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Abstract: Background: Chronic otitis media affects approximately 2% of the global population,
causing significant hearing loss and diminishing the quality of life. However, there is a lack of studies
focusing on outcome prediction for otitis media patients undergoing canal-wall-down mastoidectomy.
Methods: This study proposes a recovery prediction model for chronic otitis media patients under-
going canal-wall-down mastoidectomy, utilizing data from 298 patients treated at Korea University
Ansan Hospital between March 2007 and August 2020. Various machine learning techniques, includ-
ing logistic regression, decision tree, random forest, support vector machine (SVM), extreme gradient
boosting (XGBoost), and light gradient boosting machine (light GBM), were employed. Results: The
light GBM model achieved a predictive value (PPV) of 0.6945, the decision tree algorithm showed
a sensitivity of 0.7574 and an F1 score of 0.6751, and the light GBM algorithm demonstrated the
highest AUC-ROC values of 0.7749 for each model. XGBoost had the most efficient PR-AUC curve,
with a value of 0.7196. Conclusions: This study presents the first predictive model for chronic otitis
media patients undergoing canal-wall-down mastoidectomy. The findings underscore the potential
of machine learning techniques in predicting hearing recovery outcomes in this population, offering
valuable insights for personalized treatment strategies and improving patient care.

Keywords: chronic otitis media; hearing recovery; machine learning; canal-wall-down mastoidectomy

1. Introduction

Chronic otitis media (COM) is a medical condition characterized by persistent inflam-
mation of the middle ear lasting over three months. The condition may result from an
inability to maintain proper air pressure in the middle ear or from ear infections that lead
to a perforated eardrum [1]. The main symptoms commonly associated with COM include
ear discharge, hearing loss, tinnitus, vertigo, facial nerve palsy, and otalgia. Moreover,
COM-associated inflammation can result in the erosion of the ossicles in the middle ear
and the potential dissemination of infection to the brain. Furthermore, the aforementioned
condition can also cause hearing loss, thus hindering efficient communication and reducing
the overall quality of life [2,3]. Data indicate that COM is a prevalent condition, affecting
approximately 2% of the global population, and has been linked to a decreased quality of
life due to hearing loss [4]. To improve overall well-being, prioritizing the treatment of
COM and the recovery of hearing function is crucial [5].

The treatment of COM involves both pharmaceutical and surgical interventions. In
mild cases, pharmaceutical treatments typically involve antibiotics and dietary modi-
fications [6]. Surgical treatments include canal-wall-down mastoidectomy (CWD) and
tympanoplasty surgeries, with CWD being the most commonly used approach [7]. Ad-
ditionally, CWD offers improved surgical visualization and reduces recurrence rates [8].
However, recognizing that not all patients undergoing CWD experience hearing recovery
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is necessary because outcomes can vary among individuals [5]. The objective of this study
was to use machine learning to predict the hearing restoration prognoses in patients with
COM undergoing CWD treatments. The study encompasses a broader spectrum of COM,
including conditions such as tympanosclerosis, middle ear cholesteatoma, and other related
pathologies, beyond simple perforation of the tympanic membrane. This is expected to
play a significant role in prognostic prediction and contribute to hearing recovery under
various conditions.

2. Materials and Methods
2.1. Data Collection

Data were collected from 321 patients diagnosed with COM who underwent CWD
surgery at Korea University Ansan Hospital between March 2007 and August 2020. CWD
mastoidectomy, as described in our surgical approach, traditionally involves both the recon-
struction of the posterior wall and mastoid obliteration, considered integral components
of the procedure. However, it is important to note that, in our surgical practice, mastoid
obliteration was performed for all patients as part of the procedure, aligning with the
aim of filling the mastoid cavity with autologous materials to prevent retraction pocket
formation and the subsequent recurrence of disease. Conversely, the reconstruction of the
posterior wall was not uniformly undertaken in all cases. This decision was made based
on a thorough assessment of individual patient factors and surgical considerations. While
posterior wall reconstruction aims to restore the anatomical integrity of the middle ear
and provide structural support, its omission in certain cases was deemed appropriate to
minimize surgical complexity and associated risks while still achieving the primary goal of
mastoid cavity obliteration.

