinic-based SAGIC and Sleep Heart
Health Cohorts using only age, sex, BMI, and race [27]. The authors were able to show
better performance than a logistic regression model and similar performance to the STOP-
BANG score, which requires more features. We must pause here, though, to highlight that
the use of race in such models must be performed cautiously. Further, both cohorts used
within these ML algorithms had very limited numbers of some historically and persistently
excluded racial and ethnic groups. This issue of bias and ethics in ML/AI will be discussed
further in a later section. Unsupervised ML approaches have also been helpful in the clini-
cal domain. Mazzotti et al. used LCA to uncover four unique symptom phenotypes within
OSA patients: “disturbed sleep”, “minimally symptomatic”, “moderately sleepy”, and
“excessively sleepy” [28]. Survival analysis within these groups identified the “excessively
sleepy” phenotype as having the highest risk of incident CVD. A similar analysis using
LCA was performed within the Icelandic Sleep Apnoea Cohort, finding clusters with “dis-
turbed sleep”, “minimally symptomatic”, and “excessive daytime sleepiness” [29]. These
examples highlight the ways in which both supervised and unsupervised ML approaches
can predict risk using a parsimonious list of features and uncover hidden relationships
within clinical data.
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3.2. Harnessing the Power of Polysomnography

The field of OSA is undergoing a paradigm shift [30,31]. Over the last several decades
physicians and researchers have predominantly focused on the AHI as the primary, and of-
ten sole, measure of OSA severity, attempting to understand clinical outcomes based on this
metric alone [32]. However, the AHI is a hypothesis-driven measure of OSA severity [33],
developed with only the underlying disease process in mind and without consideration
for disease effects on relevant outcomes [34]. This process of disease classification and
study without the consideration of broader disease implications is outdated, lacking in
patient-centeredness [35], and contributes to overdiagnosis. Though the AHI has been
useful, it has ultimately reached its limits.

In the new age of OSA precision medicine and data-driven science, novel metrics to
grade the disease severity and subtype using an individualized patient-centered approach
have gained a foothold [36,37]. Four major OSA endotypes have been developed and
described, including pharyngeal collapsibility, loop gain, arousal threshold, and airway
dilator muscle compensation [38,39]. These distinct endotypes have been shown to be
scalable using cloud-based algorithms [40] and can be used as relevant features within
ML-based decision trees for personalized treatment selection [41–43]. There are emerging
data demonstrating their utility in assessing favorability for alternative therapies such
as hypoglossal nerve stimulation [44] and even blood pressure response to the CPAP
treatment of OSA [45]. However, these endotypes were developed to better characterize
the physiology underlying OSA-related respiratory events, not clinical outcomes such as
symptoms or CVD risk.

To better understand OSA in the context of patient-centered outcomes, we can ap-
ply novel mathematical methods to identify the physiologic and clinical consequences of
OSA-related respiratory events across an entire night and even breath-by-breath [46,47].
Physiologic responses to OSA events can be divided into several separate, though inter-
connected, axes, including arousal, sympathetic, hypoxemic, and ventilatory. Using these
responses, we can better predict CVD morbidity and mortality [48–50]. Further, novel
measures such as the pulse rate response—a surrogate for sympathetic tone—have been
shown to predict CVD benefit after OSA treatment [51]. The automation of these measures
will allow for greater application and combination of these features with additional clinical
variables within ML models to better predict disease outcomes and treatment response.

As mentioned above, PSG data are an excellent candidate for ML/AI applications
given the high dimensionality and multiple data signals. Automated scoring algorithms
for PSG developed in the last two decades have shown promise in replacing manual scor-
ing [52]. Deep-learning techniques like neural networks have been used to detect apneas
and hypopneas in real time during PSG [53]. Further, the detection of these events can be
achieved even in pared-down PSG signal data, such as a single respiratory channel [54] or
limited EEG [55]. Layering automated analysis of physiologic responses on top of existing
automation of traditional scoring will allow for a deeper understanding of patient-level
data and the identification of additional features that contribute to meaningful disease
outcomes in future research. For example, neural networks can meaningfully predict
patient-relevant outcomes, such as daytime sleepiness [56]. Going beyond OSA itself, the
data contained within a PSG and processed via neural networks can predict mortality, with
much of the risk attributable to sleep fragmentation [57]. Though, it would seem from
recent data that OSA-event-related arousals alone do not provide additional information
regarding incident CVD [58]. Thus, there is a wealth of information available within the
PSG. By applying modern machine- and deep-learning approaches to analyze PSG signals,
we may finally be able to understand the complex links between OSA and health outcomes,
such as CVD. Further, these robust analytical processes may allow for the more accurate
assessment of OSA from wearable devices in the home sleep testing arena.
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3.3. Proteomics to Predict Cardiovascular Disease Risk in OSA

