Pregnancy in Glomerular Disease: From Risk Identification to Counseling and Management
Abstract
:1. Introduction
2. Kidney Function in Physiological Pregnancy
3. Materno-Fetal Outcomes in Women with a Known Glomerular Disease
Risk of Preeclampsia and the Role of Biomarkers
4. Pregnancy and Primary Glomerulonephritis
Study/Yr | Study Characteristics | Pregnancies | Creatinine before Pregnancy or at Conception (mg/dL) | Proteinuria before Pregnancy or at Conception (g/d) | Patients with Pregestational Hypertension—n (%) | Neonatal Death—n (%) | SGA/IUGR—n (%) | Preterm Delivery—n (%) | PE—n (%) |
---|---|---|---|---|---|---|---|---|---|
IgAN | |||||||||
Limardo et al. (2010) [53] | Multicentric longitudinal cohort study | 229 | 0.87 ± 0.15 | 1 | 27 (20%) | 1 (0.4%) | 22 (11%) | 20 (10%) | 17 (9%) |
Shimizu et al. (2010) [57] | Prospective follow-up study | 29 | 0.68 ± 0.10 (n = 5) 0.75 ± 0.05 (n = 16) 0.94 ± 0.21 (n = 8) | NA 0.39 ± 0.22 0.77 ± 0.31 | NA | 0 | 0 | 0 | 0 |
Waness et al. (2010) [59] | Prospective study | 12 | 0.88 | 0.5 | 2 (17%) | 0 | 0 | 0 | 3 (25%) |
Oh et al. (2011) [74] | Single-center retrospective study | 52 | 0.8 (0.5—2.6) | 0.7 g/g | 25 (48%) | NA | 13 (25%) | 8 (15%) | NA |
Liu et al. (2014) [54] | Matched-cohort study | 69 | eGFR 102 mL/min | 1.27 (0.06–7.25) | 7 (11%) | NA | 8 (14%) | 7 (12%) | 6 (9%) |
Shimizu et al. (2015) [75] | Prospective follow-up study | 9 (eGFR ≥ 45 mL/min) 7 (eGFR < 45 mL/min) | 0.98 ± 0.1 1.3 ± 0.1 | 1 ± 0.8 1.3 ± 0.4 | NA | 0 | 3 (19%) | 0 | NA |
O’Shaughnessy et al. (2017) [62] | Retrospective study (Glomerular Disease Collaborative Network registry and the UNC Hospitals Perinatal Database) | 18 | 1 (0.8–1.2) | 1.3 (0.9–4.1) | 3/15 (20%) | 2 (11%) | 2 (11%) | 6 (33%) | 6 (33%) |
Su et al. (2017) [76] | Matched-cohort study | 116 | eGFR 102.6 ± 23.9 mL/min | 1.04 (0.03–7.25) | 15 (14%) | 1 (0.9%) | 16 (14%) | 13 (11%) | 12 (10%) |
Piccoli et al. (2017) [77] | Multicentric cohort study | 33 | 0.87 (0.5–2.88) | >0.5 in 17 women (53.1%) | 9 (27%) | NA | 10 (30%) | 12 (36%) | 4 (17%) |
Park et al. (2018) [78] | Retrospective study (propensity-score-matched cohort Analysis) | 31 (eGFR > 90 mL/min) 21 (90 < eGFR ≤ 60 mL/min) 12 (eGFR < 60 mL/min) | 0.63 (0.60–0.69) 0.90 (0.82–0.92) 1.60 (1.23–1.86) | NA | 12 (40.0) 14 (66.7) 9 (75.0) | NA | 16 (30%) | 21 (39%) | 13 (24%) |
Jarric et al. (2021) [50] | Retrospective study (Register-based cohort study) | 327 | NA | NA | 28 (8.6%) | 0 | 53 (16%) | 43 (13%) | 45 (14%) |
Tang et al. (2021) [79] | Retrospective study (reviewed medical records) | 63 | eGFR 93 mL/min | 0.8 | 9 (14%) | NA | 11 (18%) | 16 (25%) | 14 (22%) |
MCD | |||||||||
O’Shaughnessy et al. (2017) [62] | Retrospective study (Glomerular Disease Collaborative Network registry and the UNC Hospitals Perinatal Database) | 7 | 0.7 (0.5–0.7) | 0.3 (0.1–0.3) | 0 | 0 | 0 | 5 | 2 |
FSGS | |||||||||
De Castro et al. (2017) [63] | Retrospective study (chart review at a single tertiary center) | 12 | 0.4–1 | NA | NA | 0 | NA | NA | NA |
