Simulation and Training in Robot-Assisted Urological Surgery: From Model to Patient
Abstract
:1. Introduction
2. Materials and Methods
- -
- Population: Urologists;
- -
- Intervention: Education and training;
- -
- Comparison: Simulation systems and training programs versus mentor-based education;
- -
- Outcome: Acquired skills and surgical outcomes.
3. Results
3.1. Simulation Training
3.1.1. Rational of the Simulation System
3.1.2. Ideal Features of Medical Simulator
- Fidelity: It concerns the simulator’s ability to accurately replicate reality, both in terms of appearance (e.g., surgical field) and functionality (e.g., wrist movement).
- Replicability: It refers to the ability to replicate or repeat the same setting. It involves conducting the exercise, using the same methods and procedures, and obtaining identical results. Replicability is an important aspect of training because it allows for the standardization of a task and, therefore, the possibility of measuring and quantifying progress. It also ensures the exportability of a training protocol.
- Cost: The cost of simulators represents a critical feature. In fact, to obtain the aforementioned characteristics, especially if considering virtual reality, a team of experts is necessary to design and produce a simulator, including engineers and programmers; this commitment results in an increase in high costs. Wet labs have also always been considered high cost both for the acquisition and management of biological models.
- Portability: Portability refers to the ability of a device, software, or technology to be easily transported or transferred between different systems or platforms, without affecting its functionality or performance.
3.1.3. Simulation Systems
3.2. Training Programs
- The EAU/ERUS curriculum—In 2015, the EAU/ERUS board published the first validated robotic training program for robot-assisted radical prostatectomy (RARP) [43]. Subsequently, Larcher et al. proposed and validated a similar program for robot-assisted partial nephrectomy (RAPN) [44]. Finally, a structured training curriculum for robot-assisted radical cystectomy (RARC) with intracorporeal ileal conduit in male patients was recently defined through a Delphi consensus study [45]. All of these training programs follow the same training structure, which consists of theoretical training, preclinical simulation-based training, clinical modular training, and a final evaluation.Robot-assisted radical prostatectomy curriculum has been described as follows:
- Theoretical training—It includes e-learning and case observation.
- Preclinical simulation-based training—an intensive week of structured, simulation-based training with virtual reality synthetic, animal, and cadaveric platforms.
- Clinical modular training—Operative training using a modular approach dissects complex procedures into smaller steps, which are sequenced in order of execution. However, trainees do not have to follow the chronological order of the steps but can progress to more advanced stages as their skill level improves. The premise is that these stages require varying levels of expertise, and the program provides a systematic exposure to increasingly intricate stages. The EAU/ERUS educational committee has established a structured modular training framework for robotic-assisted radical prostatectomy that mandates a specific frequency of performing each step (Table 1).
- The BAUS curriculum—A curriculum document for modular training, encompassing robotic radical prostatectomy, pyeloplasty, partial nephrectomy, and cystectomy, has been proposed by the BAUS. This training program, similar to the EAU/ERUS program, consists of five steps: e-learning, observation of procedures, simulation-based training, a mentorship/fellowship period, and independent surgery.
- Novel robotic systems [47] are now introducing dedicated training programs as well. For instance, Medtronic’s Hugo Ascend training pathway offers both online and in-person training, allowing trainees to practice in a virtual environment and progress from pre-console training to preceptored surgical cases. The new platforms also include the Versius and the Avatera Robotic System, for which specific training programs are being developed [48,49,50].
3.3. Dual Console
3.4. Comparison of Robot-Assisted Surgery Simulators
3.5. Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stulberg, J.J.; Huang, R.; Kreutzer, L.; Ban, K.; Champagne, B.J.; Steele, S.R.; Johnson, J.K.; Holl, J.L.; Greenberg, C.C.; Bilimoria, K.Y. Association between Surgeon Technical Skills and Patient Outcomes. JAMA Surg. 2020, 155, 960–968. [Google Scholar] [CrossRef]
- The Virtual Flier: The Link Trainer, Flight Simulation, and Pilot Identity on JSTOR. Available online: https://www.jstor.org/stable/24468693 (accessed on 21 May 2023).