While there have been significant advances in the physiologic endotyping and clinical
phenotyping of OSA, the pathobiological mechanisms underlying OSA morbidity remain
elusive. Gaining a comprehensive understanding of how physiological processes associ-
ated with respiratory events result in biological responses leading to cardiometabolic and
neurocognitive dysfunction is key [59]. To better understand this disease complexity, it
is important to elucidate molecular and proteomic biomarkers contributing to the basic
mechanisms underlying OSA. Proteomics refers to the set of ‘big data’ technologies applied
to discover protein biomarkers associated various disease states. Such analyses can be
performed using a “shotgun” approach to identify all measured proteins/metabolites, or
using a targeted approach centered on a group of proteins [60]. Either way, the combination
of “omics”-based strategies and ML methods have the potential to revolutionize sleep
medicine and boost our understanding of pathobiological pathways in OSA.

Advanced immunoassays, such as the Olink® inflammation and CVD biomarker
panels (Olink® Bioscience, Uppsala, Sweden), allow for the exploration of personalized
immunophenotyping. Olink® is a proteomics array that measures plasma biomarkers
reflecting inflammation, immune response, cell adhesion, and tissue remodeling using a
proximity extension assay. The Olink® platform has been used in several studies to identify
proteins associated with various CVDs [61–63]. This panel has also been used in OSA
patients to identify subgroups based on differential inflammatory protein expression. For
example, in a recent post hoc analysis of the ISAACC study [8], Zapater et al. analyzed
the proteomic profiles in 86 OSA patients admitted for acute coronary syndrome, divided
into those with and without recurrent CVD events [64]. Using a supervised random forest
algorithm to select relevant proteins and generate a predictive model of recurrent CVD, the
authors identified 38 (of 276) cardiovascular and inflammatory proteins that were differen-
tially expressed between the two groups. Additionally, 12 proteins emerged as predictive
biomarkers, of which 3 were identified as having the highest contribution to prediction of
recurrent CVD events among this cohort of OSA patients. These proteins included CXCL16,
STK4, and TFPI, which are implicated in cell proliferation, communication and apoptosis,
and regulation/response to inflammation and immune systems. Another study used the
same proteomics panel to investigate the association between OSA severity and changes
in inflammatory protein expression profiles in a cohort of women [65]. There was no sig-
nificant association between OSA and protein expression after adjusting for age and BMI,
though severe OSA during rapid eye movement (REM) sleep was negatively associated
with Axin 1 (a protein involved in tumor suppression/regulation [66]). Severe REM OSA
was also associated with reductions in Sirtuin-2 (a protein involved in metabolic regulation
and adipogenesis inhibition [67,68]). In a subsequent study among men by Ljunggren et al.,
this REM OSA effect was not observed [69]. However, among men, an oxygen desaturation
index ≥30 was associated with increased plasma levels of eight inflammatory proteins,
including interferon gamma and angiotensin-converting enzyme 2.

Kundel et al. recently used unsupervised analyses to uncover three unique clusters of
OSA in 46 patients with low, intermediate, and high inflammatory protein expression using
the Olink® panel [70]. In an exploratory analysis, the authors found a differential response
to CPAP among the three clusters, with an increase in inflammatory protein expression
in the “low inflammatory” cluster and a decrease in inflammatory protein expression in
the “high inflammatory” cluster following three months of CPAP. Although the samples
sizes were small (total n = 46), the results are hypothesis-generating, and may guide future
studies in the pursuit of characterizing “at-risk” subgroups of OSA patients. A similar
approach using the Olink® panel was applied to nasal lavage samples collected from
patients with OSA before and after initiating CPAP. In this study, Cohen et al. identified
13 proteins that significantly decreased after CPAP in a subset of participants classified
as having a high baseline inflammatory protein expression by unsupervised clustering
methods [71]. Many of these proteins (e.g., MCP-4, OSM, LAP TGF-beta1, and VEGF-alpha)
have been linked to immune cell differentiation, chemotaxis, airway inflammation, and
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vascular remodeling. Further validation of these results using a combination of omics
with ML algorithms can help risk-stratify OSA patients for future clinical trials for CVD
risk reduction.