We selected relevant features, guided by our clinical expertise, and excluded duplicate
or incomplete data. The exclusion criteria were as follows: (1) duplicate samples, (2) patients
with missing values for the stapes attribute, and (3) patients with missing values for
the tympanoplasty technique. A total of 298 patients with COM underwent surgery.
The statistical analysis results for the participants are presented in Table 1. Of these,
126 experienced hearing improvements, whereas 172 did not. We conducted 10-fold
cross-validation due to a small dataset size of 298 patients. During each cross-validation
iteration, an algorithm was trained on data from 268 patients and evaluated using data from
30 patients. We categorized the tympanoplasty technique as applying overlay. From the
patient cohort, 254 individuals exhibited evidence of cholesteatoma, while tympanosclerosis
was identified in 66 patients. Additionally, tympanic membrane perforation was observed
in 123 cases.

Table 1. Characteristics and statistical analysis of the patients.

General Characteristics Total Patient Recovery Group Non-Recovery Group p-Value

Age 48.20 ± 14.03 43.81 ± 16.56 51.42 ± 10.81 0.1559
Gender, male 148 (49.67%) 64 (50.79%) 84 (48.88%) 0.8287

Recurrent 71 (23.83%) 23 (18.25%) 48 (27.91%) 0.0727
Diabetes mellitus 34 (11.41%) 12 (9.52%) 22 (12.79%) 0.4890

Hypertension 65 (21.81%) 17 (13.49%) 48 (27.91%) 0.0046
Smoke type 0.3746

Non-smoker 224 (75.17%) 91 (72.22%) 133 (77.33%)
Smoker 60 (20.13%) 30 (23.81%) 30 (17.44%)
Ex-smoker 14 (4.70%) 5 (3.97%) 9 (5.23%)

Smoke pack-years 4.58 ± 12.03 5.24 ± 14.25 4.09 ± 10.13 0.5370
Tympanic membrane condition 0.6181

Less than 25% 175 (58.72%) 76 (60.32%) 99 (57.56%)
25% to 50% 47 (15.77%) 21 (16.67%) 23 (13.37%)
50% to 75% 38 (12.75%) 15 (11.90%) 23 (13.37%)
75% over or tube inserted 38 (12.75) 14 (11.11%) 24 (13.95%)
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Table 1. Cont.

General Characteristics Total Patient Recovery Group Non-Recovery Group p-Value

Perforation margin TSP 66 (22.15%) 28 (22.22%) 38 (22.09%) 1.0
Retraction 84 (28.19%) 28 (22.22%) 56 (32.56%) 0.0674

Attic destruction 159 (53.36%) 73 (57.94%) 86 (50%) 0.2153
Preop otorrhea 96 (32.21%) 46 (36.51%) 50 (29.07%) 0.2180
Preop culture 0.6427

None 164 (55.03%) 65 (51.59%) 99 (57.56%)
No bacteria/normal flora 62 (20.81%) 30 (23.81%) 32 (18.6%)
MRSA, CRPA 11 (3.69%) 4 (3.17%) 7 (4.07%)
Others 61 (20.47%) 27 (21.43%) 34 (19.77%)

Intraoperative culture 0.4801
None 27 (9.06%) 15 (11.90%) 12 (6.98%)
No bacteria/normal flora 231 (77.52%) 93 (73.81%) 138 (80.23%)
MRSA, CRPA 7 (2.35%) 2 (1.59%) 4 (2.33%)
Others 33 (11.07%) 15 (11.90%) 18 (10.47%)

Intraoperative eustachian tube findings 0.0000
None 4 (9.06%) 3 (2.38%) 1 (0.58%)
Patent 174 (77.52%) 90 (71.43%) 84 (48.84%)
Partially obstructive 31 (2.35%) 10 (7.94%) 21 (12.21%)
Completely obstructive 89 (11.07%) 23 (18.25%) 66 (38.37%)