O’Shaughnessy et al. (2017) [62] | Retrospective study (Glomerular Disease Collaborative Network registry and the UNC Hospitals Perinatal Database) | 17 | 1 (0.8–1.8) | 2.4 (1.2–4.1) | 11/16 (69%) | 0 | 4 (24%) | 10 (59%) | 8 (47%) |
Attini et al. (2017) [80] | 3 cases report | 3 | 0.6 0.8 0.84 | 2.1 3.03 6.3 | NA | 0 | 1 (33%) | 0 | 0 |
Guillen et al. (2019) [81] | 3 cases report | 3 | NA | NA | NA | 0 | 2/2(100%) | 2/2 (100%) | 1/2 (50%) |
MN | |||||||||
De Castro et al. (2017) [63] | Retrospective study (chart review at a single tertiary center) | 4 | NA | NA | NA | NA | NA | NA | NA |
O’Shaughnessy et al. (2017) [62] | Retrospective study (Glomerular Disease Collaborative Network registry and the UNC Hospitals Perinatal Database) | 6 | 0.8 (0.6–0.9) | 5.3 (1.1–8.3) | 3 (75%) | 0 | 0 | 2 (33%) | 0 |
Liu et al. (2020) [72] | Retrospective study | 27 | 0.71 (11/27 pregnancies) | 0.6 ± 0.6 (11/27 pregnancies) | 2 (7%) | 0 | NA | 7 (26%) | 4 (15%) |
5. Lupus Nephritis and Pregnancy
6. Diabetic Nephropathy and Pregnancy
7. Vasculitis and Pregnancy
8. Counseling and Management
8.1. Immunosuppressive Therapy in Pregnancy
8.2. Antihypertensive Therapy in Pregnancy
8.3. Other Indications
9. Limits of the Studies and Implications for Future Research
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nevis, I.F.; Reitsma, A.; Dominic, A.; McDonald, S.; Thabane, L.; Akl, E.A.; Hladunewich, M.; Akbari, A.; Joseph, G.; Sia, W.; et al. Pregnancy outcomes in women with chronic kidney disease: A systematic review. Clin. J. Am. Soc. Nephrol. 2011, 6, 2587–2598. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Cabiddu, G.; Attini, R.; Vigotti, F.N.; Maxia, S.; Lepori, N.; Tuveri, M.; Massidda, M.; Marchi, C.; Mura, S.; et al. Risk of Adverse Pregnancy Outcomes in Women with CKD. J. Am. Soc. Nephrol. 2015, 26, 2011–2022. [Google Scholar] [CrossRef]
- Zhang, J.J.; Ma, X.X.; Hao, L.; Liu, L.J.; Lv, J.C.; Zhang, H. A Systematic Review and Meta-Analysis of Outcomes of Pregnancy in CKD and CKD Outcomes in Pregnancy. Clin. J. Am. Soc. Nephrol. 2015, 10, 1964–1978. [Google Scholar] [CrossRef]
- Munkhaugen, J.; Lydersen, S.; Romundstad, P.R.; Wideroe, T.E.; Vikse, B.E.; Hallan, S. Kidney function and future risk for adverse pregnancy outcomes: A population-based study from HUNT II, Norway. Nephrol. Dial. Transplant. 2009, 24, 3744–3750. [Google Scholar] [CrossRef] [PubMed]
- Blom, K.; Odutayo, A.; Bramham, K.; Hladunewich, M.A. Pregnancy and Glomerular Disease: A Systematic Review of the Literature with Management Guidelines. Clin. J. Am. Soc. Nephrol. 2017, 12, 1862–1872. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Cabiddu, G. Pregnancy and kidney disease: From medicine based on exceptions to exceptional medicine. J. Nephrol. 2017, 30, 303–305. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Zakharova, E.; Attini, R.; Hernandez, M.I.; Guillien, A.O.; Alrukhaimi, M.; Liu, Z.-H.; Ashuntantang, G.; Covella, B.; Cabiddu, G.; et al. Pregnancy in Chronic Kidney Disease: Need for Higher Awareness. A Pragmatic Review Focused on What Could Be Improved in the Different CKD Stages and Phases. J. Clin. Med. 2018, 7, 415. [Google Scholar] [CrossRef]