- Safar, P.; Escarraga, L.A.; Elam, J.O. A Comparison of the Mouth-to-Mouth and Mouth-to-Airway Methods of Artificial Respiration with the Chest-Pressure Arm-Lift Methods. N. Engl. J. Med. 1958, 258, 671–677. [Google Scholar] [CrossRef]
- Delp, S.L.; Loan, J.P.; Hoy, M.G.; Zajac, F.E.; Topp, E.L.; Rosen, J.M. An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures. IEEE Trans. Biomed. Eng. 1990, 37, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Rodrigues Armijo, P.; Krause, C.; SAGES Robotic Task Force; Siu, K.-C.; Oleynikov, D. A Comprehensive Review of Robotic Surgery Curriculum and Training for Residents, Fellows, and Postgraduate Surgical Education. Surg. Endosc. 2020, 34, 361–367. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.J.; Bergen, P.C.; Rege, R.V.; Laycock, R.; Tesfay, S.T.; Valentine, R.J.; Euhus, D.M.; Jeyarajah, D.R.; Thompson, W.M.; Jones, D.B. Laparoscopic Training on Bench Models: Better and More Cost Effective than Operating Room Experience? J. Am. Coll. Surg. 2000, 191, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Seymour, N.E.; Gallagher, A.G.; Roman, S.A.; O’Brien, M.K.; Bansal, V.K.; Andersen, D.K.; Satava, R.M.; Pellegrini, C.A.; Sachdeva, A.K.; Meakins, J.L.; et al. Virtual Reality Training Improves Operating Room Performance: Results of a Randomized, Double-Blinded Study. Ann. Surg. 2002, 236, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Grantcharov, T.P.; Kristiansen, V.B.; Bendix, J.; Bardram, L.; Rosenberg, J.; Funch-Jensen, P. Randomized Clinical Trial of Virtual Reality Simulation for Laparoscopic Skills Training. Br. J. Surg. 2004, 91, 146–150. [Google Scholar] [CrossRef]
- Yee, B.; Naik, V.N.; Joo, H.S.; Savoldelli, G.L.; Chung, D.Y.; Houston, P.L.; Karatzoglou, B.J.; Hamstra, S.J. Nontechnical Skills in Anesthesia Crisis Management with Repeated Exposure to Simulation-Based Education. Anesthesiology 2005, 103, 241–248. [Google Scholar] [CrossRef]
- Gordon, M.; Darbyshire, D.; Baker, P. Non-Technical Skills Training to Enhance Patient Safety: A Systematic Review. Med. Educ. 2012, 46, 1042–1054. [Google Scholar] [CrossRef]
- Arráez-Aybar, L.A.; Casado-Morales, M.I.; Castaño-Collado, G. Anxiety and Dissection of the Human Cadaver: An Unsolvable Relationship? Anat. Rec. B New Anat. 2004, 279, 16–23. [Google Scholar] [CrossRef]
- Moglia, A.; Ferrari, V.; Morelli, L.; Ferrari, M.; Mosca, F.; Cuschieri, A. A Systematic Review of Virtual Reality Simulators for Robot-Assisted Surgery. Eur. Urol. 2016, 69, 1065–1080. [Google Scholar] [CrossRef]
- Brunckhorst, O.; Volpe, A.; van der Poel, H.; Mottrie, A.; Ahmed, K. Training, Simulation, the Learning Curve, and How to Reduce Complications in Urology. Eur. Urol. Focus. 2016, 2, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; West, A.; Vasdev, N.; Sooriakumaran, P.; Rane, A.; Dasgupta, P.; McKirdy, M. Current Practises and the Future of Robotic Surgical Training. Surgeon 2023, 21, 314–322. [Google Scholar] [CrossRef]
- Raison, N.; Gavazzi, A.; Abe, T.; Ahmed, K.; Dasgupta, P. Virtually Competent: A Comparative Analysis of Virtual Reality and Dry-Lab Robotic Simulation Training. J. Endourol. 2020, 34, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Phé, V.; Cattarino, S.; Parra, J.; Bitker, M.O.; Ambrogi, V.; Vaessen, C.; Rouprêt, M. Outcomes of a Virtual-Reality Simulator-Training Programme on Basic Surgical Skills in Robot-Assisted Laparoscopic Surgery. Int. J. Med. Robot. 2017, 13, e1740. [Google Scholar] [CrossRef]