Stapes fixation 0.7280
Unknown 20 (6.23%) 6 (5.26%) 11 (5.85%)
No 283 (88.18%) 120 (90.23%) 163 (86.70%)
Yes 18 (6.23%) 7 (5.26%) 11 (7.45%)

Malleus 0.0195
Intact 50 (16.78%) 22 (19.84%) 25 (14.53%)
Partial removal/defected 111 (37.25%) 55 (43.65%) 56 (2.91%)
Total removal/defected 137 (45.97%) 46 (36.51%) 91 (52.91%)

Tympanoplasty technique 0.3378
None 92 (30.87%) 37 (29.37%) 55 (31.98%)
Underlay 49 (16.44%) 18 (14.29%) 31 (18.02%)
Overunderlay 30 (10.07%) 14 (11.11%) 16 (9.30%)
Overlay 119 (39.93%) 51 (40.48%) 68 (39.53%)
Umbo-anchoring 8 (2.68%) 6 (4.76%) 2 (1.16%)

Preoperative AC PTA, dB 55 ± 23.99 45.43 ± 20.47 62.01 ± 24.01 0.2139
Preoperative BC PTA, dB 26.08 ± 17.80 24.96 ± 14.29 31.82 ± 11.44 0.0195

Preoperative ABG, dB 28.92 ± 13.14 31.82 ± 11.44 22.96 ± 14.29 0.0002

Chi-squared test was performed. The data were collected from Korea University Ansan Hospital. MRSA,
methicillin-resistant Staphylococcus aureus; CRPA, carbapenem-resistant Pseudomonas aeruginosa; AC PTA,
air-conduction pure-tone average; BC PTA, bone-conduction pure-tone average; ABG, air–bone gap; TSP, tym-
panosclerotic plaque.

2.2. Definition of Recovery

Recovery from COM was defined based on the pure-tone average (PTA) test, which
includes the parameters in Table 2. The PTA test was administered at the interval of
6 months postoperation.

Table 2. Parameter of hearing recovery.

Parameter Description

Air-conduction PTA (AC PTA) The mean of the frequencies at 500 Hz, 1 kHz, 2 kHz, and 4 kHz.
Bone-conduction PTA (BC PTA) The mean of the frequencies at 500 Hz, 1 kHz, 2 kHz, and 4 kHz.

Air–bone gap (ABG) The difference between AC PTA and BC PTA.

We considered hearing recovery to have occurred if any of the following criteria were
met: (1) postoperative AC PTA was ≤30 dB; (2) postoperative ABG was ≤20 dB; or (3) the
difference between preoperative AC PTA and postoperative AC PTA was ≥15 dB.
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2.3. Machine Learning Models

We employed machine learning techniques to forecast hearing recovery, utilizing
various models commonly utilized in medical research. However, deep learning was
omitted from consideration due to insufficient data availability. Owing to our limited
dataset, we validated these models using a cross-validation method.

(1) Logistic Regression

This statistical method is used to classify outcomes based on regression results. This
process involves calculating the sigmoid function by considering each attribute and weight-
related attribute. The results of the sigmoid function are then determined. If the result
is ≥0.5, the patient is predicted to recover. Otherwise, hearing loss is not predicted to
subside [9].

(2) Decision Tree

This involves the creation of nodes that enable the classification of hearing recovery
based on attributes and thresholds [10]. Samples are used for determination. To con-
struct a rule, we determined the feature that maximized the impurity and calculated its
corresponding threshold.

(3) Random Forest

This technique, called ensemble modeling, involves constructing several decision trees
and aggregating their predictions [11]. Random forest uses bootstrap aggregation to apply
different attributes to multiple subsamples and each subsample individually. Moreover, the
random forest algorithm uses the combined outcomes of several decision trees to predict
hearing recovery.

(4) Support Vector Machine (SVM)

This technique obtains samples located around decision boundaries and aims to
increase the distances between them [12,13]. The SVM enables the effective prediction of
hearing recovery, particularly for unseen data.