- Wiles, K.S.; Nelson-Piercy, C.; Bramham, K. Reproductive health and pregnancy in women with chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 165–184. [Google Scholar] [CrossRef]
- Cheung, K.L.; Lafayette, R.A. Renal physiology of pregnancy. Adv. Chronic Kidney Dis. 2013, 20, 209–214. [Google Scholar] [CrossRef]
- Hoffmann, L.; Behm, A.; Auge, A. [Changes in the kidney and upper urinary tract in the normal course of pregnancy. Results of a sonographic study]. Z. Urol. Nephrol. 1989, 82, 411–417. [Google Scholar]
- Jeyabalan, A.; Lain, K.Y. Anatomic and functional changes of the upper urinary tract during pregnancy. Urol. Clin. N. Am. 2007, 34, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, P.E.; Nielsen, F.R. Hydronephrosis during pregnancy: A literature survey. Eur. J. Obstet. Gynecol. Reprod. Biol. 1988, 27, 249–259. [Google Scholar] [CrossRef]
- Gant, N.F.; Worley, R.J.; Everett, R.B.; MacDonald, P.C. Control of vascular responsiveness during human pregnancy. Kidney Int. 1980, 18, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Ogueh, O.; Clough, A.; Hancock, M.; Johnson, M.R. A longitudinal study of the control of renal and uterine hemodynamic changes of pregnancy. Hypertens. Pregnancy 2011, 30, 243–259. [Google Scholar] [CrossRef]
- Wiles, K.; Bramham, K.; Seed, P.T.; Nelson-Piercy, C.; Lightstone, L.; Chappell, L.C. Serum Creatinine in Pregnancy: A Systematic Review. Kidney Int. Rep. 2019, 4, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Ouzounian, J.G.; Elkayam, U. Physiologic changes during normal pregnancy and delivery. Cardiol. Clin. 2012, 30, 317–329. [Google Scholar] [CrossRef]
- Lindheimer, M.D.; Davison, J.M. Osmoregulation, the secretion of arginine vasopressin and its metabolism during pregnancy. Eur. J. Endocrinol. 1995, 132, 133–143. [Google Scholar] [CrossRef]
- Davison, J.M.; Lindheimer, M.D. Volume homeostasis and osmoregulation in human pregnancy. Baillieres Clin. Endocrinol. Metab. 1989, 3, 451–472. [Google Scholar] [CrossRef]
- Garg, A.X.; Nevis, I.F.; McArthur, E.; Sontrop, J.M.; Koval, J.J.; Lam, N.N.; Hildebrand, A.M.; Reese, P.P.; Storsley, L.; Gill, J.S.; et al. Gestational hypertension and preeclampsia in living kidney donors. N. Engl. J. Med. 2015, 372, 124–133. [Google Scholar] [CrossRef]
- Reisaeter, A.V.; Roislien, J.; Henriksen, T.; Irgens, L.M.; Hartmann, A. Pregnancy and birth after kidney donation: The Norwegian experience. Am. J. Transplant. 2009, 9, 820–824. [Google Scholar] [CrossRef]
- Josephson, M.A. Transplantation: Pregnancy after kidney donation: More questions than answers. Nat. Rev. Nephrol. 2009, 5, 495–497. [Google Scholar] [CrossRef]
- Ibrahim, H.N.; Akkina, S.K.; Leister, E.; Gillingham, K.; Cordner, G.; Guo, H.; Bailey, R.; Rogers, T.; Matas, A.J. Pregnancy outcomes after kidney donation. Am. J. Transplant. 2009, 9, 825–834. [Google Scholar] [CrossRef]