Despite these advances, there remains a long road ahead in identifying reliable OSA
biomarkers from the extensive array of options offered by proteomics. Sleep medicine has
traditionally lagged behind in the integration of omics data, leaving a significant knowledge
gap in our understanding of sleep disorders like OSA. The emerging landscape of OSA’s
association with inflammation and CVD risk demands a more comprehensive approach.
Integrating ML and omics data can unlock crucial insights into the molecular underpinnings
of OSA and its impact on CVD risk. Moreover, embracing unsupervised ML approaches will
be imperative for uncovering novel biomarkers that may have been previously overlooked.
By combining ML/AI and omics, we have the potential to revolutionize sleep research,
allowing us to (1) identify distinct subgroups within OSA populations with or without an
elevated CVD risk, and (2) monitor OSA treatment efficacy [72]. This holistic approach can
pave the way for more personalized diagnostics and treatments in sleep medicine.

3.4. Image-Based Machine Learning in OSA

Multiple ML approaches can be applied to OSA-related imaging data. Morphometric
analysis, used in facial recognition technology, employs ML to analyze distances and
arrangements of facial landmarks. Researchers have used the morphometric analysis
of facial landmarks based on both 2D [73] and 3D [74,75] photography to differentiate
between those with and without OSA. In a similar approach, Tsuiki et al. [76] used AI to
analyze oropharynx architectures on 2D cephalometric radiographs. Automation of these
technologies will allow for anatomic phenotyping within OSA and has the potential to
replace OSA screening or even traditional sleep studies for diagnosis.

One of the most frequently used image-based ML applications is the automated seg-
mentation of anatomical structures or the automatic classification of an image into different
representative groups (e.g., disease versus no disease). This application typically utilizes a
convolutional neural network approach. This approach allows rapid and robust segmen-
tation to facilitate the measurement of dimensions and volumes of anatomical structures
of interest. Extracted metrics can subsequently be used in diagnostic decision trees or
in risk stratification. In the setting of OSA, most attention has been given to segmenting
features of the upper airway based on 3D CT and magnetic resonance imaging (MRI) data.
Craniofacial and upper-airway morphometric features on CT imaging, including the upper
airway length, the A point–nasion–B point (ANB) angle, and the gonion–gnathion–hyoid
angle, have been associated with elevated CVD risk [77]. De Bataille et al. [78] and Shujaat
et al. [79] have used ML in cone-beam CT imaging to measure airway volume. A number
of groups have demonstrated the use of the ML-based analysis of MRI to automatically
segment upper-airway structures, including the pharynx, tongue, and soft palate, that may
facilitate large-scale epidemiological analyses in OSA patients in the future [80–82]. Molnar
et al. [83] used an AI analysis based on pharyngeal adipose tissue thickness derived from
MRI, sex, and neck and waist circumference to separate patients with airway obstruction
from those without. In a novel approach to airway measures, ML-supported computational
fluid dynamics analysis has been used to predict OSA-related airflows [84].

Image-based ML has also been applied to brain MRI scans in OSA patients. Pang
et al. [85] used the support vector machine and random forest to accurately classify OSA
based on diffusion tensor MRI scans of the brain. In another study, Liu et al. [86] used
ML analysis of resting-state functional MRI (rs-fMRI) scans of the brain to identify OSA
patients with and without cognitive impairment. Similarly, Shu et al. [87] used rs-fMRI
and ML analyses to investigate cognitive impairment in OSA. Agarwal et al. [88] used
a convolutional neural network analysis of brain MRI scans to predict whether OSA
patients treated with CPAP would experience a negative neurological condition post-
treatment. These studies highlight the potential for the image-based analysis of the related
and downstream effects of OSA in a multiorgan setting. Similar ML-enabled analyses
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combining multimodality data may be applicable in the setting of assessing the relationships
between OSA and CVD risk.

In an alternative image-based ML approach, radiomics analyzes the relationships
between the intensities of spatially correlated pixels. Radiomic metrics can provide insight
into subtle features, patterns, or textures in the image that may not be apparent to the
human observer. Using the feature tracking—a form of radiomic analysis—of cardiac-phase
MRI images, Li et al. [89] assessed left ventricular (LV) parameters among patients with
OSA and controls. The authors found that OSA was associated with a higher LV mass
index and indexed cellular volume of the myocardium, suggesting cellular hypertrophy.
Currently, however, there is a paucity of studies utilizing image-based ML or radiomics
to evaluate the impact of OSA on CVD and future CVD risk. This is despite the extensive
use of cardiovascular imaging in patients with OSA. Given the potential of image-based
ML in diagnosing and characterizing OSA, there is an untapped opportunity in leveraging
existing imaging data, such as chest X-rays, coronary artery calcium imaging, and cardiac
MRI, through AI-driven analyses. For example, by applying AI to this wealth of historical
data, we could gain insights into how various treatments for OSA impact cardiovascular
health. This approach could help refine treatment strategies and identify the most effec-
tive interventions for individual patients, ultimately reducing the risk of cardiovascular
complications associated with OSA.