(5) Extreme Gradient Boosting (XGBoost)

Gradient boosting is a technique used to minimize the remaining error in the hearing
recovery procedure, by repeatedly training several models within a unified one. The
extreme gradient boosting variation uses parallelization methods and implements tree
pruning [14,15].

(6) Light Gradient Boosting Machine (Light GBM)

The light GBM calculation is derived from a histogram. This approach enhances the
functionality of XGBoost and exhibits comparable performance [14,15].

2.4. Evaluation Metrics

Machine learning involves the analysis of performance metrics to determine the
accuracy of expected outcomes. In this study, we aimed to evaluate and contrast the
recuperations of different patients diagnosed with COM. When calculating accuracy in
both recovered and non-recovered patients, this parameter is considered unacceptable for
use as a performance evaluation metric in medical data. Furthermore, when analyzing
medical data, predicting the occurrence of a disease or the likelihood of recovery is crucial.
We used the functions provided by the Scikit-learn library.

2.5. Feature Selection

In machine learning, the significance of having accurate features surpasses that of
having numerous other features. We used a sequential feature selector from the mlxtend
library [16] to optimize the feature selection for each model and effectively choose relevant
features from the given combinations to enhance the model’s performance. Generating
all possible feature combinations to determine the optimal set can be challenging. The
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sequential feature selector method allows us to effectively select relevant features from
a series of feature combinations provided, thereby identifying suitable features based on
their characteristics [17].

3. Results
3.1. Feature Screening Results

Figure 1 illustrates the correlation between the algorithm’s performance and the
number of attributes, using the area under the receiver operating characteristic curve for
comparison. The selected patient characteristics for each algorithm were as follows: (1) lo-
gistic regression: sex, age, recurrence, hypertension, smoking history, retraction, presence
of cholesteatoma, intraoperative eustachian tube findings, facial nerve canal, malleus, incus,
ossicular status, total score, preoperative AC PTA, preoperative BC PTA, preoperative
ABG, and CWD surgery characteristics; (2) decision tree: sex, age, diabetes mellitus, hy-
pertension, intraoperative eustachian tube findings, tympanoplasty technique, malleus,
incus, preoperative AC PTA, preoperative BC PTA, and preoperative ABG characteris-
tics; (3) random forest: sex, age, intraoperative eustachian tube findings, stapes fixation,
preoperative AC PTA, preoperative ABG, and CWD surgery characteristics; (4) SVM: sex,
age, recurrence, diabetes mellitus, smoking pack-years, tympanic membrane condition,
perforation margin tympanosclerotic plaque (TSP), attic destruction, preoperative otorrhea,
preoperative culture, tympanoplasty technique, malleus, incus, stapes fixation, ossicular
quality, middle ear, previous surgeries, preoperative BC PTA, preoperative ABG, CWD
surgery, and intact bridge mastoidectomy (IBM) surgery characteristics; (5) light GBM: age,
recurrence, smoking history, smoking pack-years, retraction, intraoperative eustachian tube
findings, intraoperative culture, tympanoplasty technique, malleus, preoperative BC PTA,
preoperative ABG, and CWD surgery characteristics; (6) XGBoost: age, recurrence, retrac-
tion, attic destruction, preoperative otorrhea, the presence of cholesteatoma, intraoperative
eustachian tube findings, facial nerve canal, middle ear, previous surgery, preoperative BC
PTA, preoperative ABG, and CWD surgery characteristics.
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Figure 1. Results of performing the sequential feature selector algorithm.

The common attribute used across all of the algorithms was age. Five models were
utilized with preoperative ABG, preoperative BC PTA, and intraoperative eustachian tube
insights as characteristics. Age and preoperative ABG were considered important attributes
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in all of the models. The essential attributes included intraoperative eustachian tube
findings and preoperative BC PTA, which were used in all five models.