- Nevis, I.F.; Garg, A.X. Maternal and fetal outcomes after living kidney donation. Am. J. Transplant. 2009, 9, 661–668. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, Z.; Chen, S.; Lv, J.; Zhao, M.; Chen, Q. Pregnancy in patients with stage 3–5 CKD: Maternal and fetal outcomes. Pregnancy Hypertens. 2022, 29, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Imbasciati, E.; Gregorini, G.; Cabiddu, G.; Gammaro, L.; Ambroso, G.; Del Giudice, A.; Ravani, P. Pregnancy in CKD stages 3 to 5: Fetal and maternal outcomes. Am. J. Kidney Dis. 2007, 49, 753–762. [Google Scholar] [CrossRef]
- Fakhouri, F.; Schwotzer, N.; Cabiddu, G.; Barratt, J.; Legardeur, H.; Garovic, V.; Orozco-Guillen, A.; Wetzels, J.; Daugas, E.; Moroni, G.; et al. Glomerular diseases in pregnancy: Pragmatic recommendations for clinical management. Kidney Int. 2023, 103, 264–281. [Google Scholar] [CrossRef]
- Di Leo, V.; Capaccio, F.; Gesualdo, L. Preeclampsia and Glomerulonephritis: A Bidirectional Association. Curr. Hypertens. Rep. 2020, 22, 36. [Google Scholar] [CrossRef]
- Redman, C.W. Current topic: Pre-eclampsia and the placenta. Placenta 1991, 12, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.; Sargent, I.L.; Staff, A.C. IFPA Senior Award Lecture: Making sense of pre-eclampsia—Two placental causes of preeclampsia? Placenta 2014, 35, S20–S25. [Google Scholar] [CrossRef]
- Moghaddas Sani, H.; Zununi Vahed, S.; Ardalan, M. Preeclampsia: A close look at renal dysfunction. Biomed. Pharmacother. 2019, 109, 408–416. [Google Scholar] [CrossRef]
- Cabiddu, G.; Castellino, S.; Gernone, G.; Santoro, D.; Moroni, G.; Giannattasio, M.; Gregorini, G.; Giacchino, F.; Attini, R.; Loi, V.; et al. A best practice position statement on pregnancy in chronic kidney disease: The Italian Study Group on Kidney and Pregnancy. J. Nephrol. 2016, 29, 277–303. [Google Scholar] [CrossRef]
- Hernandez-Diaz, S.; Toh, S.; Cnattingius, S. Risk of pre-eclampsia in first and subsequent pregnancies: Prospective cohort study. BMJ 2009, 338, b2255. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, E.; Medcalf, K.E.; Park, A.L.; Ray, J.G.; High Risk of Pre-eclampsia Identification, G. Clinical risk factors for pre-eclampsia determined in early pregnancy: Systematic review and meta-analysis of large cohort studies. BMJ 2016, 353, i1753. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, T.E.; Ray, J.G.; Chan, W.S. Maternal body mass index and the risk of preeclampsia: A systematic overview. Epidemiology 2003, 14, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Fassio, F.; Attini, R.; Masturzo, B.; Montersino, B.; Chatrenet, A.; Saulnier, P.; Cabiddu, G.; Revelli, A.; Gennarelli, G.; Gazzani, I.B.; et al. Risk of Preeclampsia and Adverse Pregnancy Outcomes after Heterologous Egg Donation: Hypothesizing a Role for Kidney Function and Comorbidity. J. Clin. Med. 2019, 8, 1806. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, T.M.; Walker, S.P.; Hannan, N.J.; Tong, S.; Kaitu’u-Lino, T.J. Clinical tools and biomarkers to predict preeclampsia. EBioMedicine 2022, 75, 103780. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Gaccioli, F.; Dopierala, J.; Sovio, U.; Cook, E.; Volders, P.J.; Martens, L.; Kirk, P.D.W.; Richardson, S.; Smith, G.C.S.; et al. The RNA landscape of the human placenta in health and disease. Nat. Commun. 2021, 12, 2639. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, K.; Hou, X.; Lu, J. Identification and validation of key non-coding RNAs and mRNAs using co-expression network analysis in pre-eclampsia. Medicine 2021, 100, e25294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, P.; Zhang, L.; Huang, C.; Gao, J.; Li, Y.; Yang, B. Identification of Key Genes and Long Noncoding RNA-Associated Competing Endogenous RNA (ceRNA) Networks in Early-Onset Preeclampsia. BioMed Res. Int. 2020, 2020, 1673486. [Google Scholar] [CrossRef]
- Hughes, A.E.; Sovio, U.; Gaccioli, F.; Cook, E.; Charnock-Jones, D.S.; Smith, G.C.S. The association between first trimester AFP to PAPP-A ratio and placentally-related adverse pregnancy outcome. Placenta 2019, 81, 25–31. [Google Scholar] [CrossRef]
- Wertaschnigg, D.; Rolnik, D.L.; Nie, G.; Teoh, S.S.Y.; Syngelaki, A.; da Silva Costa, F.; Nicolaides, K.H. Second- and third-trimester serum levels of growth-differentiation factor-15 in prediction of pre-eclampsia. Ultrasound Obstet. Gynecol. 2020, 56, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Whigham, C.-A.; MacDonald, T.M.; Walker, S.P.; Pritchard, N.; Hannan, N.J.; Cannon, P.; Nguyen, T.V.; Hastie, R.; Tong, S.; Kaitu’u-Lino, T.J. Circulating GATA2 mRNA is decreased among women destined to develop preeclampsia and may be of endothelial origin. Sci. Rep. 2019, 9, 235. [Google Scholar] [CrossRef] [PubMed]
- Németh, B.; Murányi, E.; Hegyi, P.; Mátrai, P.; Szakács, Z.; Varjú, P.; Hamvas, S.; Tinusz, B.; Budán, F.; Czimmer, J.; et al. Asymmetric dimethylarginine levels in preeclampsia—Systematic review and meta-analysis. Placenta 2018, 69, 57–63. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, X.; Xie, Y.; Wang, Y.; Dong, L.; Li, H.; Zhu, T. Circulating asymmetric dimethylarginine and the risk of preeclampsia: A meta-analysis based on 1338 participants. Oncotarget 2017, 8, 43944–43952. [Google Scholar] [CrossRef] [PubMed]
- Saleh, L.; Verdonk, K.; Visser, W.; van den Meiracker, A.H.; Danser, A.H. The emerging role of endothelin-1 in the pathogenesis of pre-eclampsia. Ther. Adv. Cardiovasc. Dis. 2016, 10, 282–293. [Google Scholar] [CrossRef]
- Saleh, L.; Danser, J.A.; van den Meiracker, A.H. Role of endothelin in preeclampsia and hypertension following antiangiogenesis treatment. Curr. Opin. Nephrol. Hypertens. 2016, 25, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Ortega, J.; Zarate, A.; Saucedo, R.; Hernandez-Valencia, M.; Cruz, J.G.; Puello, E. Placental Proinflammatory State and Maternal Endothelial Dysfunction in Preeclampsia. Gynecol. Obstet. Investig. 2019, 84, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Abe, S. Pregnancy in IgA nephropathy. Kidney Int. 1991, 40, 1098–1102. [Google Scholar] [CrossRef]