3.5. Adding Multiple Domains for Better Prediction

Though each data domain alone provides a considerable substrate for novel statistical
and AI methodologies, the true capabilities of ML lie in its ability to combine information
from multiple domains. Within the field of OSA, this includes not only PSG and information
from wearable technologies, but also demographic, social, behavioral, clinical, biological,
and imaging data. As discussed above, techniques such as random forest [90] have been
developed to handle these tasks and remain among the most powerful analytical tools
available [91]. Data-driven random forest-built prediction models using a multitude of data
outperform older hypothesis-driven risk scores, such as the FRS for predicting cardiovascu-
lar outcomes [18]. Wallace et al. applied random forest techniques to multidimensional
data, including sleep data, and were able to demonstrate the accurate prediction of 15-year
mortality risk [92]. Though the strength of this tool is the unique integration of data, indi-
vidual variable importance analyses can be performed to better understand which specific
features drive an algorithm’s predictions. For example, in this aforementioned study by
Wallace et al., sleep efficiency on PSG and time with oxygen saturation less than 90% were
among the most important isolated features. However, demographic and comorbid health
domains as whole categories were even more predictive of mortality than sleep domains.
As shown, ML/AI approaches represent a new frontier in risk prediction. These promising
tools combining multiple data streams will allow us to finally manage, assess, and leverage
the immense information available for OSA patients.

4. Future Perspectives: Understanding Cardiovascular Disease Outcomes after OSA
Treatment—A Futuristic Approach Using Machine Learning

Harnessing ML/AI for personalized treatment in medicine, and particularly OSA,
will be a game-changer for tailoring therapy to individual needs. As described above, one
common ML/AI strategy involves using supervised approaches to estimate the likelihood
of a particular health outcome. This estimation can help prioritize individuals who are at
higher risk. This is particularly effective in medical settings, where preventative treatments
can be implemented to mitigate these risks. However, it is important to note that being
at high risk does not always translate to significant benefits from a treatment. Although
understanding CVD risk in OSA patients may enhance the outcomes and adherence of
CPAP therapy [93], these risk assessment approaches do not directly measure how treat-
ment changes that risk. Imagine a scenario where two patients with OSA of similar severity
and symptom profile receive the same treatment (e.g., CPAP). One patient experiences a
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remarkable improvement in symptoms and a reduction in CVD risk, while the other sees
little to no improvement in sleepiness and no risk reduction in CVD. We currently have
few tools to understand and address such variations in outcomes.

Traditionally, healthcare determinations are based on the average treatment effect
(ATE) of an intervention derived from large high-quality RCTs comparing the intervention
to a control. However, these ATEs estimate the intervention’s effect for a hypothetical
chimeric patient who is an amalgamation of all the unique participants within a study [94].
These ATEs do not fully encompass the range of patient differences and risk levels essential
for pinpointing those most in need of a particular intervention or potentially others that
may be harmed by an intervention. The central challenge in advancing precision medicine
lies in transcending the mere estimation of ATEs and risk stratification to recognize the
diversity of therapeutic responses to an intervention based on factors such as patient
attributes, inherent risk, and treatment susceptibility [95]. Overcoming such challenges
requires a change in paradigm. Instead of directly predicting treatment outcomes, we need
to understand and identify the patterns defining the heterogeneity in patient responses
to a given intervention. This shift in focus is vital for more personalized and effective
healthcare decisions.

Emerging methods combining AI models and causal inference have been developed
to identify patients where treatment modifies the outcome risk [96]. These methods, col-
lectively termed heterogeneous treatment effect (HTE) analyses, measure the difference in
potential outcomes for an individual if they were treated versus if they were not treated.
Traditionally, RCTs include subgroup analysis to understand diverse therapeutic responses
by iteratively focusing on specific variables. In the realm of OSA, classic examples include
secondary analysis by disease severity or by CPAP adherence thresholds. However, this can
lead to erroneous conclusions either due to multiple statistical testing or limited statistical
power, particularly when subgroup samples are small [97]. HTE analyses represent a con-
siderable methodological step forward by assessing conditional average treatment effects
(CATEs). CATEs reveal the treatment effect for ML/HTE model-derived subgroups—or
even individuals depending on the specific form of HTE analysis—contingent on base-
line covariates.