3.2. Performance Results

Performance evaluation was rigorously conducted through cross-validation, with the
results for each algorithm methodically presented in Table 3. The performance metrics
are as follows: Logistic regression achieved a positive predictive value (PPV) of 0.6322, a
sensitivity of 0.6917, and an F1 score of 0.6528. The decision tree algorithm showed a PPV
of 0.6218, a sensitivity of 0.7574, and an F1 score of 0.6751. For the random forest model, the
PPV was 0.6322, the sensitivity was 0.6917, and the F1 score was 0.6528. The SVM recorded
a PPV of 0.6238, a sensitivity of 0.5788, and an F1 score of 0.5917. Light GBM demonstrated
the highest PPV among the models at 0.6945, with a sensitivity of 0.5788 and an F1 score
of 0.6204. Finally, XGBoost achieved a PPV of 0.6375, a sensitivity of 0.5397, and an F1
score of 0.5777. According to Table 3, which details the machine learning performance
metrics, light GBM exhibited the highest PPV, while the decision tree algorithm showed the
highest sensitivity and F1 score. The order of performance based on PPV is as follows: light
GBM, XGBoost, logistic regression, SVM, decision tree, and random forest. The order of
performance based on sensitivity is as follows: decision tree, logistic regression, SVM, light
GBM, random forest, and XGBoost. Overall, the decision tree had the best performance.
We considered both PPV and sensitivity. If considering only PPV, light GBM showed the
best performance.

Table 3. Analysis results of the performance of each algorithm.

Algorithm PPV Sensitivity F1 Score

Logistic regression 0.6322
[0.5795–0.6849]

0.6917
[0.5786–0.8047]

0.6528
[0.5841–0.7215]

Decision tree 0.6218
[0.5761–0.6674]

0.7574
[0.6385–0.8743]

0.6751
[0.6130–0.7373]

Random forest 0.5925
[0.5149–0.6702]

0.5686
[0.4255–0.7116]

0.5535
[0.4699–0.6372]

Support vector machine 0.6238
[0.5565–0.6912]

0.5788
[0.4842–0.6734]

0.5917
[0.5321–0.6512]

Light GBM 0.6945
[0.6018–0.7872]

0.5788
[0.4852–0.6725]

0.6204
[0.5512–0.6895]

XGBoost 0.6375
[0.5880–0.6870]

0.5397
[0.4394–0.6401]

0.5777
[0.5028–0.6526]

PPV: positive predictive value.

Figure 2A illustrates the area under the receiver operating characteristic (AUC-ROC)
for each model, emphasizing that light GBM and XGBoost are the most effective algorithms
for this metric. Figure 2B presents the precision–recall curve for each model, with XGBoost
emerging as the most efficient algorithm. The AUC-ROC performance metrics were as
follows: light GBM at 0.7749, XGBoost at 0.7749, decision tree at 0.7494, logistic regression
at 0.7497, SVM at 0.7469, and random forest at 0.7329. Regarding the precision–recall area
under the curve (PR-AUC) performance metrics, XGBoost led with 0.7270, followed by
SVM at 0.7197, light GBM at 0.7165, the decision tree model at 0.7075, the random forest
model at 0.7068, and logistic regression at 0.7024. Based on the F1 score, the decision tree
model was ultimately identified as the optimal choice.

Table 4 presents the performance metrics as determined by the false-positive rate
(FPR). When the FPR was set at 10%, the analysis showed that the random forest model
displayed the highest performance. At an FPR of 20%, the light GBM model exhibited
superior performance. Furthermore, when the FPR ranged between 30% and 40%, the
decision tree model outperformed the other models under these conditions. Although
performance measurements are commonly obtained using a default FPR value of 50%, our
findings suggest that adjusting the FPR to 40% results in the most optimal performance.
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Table 4. Analysis results of the performance of each algorithm of each FPR.