- Chow, A.K.; Wong, R.; Monda, S.; Bhatt, R.; Sands, K.G.; Vetter, J.; Badhiwala, N.; Declue, A.; Kim, E.H.; Sivaraman, A.; et al. Ex Vivo Porcine Model for Robot-Assisted Partial Nephrectomy Simulation at a High-Volume Tertiary Center: Resident Perception and Validation Assessment Using the Global Evaluative Assessment of Robotic Skills Tool. J. Endourol. 2021, 35, 878–884. [Google Scholar] [CrossRef]
- Lovegrove, C.; Novara, G.; Mottrie, A.; Guru, K.A.; Brown, M.; Challacombe, B.; Popert, R.; Raza, J.; Van Der Poel, H.; Peabody, J.; et al. Structured and Modular Training Pathway for Robot-Assisted Radical Prostatectomy (RARP): Validation of the RARP Assessment Score and Learning Curve Assessment. Eur. Urol. 2016, 69, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Alemozaffar, M.; Narayanan, R.; Percy, A.A.; Minnillo, B.B.; Steinberg, P.; Haleblian, G.; Gautam, S.; Matthes, K.; Wagner, A.A. Validation of a Novel, Tissue-Based Simulator for Robot-Assisted Radical Prostatectomy. J. Endourol. 2014, 28, 995–1000. [Google Scholar] [CrossRef]
- Jeong, S.; Caveney, M.; Knorr, J.; Campbell, R.; Santana, D.; Weight, C.; Almassi, N.; Campbell, S. Cost-Effective and Readily Replicable Surgical Simulation Model Improves Trainee Performance in Benchtop Robotic Urethrovesical Anastomosis. Urol. Pract. 2022, 9, 504–511. [Google Scholar] [CrossRef]
- Costello, D.M.; Huntington, I.; Burke, G.; Farrugia, B.; O’Connor, A.J.; Costello, A.J.; Thomas, B.C.; Dundee, P.; Ghazi, A.; Corcoran, N. A Review of Simulation Training and New 3D Computer-Generated Synthetic Organs for Robotic Surgery Education. J. Robot. Surg. 2022, 16, 749. [Google Scholar] [CrossRef]
- Melnyk, R.; Oppenheimer, D.; Ghazi, A.E. How Specific Are Patient-Specific Simulations? Analyzing the Accuracy of 3D-Printing and Modeling to Create Patient-Specific Rehearsals for Complex Urological Procedures. World J. Urol. 2022, 40, 621–626. [Google Scholar] [CrossRef]
- Chen, M.Y.; Skewes, J.; Desselle, M.; Wong, C.; Woodruff, M.A.; Dasgupta, P.; Rukin, N.J. Current Applications of Three-Dimensional Printing in Urology. BJU Int. 2020, 125, 17–27. [Google Scholar] [CrossRef]
- McCabe, M.; Osinski, T.; Kashyap, R.; Taylor, J.; Schuler, N.; Shepard, L.; Ghazi, A.; Helbig, K.; Katherine Dokus, M.; Nair, A.; et al. Robotic Assisted Transplant Nephrectomy: Case Series and Training Model for Improving Adoption. JSLS 2023, 27, e2022.00079. [Google Scholar] [CrossRef]
- Melnyk, R.; Ezzat, B.; Belfast, E.; Saba, P.; Farooq, S.; Campbell, T.; McAleavey, S.; Buckley, M.; Ghazi, A. Mechanical and Functional Validation of a Perfused, Robot-Assisted Partial Nephrectomy Simulation Platform Using a Combination of 3D Printing and Hydrogel Casting. World J. Urol. 2020, 38, 1631–1641. [Google Scholar] [CrossRef]
- Witthaus, M.W.; Farooq, S.; Melnyk, R.; Campbell, T.; Saba, P.; Mathews, E.; Ezzat, B.; Ertefaie, A.; Frye, T.P.; Wu, G.; et al. Incorporation and Validation of Clinically Relevant Performance Metrics of Simulation (CRPMS) into a Novel Full-Immersion Simulation Platform for Nerve-Sparing Robot-Assisted Radical Prostatectomy (NS-RARP) Utilizing Three-Dimensional Printing and Hydrogel Casting Technology. BJU Int. 2020, 125, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Coles-Black, J.; Ong, S.; Teh, J.; Kearns, P.; Ischia, J.; Bolton, D.; Lawrentschuk, N. 3D Printed Patient-Specific Prostate Cancer Models to Guide Nerve-Sparing Robot-Assisted Radical Prostatectomy: A Systematic Review. J. Robot. Surg. 2023, 17, 1–10. [Google Scholar] [CrossRef]