The first methods to address HTE in the context of RCTs utilized model-based recursive
partitioning (MBRP) [98,99]. MBRP combines decision trees with classical statistical models
to address the heterogeneity in patient responses. MBPR starts by fitting a statistical model
(e.g., logistic regression in the case of binary outcomes or the Cox model for time-to-event
outcomes) with treatment as a covariate on a complete dataset. It then identifies the
baseline covariate that most strongly modifies the treatment effect (i.e., has an interaction
with treatment) and uses that feature to partition the population into two subgroups. The
procedure is applied recursively within each subgroup until no promising variables by
which to split participants are left, resulting in a decision tree. Ultimately, the product of
this model-derived decision tree is discrete patient subgroups clustered by their differential
responses to treatment. Further, inspection of the key factors identified as the tree’s nodes
(i.e., the variables used to partition subgroups at each decision point) may lead to new
and previously unfathomable hypotheses regarding associated conditions and disease
mechanisms. Our group is using MBRP in ongoing work to identify the effect of CPAP on
CVD outcomes among OSA participants within large RCTs.

As previously described, though supervised ML decision trees are easily interpretable,
they suffer from issues of overfitting and sensitivity to noise. For purposes of risk predic-
tion, these decision trees were expanded into random forest models [90], which combine
data from a multitude of trees to improve the model accuracy. Similarly in the realm of
HTEs, decision tree-based HTE methods, like MBRP, have been developed into the MBRP
forest [100] and causal forest [101,102]. These methods maintain the core framework of the
random forest, including recursive partitioning, subsampling, and random splits. However,
they are adapted to HTEs, maximizing the ability to predict the variability of treatment ef-
fects rather than model accuracy, as is performed for risk prediction in supervised learning.
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These algorithms provide the foundation for developing more accurate and personalized
treatment strategies, moving beyond mere associations to uncover the underlying causality.

Causal forest models also have an added benefit over decision tree-based HTE models,
as they directly estimate the individual treatment effect (ITE). The ITE can then be used
to create a prioritization rule ranking patients by their predicted treatment response on a
continuum from potential harm to benefit. The ITE is therefore much more granular than
the CATE produced by decision tree-based HTE methods, which estimates the treatment
effect for a subgroup of patients [103,104]. These innovative methods go beyond mere risk
prediction; they measure the potential outcomes for an individual as if they were treated
compared to as if they were not. These mathematical manipulations essentially allow for
the equivalent of an RCT analysis within each individual participant, despite that given
individual not actually having received both an intervention and control. This level of
precision represents a substantial evolution in ML applications within healthcare. The
game-changer here is our newfound ability to identify precisely which patients will benefit
most from a particular treatment, and to therefore prioritize patients for interventions
based on their individual predicted treatment response. These tools will finally enable us
to tailor treatment plans to each patient’s unique needs and maximize the likelihood of
successful outcomes.

Lastly, just as transfer learning can be applied to other forms of ML, it can also be
used to broaden the generalizability of HTE models trained on RCT cohorts by transferring
these models and retraining them in observational datasets. This technique has the power
to balance the precise causal estimates obtained in ideal RCTs and apply them to a larger
number of patients in a more pragmatic setting. Although this application is in its nascency
in sleep medicine, it has great potential in the near term. Further, federated learning
approaches orchestrate the training of several local models from heterogeneous datasets
without the need for individual participant-level data integration [105]. This form of model
integration abides by local privacy laws and protects participant data while maximizing
the power of large datasets [106]. This method protects study participants while allowing
for global collaboration, and creates better diversity, equity, and inclusion of populations
from previously under-represented countries.

In summary, the progression of HTE methods from basic ML to advanced causal
forest methods and ITEs will allow the field to craft increasingly personalized and effec-
tive treatment plans for patients with OSA with relevant outcomes in mind, including
improving cardiovascular outcomes. These approaches can be utilized to weigh various
treatment options and their specific impact on cardiovascular health, ensuring that patients
receive the most suitable interventions based on their unique characteristics and expected
treatment effects. These examples highlight the potential of ML applications in healthcare
to enhance patient care and cardiovascular well-being in individuals with OSA, ushering
in an era of truly personalized medicine, where the right treatment is administered to the
right patient at the right time. Future studies should focus on integrating these innovative
approaches to fully leverage the capability of ML/AI and advanced statistical methods,
making individualized treatment the norm rather than the exception.