Algorithm PPV Sensitivity F1 Score

With a threshold of 10% FPR

Logistic regression 0.6518
[0.5629–0.7408]

0.3494
[0.2351–0.4636]

0.4464
[0.3316–0.5612]

Decision tree 0.6939
[0.6244–0.7635]

0.3355
[0.2387–0.4322]

0.4421
[0.3456–0.5385]

Random forest 0.7100
[0.6053–0.8147]

0.3571
[0.2572–0.4569]

0.4678
[0.3582–0.5774]

Support vector machine 0.6689
[0.5487–0.7892]

0.3276
[0.2294–0.4257]

0.4314
[0.3162–0.5466]

Light GBM 0.6179
[0.4549–0.7808]

0.2763
[0.1467–0.4059]

0.3693
[0.2265–0.5121]

XGBoost 0.6161
[0.5409–0.6913]

0.2519
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0.3378
[0.2140–0.4617]

With a threshold of 20% FPR

Logistic regression 0.6577
[0.6052–0.7103]

0.4667
[0.3698–0.5636]

0.5390
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0.4596
[0.3365–0.5828]

0.5183
[0.4252–0.6115]

Random forest 0.6264
[0.5428–0.7100]

0.4859
[0.3486–0.6232]

0.5375
[0.4199–0.6552]

Support vector machine 0.6343
[0.5254–0.7432]

0.4308
[0.2783–0.5833]

0.4933
[0.3497–0.6368]

Light GBM 0.6646
[0.5920–0.7372]

0.4699
[0.3596–0.5802]

0.5436
[0.4447–0.6424]

XGBoost 0.6117
[0.5725–0.6509]

0.4519
[0.3606–0.5433]

0.5132
[0.4422–0.5842]
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Table 4. Cont.

Algorithm PPV Sensitivity F1 Score

With a threshold of 30% FPR

Logistic regression 0.6195
[0.5525–0.6865]

0.6404
[0.5465–0.7343]

0.6252
[0.5551–0.6953]

Decision tree 0.6214
[0.5777–0.6651]

0.7083
[0.6053–0.8113]

0.6574
[0.5979–0.7168]

Random forest 0.5774
[0.5223–0.6325]

0.6276
[0.5281–0.7270]

0.5995
[0.5238–0.6752]

Support vector machine 0.5255
[0.4491–0.6019]

0.5571
[0.4239–0.6902]

0.5355
[0.4313–0.6397]

Light GBM 0.6158
[0.5390–0.6926]

0.6212
[0.5221–0.7202]

0.6127
[0.5370–0.6884]

XGBoost 0.6291
[0.5971–0.6611]

0.5788
[0.4811–0.6766]

0.5975
[0.5321–0.6630]

With a threshold of 40% FPR

Logistic regression 0.5452
[0.4893–0.6012]

0.6968
[0.6025–0.7911]

0.6089
[0.5411–0.6767]

Decision tree 0.6194
[0.5746–0.6641]

0.7641
[0.6498–0.8784]

0.6778
[0.6162–0.7394]

Random forest 0.5612
[0.5083–0.6140]

0.6994
[0.5701–0.8286]

0.6188
[0.5331–0.7046]

Support vector machine 0.5450
[0.5053–0.5848]

0.6737
[0.5677–0.7798]

0.5999
[0.5331–0.6668]

Light GBM 0.5480
[0.5057–0.5903]

0.7160
[0.6144–0.8177]

0.6168
[0.5571–0.6766]

XGBoost 0.5944
[0.5550–0.6338]

0.7019
[0.5762–0.8276]

0.6318
[0.5665–0.6971]

PPV: positive predictive value.

The logistic regression offered the optimal trade-off based on the threshold compared
to other algorithms. The decision tree model had the best performance with sensitivity
consideration. The logistic regression exhibited a reduced trade-off based on the threshold,
although it did not have the highest PPV. The random forest model appeared to have a
large trade-off, depending on the threshold. However, the random forest model displayed
the best PPV. Overall, the decision tree had the best performance.