- Kim, J.S.; Jonas, N.; Rizvi, T.Z.; Lin, Z.; Plewa, D.; Ricard, C.; Cheah, Y.L.; Simon, C.J.; Wright, V. Validation of a Multidisciplinary Virtual Reality (VR) Robotic Surgical Curriculum. J. Robot. Surg. 2023, 17, 2495–2502. [Google Scholar] [CrossRef]
- Chu, T.N.; Wong, E.Y.; Ma, R.; Yang, C.H.; Dalieh, I.S.; Hui, A.; Gomez, O.; Cen, S.; Ghazi, A.; Miles, B.J.; et al. A Multi-Institution Study on the Association of Virtual Reality Skills with Continence Recovery after Robot-Assisted Radical Prostatectomy. Eur. Urol. Focus. 2023, 9, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Badash, I.; Burtt, K.; Solorzano, C.A.; Carey, J.N. Innovations in Surgery Simulation: A Review of Past, Current and Future Techniques. Ann. Transl. Med. 2016, 4, 453. [Google Scholar] [CrossRef] [PubMed]
- MacCraith, E.; Forde, J.C.; Davis, N.F. Robotic Simulation Training for Urological Trainees: A Comprehensive Review on Cost, Merits and Challenges. J. Robot. Surg. 2019, 13, 371–377. [Google Scholar] [CrossRef]
- Wanderling, C.; Saxton, A.; Phan, D.; Sheppard, L.; Schuler, N.; Ghazi, A. Recent Advances in Surgical Simulation for Resident Education. Curr. Urol. Rep. 2023, 24, 491–502. [Google Scholar] [CrossRef]
- Cacciatore, L.; Costantini, M.; Tedesco, F.; Prata, F.; Machiella, F.; Iannuzzi, A.; Ragusa, A.; Deanesi, N.; Qaddourah, Y.R.; Brassetti, A.; et al. Robotic Medtronic HugoTM RAS System Is Now Reality: Introduction to a New Simulation Platform for Training Residents. Sensors 2023, 23, 7348. [Google Scholar] [CrossRef]
- Zeeshan Hameed, B.M.; Aiswarya Dhavileswarapu, V.L.S.; Raza, S.Z.; Karimi, H.; Khanuja, H.S.; Shetty, D.K.; Ibrahim, S.; Shah, M.J.; Naik, N.; Paul, R.; et al. Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature. J. Clin. Med. 2021, 10, 1864. [Google Scholar] [CrossRef]
- Rodriguez Peñaranda, N.; Eissa, A.; Ferretti, S.; Bianchi, G.; Di Bari, S.; Farinha, R.; Piazza, P.; Checcucci, E.; Belenchón, I.R.; Veccia, A.; et al. Artificial Intelligence in Surgical Training for Kidney Cancer: A Systematic Review of the Literature. Diagnostics 2023, 13, 3070. [Google Scholar] [CrossRef]
- Piana, A.; Gallioli, A.; Amparore, D.; Diana, P.; Territo, A.; Campi, R.; Gaya, J.M.; Guirado, L.; Checcucci, E.; Bellin, A.; et al. Three-Dimensional Augmented Reality-Guided Robotic-Assisted Kidney Transplantation: Breaking the Limit of Atheromatic Plaques. Eur. Urol. 2022, 82, 419–426. [Google Scholar] [CrossRef]
- Suresh, D.; Aydin, A.; James, S.; Ahmed, K.; Dasgupta, P. The Role of Augmented Reality in Surgical Training: A Systematic Review. Surg. Innov. 2023, 30, 366–382. [Google Scholar] [CrossRef]
- Sica, M.; Piazzolla, P.; Amparore, D.; Verri, P.; De Cillis, S.; Piramide, F.; Volpi, G.; Piana, A.; Di Dio, M.; Alba, S.; et al. 3D Model Artificial Intelligence-Guided Automatic Augmented Reality Images during Robotic Partial Nephrectomy. Diagnostics 2023, 13, 3454. [Google Scholar] [CrossRef]
- Angell, J.; Gomez, M.S.; Baig, M.M.; Abaza, R. Contribution of Laparoscopic Training to Robotic Proficiency. J. Endourol. 2013, 27, 1027–1031. [Google Scholar] [CrossRef]