5. Ethics in Machine Learning and Artificial Intelligence

Ethics in AI is a deeply important and continually evolving domain of study and
discourse. As AI systems become more integrated in healthcare, the ethical implications
of their applications grow in magnitude. Key issues like safety, fairness, privacy, and
accountability demand action from AI developers, healthcare entities, governments, and
society at large.

Bias and fairness are prominent concerns in AI, as decision-making models can inad-
vertently reflect and amplify societal biases in their training datasets. Research disparities
persist in sleep medicine, particularly in regards to race/ethnicity, socioeconomic factors,
and gender. OSA research has historically centered on males due to their higher condition
prevalence, especially using older AHI criteria. This tendency is further exacerbated by sex
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differences in symptom presentation, driving underdiagnosis in women. Such disparities
in research translate to the under-representation of certain groups in the data collected
and used to train AI models. Prior research has already shown that only a minority of
sleep clinic patients with OSA would meet the criteria for the existing RCTs within our
field including a large proportion of women [107]. When predicting CVD risk in OSA
patients using ML, such nonrepresentative training data can hinder the equity of AI models’
performance across diverse backgrounds. This could inadvertently prioritize or neglect
certain demographics in risk assessments. For example, if training data lean heavily to-
wards male OSA patients, the AI might be less accurate in assessing CVD risks for female
patients due to different symptom presentations. Other biases, such as those pertaining to
the variability of treatment and diagnostic criteria, must also be carefully considered. For
example, patients may be on different treatments for OSA that can affect CVD risk. Further,
the criteria and modality used to diagnose OSA and measure its severity might change
over time or vary between institutions. Models that do not account for such heterogeneity
and unbalances can inject bias into AI predictions.

To ensure fairness in AI determinations, biases must be audited and addressed before
the deployment of AI models. It is crucial to train AI users and developers on the use of
fairness toolkits, such AI Fairness [108]. Prospectively, the research community should
ensure diversity, equity, and inclusion in studies and trials to mitigate upstream biases
within clinical datasets used by AI. Biased AI predictions can result in serious ramifications,
leading to either neglect or excessive medical interventions. Hence, consistent evaluation
and recalibration of AI models are vital to maintain fairness and adapt to the evolving
medical understanding of OSA and CVD outcomes.

Finally, complex AI models, especially in deep learning, often act as a “black box”,
obscuring their decision-making and hindering trust. For patients and clinicians impacted
by these models, understanding AI-driven decisions is paramount, even if it compromises
peak model efficiency. The AI community is advancing and standardizing “explainable
AI” [109] techniques, introducing methods like SHapley Additive exPlanation (SHAP),
Local Interpretable Model-agnostic Explanations (LIME), attention mechanisms, and visu-
alization tools. These techniques help us to understand how AI is using input data to reach
its decisions and predictions. The evolution of explainable AI demands domain-specific
insights for distinct needs, emphasizing the crucial role of team science with representation
from both the OSA research community and data science developers. Further, the integra-
tion of AI into society requires a multidisciplinary approach, involving not just computer
scientists, but also ethicists, sociologists, psychologists, and policymakers. As AI continues
to advance, its users must prioritize ethical considerations to ensure that the technology
benefits humanity and does not inadvertently harm or disadvantage certain groups.

6. Conclusions

In conclusion, ML and AI are important tools that have been used and developed
in many fields of science and medicine. Their use in OSA is particularly exciting given
the emerging research in our field uncovering disease heterogeneity and variability in
treatment effects. The myriad of physiologic, biologic, and clinical data available for
patients with OSA in the digital age from electronic health records, PSG, imaging, and
multiomics are ripe for data science techniques that can combine multiple domains and
assess high-dimensional data to improve patient experience, risk prediction, and treatment
outcomes. Advances within ML/AI will allow for more complex analyses tailored to
answer specific research questions and generate hypotheses previously unfathomable.
However, despite the enticing features of ML/AI, we must remain cautious and vigilant to
not overstep or introduce bias, as these methods have the potential to worsen pre-existing
disparities in sleep medicine. OSA researchers using these methodologies must be rigorous
and uncompromising on quality and fairness. We hope that the application of ML/AI will
not only help identify patients who will benefit from OSA treatment, but also those who
may potentially be harmed, aligning with the principles of the Hippocratic oath.
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