3.3. Analysis Results

Our proposed model demonstrated exceptional performance, with a PPV of 0.6218 and
a sensitivity of 0.7574. To provide detailed insights, we also conducted Shapley additive
explanation (SHAP) analyses on both the decision tree model—which exhibited the highest
F1 score—and the light GBM model—which had the highest AUC-ROC [18]. Figure 3
illustrates the SHAP results for the decision tree and light GBM models. The decision tree
model analysis revealed that a low preoperative ABG, young age, reduced BC PTA, and
the absence of intraoperative eustachian tube abnormalities were positively associated
with an increased likelihood of hearing recovery. The light GBM model analysis revealed
that young age, a low preoperative ABG, reduced BC PTA, and no recurrent COM were
positively associated with an increased likelihood of hearing recovery.

Figure 4 displays an analysis of the impact on hearing recovery depending on specific
features based on the decision tree model. Figure 4A illustrates the analysis results of the
SHAP values and preoperative AC PTA. It was confirmed that the preoperative AC PTA
was not influenced by improvements in hearing. Figure 4B illustrates the analysis results
of the SHAP values and preoperative BC PTA. It was confirmed that a preoperative BC
PTA exceeding 42 dB had an adverse impact on hearing recovery. Figure 4C illustrates
the analysis results of the SHAP values and preoperative ABG. It was confirmed that
preoperative ABG of less than 10 dB contributed to hearing recovery. Figure 4D illustrates
the analysis results of the SHAP values and age. It was confirmed that an age of less than
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30 years old contributed to hearing recovery. Figure 4E illustrates the analysis results
of the SHAP values and the intraoperative eustachian tube. It was confirmed that if the
intraoperative eustachian tube was obstructed, there were no improvements in hearing.
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Figure 5 displays an analysis of the impact on hearing recovery depending on the
specific features based on the light GBM model. Figure 5A illustrates the analysis results
of the SHAP values and age. It was confirmed that an age of less than 48 years old



J. Clin. Med. 2024, 13, 1557 10 of 14

contributes to hearing recovery. Figure 5B illustrates the analysis results of the SHAP
values and intraoperative culture. It was confirmed that intraoperative culture does not
impact hearing recovery. Figure 5C illustrates the analysis results of the SHAP values and
the intraoperative eustachian tube. It was confirmed that if the intraoperative eustachian
tube was obstructed, there were no improvements in hearing. Figure 5D illustrates the
analysis results of the SHAP values and malleus. It was confirmed that if the malleus
was removed or defective, there were no improvements in hearing. Figure 5E illustrates
the analysis results of the SHAP values and recurrent COM. It was confirmed that if
the patient had a history of COM, there were no improvements in hearing. Figure 5F
illustrates the analysis results of the SHAP values and retraction. It was confirmed that
the retraction of the ear structure impairs hearing recovery. Figure 5G,H illustrates the
analysis results of the SHAP values and smoke type and smoke pack-years, respectively.
It was confirmed that smoking may seem to improve hearing, but the impact of smoke
pack-years is not significant if it is less than 4.3 pack-years. Figure 5I illustrates the analysis
results of the SHAP values and preoperative BC PTA. It was confirmed that a preoperative
BC PTA exceeding 27 dB has an adverse impact on hearing recovery. Figure 5J illustrates
the analysis results of the SHAP values and preoperative ABG. It was confirmed that a
preoperative ABG of less than 10 dB contributes to hearing recovery. Figure 5K illustrates
the analysis results of the SHAP values and the tympanoplasty technique. It was confirmed
that applying the overlay to the tympanoplasty technique improves hearing.
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Figure 6 provides an extensive SHAP analysis of hearing recovery prediction, furnish-
ing valuable insights into the factors influencing patient outcomes following surgery. Our
study involved a comparison between the decision tree and light GBM models through
cross-validation, utilizing the last trained model. Additionally, Figure 6 illustrates the
selection of a randomly chosen patient with accurately predicted outcomes from the test
dataset. Figure 6A focuses on the analytical outcomes for patients who did not recover
their hearing, highlighting low preoperative bone-conduction pure-tone average (BC PTA)
as a significant contributor to hearing improvement, while a high preoperative air–bone
gap (ABG), older age, and Eustachian tube abnormalities during surgery are noted as
restrictions. Figure 6B illustrates the results for patients who achieved hearing recovery,
emphasizing the importance of a low BC PTA and favorable intraoperative Eustachian
tube findings. Conversely, Figure 6C details the factors for patients who did not experience
hearing recovery, identifying young age and the absence of retraction as beneficial but
also noting the impediments of a high preoperative BC PTA, high preoperative ABG, and
Eustachian tube abnormalities during surgery. Lastly, Figure 6D showcases the analytical
findings for patients who experienced hearing recovery, analyzed using the light GBM
model. Therefore, young age, a low preoperative BC PTA, and ABG were identified as
contributing factors to hearing recovery. Obstacles to hearing recovery included a record of
recurrence. The results of our analysis exhibited a high correlation with clinical outcomes.
The investigation demonstrated that the most significant factors affecting hearing recovery
were BC PTA, ABG, and age.
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Figure 6. Shapley additive explanation analysis of hearing recovery prediction: (A) analysis of
patients who did not recover their hearing, based on the decision tree model; (B) analysis of patients
who recovered their hearing, based on the decision tree model; (C) analysis of patients who did not
recover their hearing, based on the light GBM; (D) analysis of patients who recovered their hearing,
based on the light GBM.