- Rahimi, A.O.; Ho, K.; Chang, M.; Gasper, D.; Ashouri, Y.; Dearmon-Moore, D.; Hsu, C.H.; Ghaderi, I. A Systematic Review of Robotic Surgery Curricula Using a Contemporary Educational Framework. Surg. Endosc. 2023, 37, 2833–2841. [Google Scholar] [CrossRef]
- Fisher, R.A.; Dasgupta, P.; Mottrie, A.; Volpe, A.; Khan, M.S.; Challacombe, B.; Ahmed, K. An Over-View of Robot Assisted Surgery Curricula and the Status of Their Validation. Int. J. Surg. 2015, 13, 115–123. [Google Scholar] [CrossRef]
- Volpe, A.; Ahmed, K.; Dasgupta, P.; Ficarra, V.; Novara, G.; Van Der Poel, H.; Mottrie, A. Pilot Validation Study of the European Association of Urology Robotic Training Curriculum. Eur. Urol. 2015, 68, 292–299. [Google Scholar] [CrossRef]
- Larcher, A.; De Naeyer, G.; Turri, F.; Dell’Oglio, P.; Capitanio, U.; Collins, J.W.; Wiklund, P.; Van Der Poel, H.; Montorsi, F.; Mottrie, A. The ERUS Curriculum for Robot-Assisted Partial Nephrectomy: Structure Definition and Pilot Clinical Validation. Eur. Urol. 2019, 75, 1023–1031. [Google Scholar] [CrossRef]
- Dell, P.; Turri, F.; Larcher, A.; Sanchez-Salas, R.; Bochner, B.; Palou, J.; Weston, R.; Hosseini, A.; Canda, A.E.; Bjerggaard, J.; et al. Definition of a Structured Training Curriculum for Robot-Assisted Radical Cystectomy with Intracorporeal Ileal Conduit in Male Patients: A Delphi Consensus Study Led by the ERUS Educational Board on Behalf of the ERUS Educational Working Group and the YAU Working Group on Robot-Assisted Surgery HHS Public Access. Eur. Urol. Focus. 2022, 8, 160–164. [Google Scholar] [CrossRef]
- Goh, A.C.; Goldfarb, D.W.; Sander, J.C.; Miles, B.J.; Dunkin, B.J. Global Evaluative Assessment of Robotic Skills: Validation of a Clinical Assessment Tool to Measure Robotic Surgical Skills. J. Urol. 2012, 187, 247–252. [Google Scholar] [CrossRef]
- Hughes, T.; Rai, B.; Madaan, S.; Chedgy, E.; Somani, B. The Availability, Cost, Limitations, Learning Curve and Future of Robotic Systems in Urology and Prostate Cancer Surgery. J. Clin. Med. 2023, 12, 2268. [Google Scholar] [CrossRef]
- Butterworth, J.; Sadry, M.; Julian, D.; Haig, F. Assessment of the Training Program for Versius, a New Innovative Robotic System for Use in Minimal Access Surgery. BMJ Surg. Interv. Health Technol. 2021, 3, e000057. [Google Scholar] [CrossRef]
- Ballesta Martinez, B.; Kallidonis, P.; Tsaturyan, A.; Peteinaris, A.; Faitatziadis, S.; Gkeka, K.; Tatanis, V.; Vagionis, A.; Pagonis, K.; Obaidat, M.; et al. Transfer of Acquired Practical Skills from Dry Lab into Live Surgery Using the Avatera Robotic System: An Experimental Study. Actas Urológicas Españolas (Engl. Ed.) 2023, 47, 611–617. [Google Scholar] [CrossRef]
- Sighinolfi, M.C.; Terzoni, S.; Scanferla, E.; Bianchi, P.P.; Formisano, G.; Gaia, G.; Marconi, A.M.; Chiumello, D.; Patel, V.; Moschovas, M.C.; et al. Impact of Hands-on Practice with HugoRAS and Versius System Simulators on the Attractiveness of Robotic Surgery among Medical and Nurse Undergraduate Students. J. Robot. Surg. 2023, 17, 1471–1476. [Google Scholar] [CrossRef]
- Morgan, M.S.C.; Shakir, N.A.; Garcia-Gil, M.; Ozayar, A.; Gahan, J.C.; Friedlander, J.I.; Roehrborn, C.G.; Cadeddu, J.A. Single- versus Dual-Console Robot-Assisted Radical Prostatectomy: Impact on Intraoperative and Postoperative Outcomes in a Teaching Institution. World J. Urol. 2015, 33, 781–786. [Google Scholar] [CrossRef]
- Singh, A. Simulation-Based Training in Laparoscopic Urology—Pros and Cons. Indian. J. Urol. 2018, 34, 245–253. [Google Scholar] [CrossRef]
- Ebm, C.; Paciotti, M.; Diana, P.; Lughezzani, G.; Casale, P.; Buffi, N. A Cost Analysis in Implementing Simulation-Based Training into a Novel Urology Curriculum. Minerva Urol. Nephrol. 2023, 75, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Ganpule, A.; Chhabra, J.S.; Desai, M. Chicken and Porcine Models for Training in Laparoscopy and Robotics. Curr. Opin. Urol. 2015, 25, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Diamand, R.; D’Hondt, F.; Mjaess, G.; Jabbour, T.; Dell’Oglio, P.; Larcher, A.; Moschini, M.; Quackels, T.; Peltier, A.; Assenmacher, G.; et al. Teaching Robotic Cystectomy: Prospective Pilot Clinical Validation of the ERUS Training Curriculum. BJU Int. 2023, 132, 84–91. [Google Scholar] [CrossRef] [PubMed]
Robot-Assisted Radical Prostatectomy Steps | Repetition Required |
---|---|
Bladder detachment | 20 |
Endopelvic fascia incision | 15 |
Bladder neck incision | 15 |
Section of vas deferens and preparation of seminal vesicles | 15 |
Dissection of the posterior plane | 10 |
Dissection of the prostatic pedicle | 10 |
Dissection of neurovascular bundles | 5 |
Ligation of Santorini plexus | 10 |
Apical dissection | 5 |
Model | Pros | Cons |
---|---|---|
Bench-top | Large availability | Low anatomic fidelity |
Lower cost | Different haptic feedback | |
Portable/Reusable | Need of true operative equipment | |
No ethical issue | Only specific task simulation | |
Animal | Complete procedure simulation | High cost |
Comparable anatomy | Ethical considerations | |
Same tissue properties | Limited reusability | |
Animal laboratory required | ||
Cadaver | Complete procedure simulation | High cost |
Same anatomy | Different tissue properties | |
Nonreusable | ||
Low availability | ||
Specific laboratory setup required | ||
Virtual Reality | Reusable | High initial cost |
Performance data capture and feedback | Maintenance | |
Specific laboratory setup not required | Low haptic feedback | |
High fidelity * | Low availability | |
Low fidelity * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proietti, F.; Flammia, R.S.; Licari, L.C.; Bologna, E.; Anceschi, U.; Ferriero, M.C.; Tuderti, G.; Mastroianni, R.; Brassetti, A.; Simone, G.; et al. Simulation and Training in Robot-Assisted Urological Surgery: From Model to Patient. J. Clin. Med. 2024, 13, 1590. https://doi.org/10.3390/jcm13061590
Proietti F, Flammia RS, Licari LC, Bologna E, Anceschi U, Ferriero MC, Tuderti G, Mastroianni R, Brassetti A, Simone G, et al. Simulation and Training in Robot-Assisted Urological Surgery: From Model to Patient. Journal of Clinical Medicine. 2024; 13(6):1590. https://doi.org/10.3390/jcm13061590
Chicago/Turabian StyleProietti, Flavia, Rocco Simone Flammia, Leslie Claire Licari, Eugenio Bologna, Umberto Anceschi, Maria Consiglia Ferriero, Gabriele Tuderti, Riccardo Mastroianni, Aldo Brassetti, Giuseppe Simone, and et al. 2024. "Simulation and Training in Robot-Assisted Urological Surgery: From Model to Patient" Journal of Clinical Medicine 13, no. 6: 1590. https://doi.org/10.3390/jcm13061590
APA StyleProietti, F., Flammia, R. S., Licari, L. C., Bologna, E., Anceschi, U., Ferriero, M. C., Tuderti, G., Mastroianni, R., Brassetti, A., Simone, G., & Leonardo, C. (2024). Simulation and Training in Robot-Assisted Urological Surgery: From Model to Patient. Journal of Clinical Medicine, 13(6), 1590. https://doi.org/10.3390/jcm13061590