J. Clin. Med. 2024, 13, 1557 12 of 14

4. Discussion

We proposed a recovery prediction model for patients with COM who underwent
CWD surgery. Although several studies have aimed to predict hearing recovery in this
context, few predictive studies exist on hearing recovery in patients with COM following
CWD surgery [19–23]. The decision tree model had the highest performance among the
models we presented, achieving a precision of 62.18% and a recall rate of 75.74%. There is
a lack of research on predicting hearing recovery in patients with COM who underwent
CDW surgery, and therefore it is difficult to compare our results to other papers.

The results obtained from extracting features from our six proposed models were
as follows: (1) logistic regression: recurrent, intraoperative eustachian tube findings, age,
preoperative BC PTA, retraction; (2) decision tree: preoperative ABG, age, preoperative BC
PTA, intraoperative eustachian tube findings; (3) random forest: preoperative ABG, age,
preoperative AC PTA, intraoperative eustachian tube findings; (4) SVM: age, preoperative
ABG, preoperative BC PTA; (5) light GBM: age, preoperative ABG, preoperative BC PTA,
recurrent, intraoperative eustachian tube findings; (6) XGBoost: age, preoperative ABG, re-
current, intraoperative eustachian tube findings. Age, preoperative ABG, and preoperative
BC PTA are among the primary factors affecting hearing recovery for patients with COM.
Hearing recovery was more probable for patients under 42 years old. Hearing recovery
was more probable for preoperative ABG of less than 10 dB. Additionally, if patients have
ever had COM, it can have a negative effect on hearing recovery. In other words, it is very
important to treat and manage COM to prevent recurrence.

5. Conclusions

This study introduced a groundbreaking recovery prediction model designed for
patients who have undergone CWD surgery to treat COM. Our machine learning model
demonstrated outstanding performance, with a PPV of 0.6218 and a sensitivity of 0.7574.
Our study makes a significant impact in the following ways: (1) Our model serves the
dual purpose of predicting hearing recovery as well as providing patients with essential
information to enhance their overall hospital satisfaction, and (2) medical practitioners
may benefit from our model by offering valuable guidelines for hearing recovery that are
grounded upon robust evidential support. Age, preoperative BC PTA, and preoperative
ABG were identified as the primary factors determining hearing recovery among patients
with COM. The decision tree model was the best performance model for predicting hearing
recovery in patients with COM. The random forest model exhibited the highest PPV when
adjusted based on the FPR threshold. The limitations of our study are as follows: (1) We
conducted a single-cohort study and did not perform external validation on our model,
and (2) our dataset consisted of a relatively modest sample size, encompassing 298 patients,
potentially constraining the model’s generalizability. Our objective was to develop a web-
based hearing recovery prediction assistant system for patients with COM and assess the
effectiveness of the system among medical professionals.
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