- Barcelo, P.; Lopez-Lillo, J.; Cabero, L.; Del Rio, G. Successful pregnancy in primary glomerular disease. Kidney Int. 1986, 30, 914–919. [Google Scholar] [CrossRef]
- Jarrick, S.; Lundberg, S.; Stephansson, O.; Symreng, A.; Bottai, M.; Höijer, J.; Ludvigsson, J.F. Pregnancy outcomes in women with immunoglobulin A nephropathy: A nationwide population-based cohort study. J. Nephrol. 2021, 34, 1591–1598. [Google Scholar] [CrossRef]
- Jungers, P.; Forget, D.; Henry-Amar, M.; Albouze, G.; Fournier, P.; Vischer, U.; Droz, D.; Noël, L.H.; Grunfeld, J.P. Chronic kidney disease and pregnancy. Adv. Nephrol. Necker Hosp. 1986, 15, 103–141. [Google Scholar]
- Kincaid-Smith, P.; Fairley, K.F. Renal disease in pregnancy. Three controversial areas: Mesangial IgA nephropathy, focal glomerular sclerosis (focal and segmental hyalinosis and sclerosis), and reflux nephropathy. Am. J. Kidney Dis. 1987, 9, 328–333. [Google Scholar] [CrossRef]
- Limardo, M.; Imbasciati, E.; Ravani, P.; Surian, M.; Torres, D.; Gregorini, G.; Magistroni, R.; Casellato, D.; Gammaro, L.; Pozzi, C. Pregnancy and progression of IgA nephropathy: Results of an Italian multicenter study. Am. J. Kidney Dis. 2010, 56, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, X.; Lv, J.; Shi, S.; Liu, L.; Chen, Y.; Zhang, H. Risk factors for pregnancy outcomes in patients with IgA nephropathy: A matched cohort study. Am. J. Kidney Dis. 2014, 64, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Nagai, Y.; Waschizawa, Y.; Suzuki, T.; Fushimi, T.; Hirata, K.; Kawamura, S.; Schiina, K.; Tanaka, M.; Maeda, M. Influence of gestation on renal function in gravida with IgA nephropathy. Nihon Jinzo Gakkai Shi 1989, 31, 635–641. [Google Scholar] [PubMed]
- Packham, D.K.; North, R.A.; Fairley, K.F.; Whitworth, J.A.; Kincaid-Smith, P. IgA glomerulonephritis and pregnancy. Clin. Nephrol. 1988, 30, 15–21. [Google Scholar] [PubMed]
- Shimizu, A.; Takei, T.; Moriyama, T.; Itabashi, M.; Uchida, K.; Nitta, K. Effect of kidney disease stage on pregnancy and delivery outcomes among patients with immunoglobulin A nephropathy. Am. J. Nephrol. 2010, 32, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Surian, M.; Imbasciati, E.; Cosci, P.; Banfi, G.; Di Belgiojoso, G.B.; Brancaccio, D.; Minetti, L.; Ponticelli, C. Glomerular disease and pregnancy. A study of 123 pregnancies in patients with primary and secondary glomerular diseases. Nephron 1984, 36, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Waness, A.; Al Sayyari, A.; Salih, S.B.; Al Shohaib, S. Increased risk of hypertension, proteinuria and preeclampsia in pregnant Saudi females with IgA nephropathy. Hypertens. Pregnancy 2010, 29, 385–389. [Google Scholar] [CrossRef]
- Packham, D.K.; North, R.A.; Fairley, K.F.; Ihle, B.U.; Whitworth, J.A.; Kincaid-Smith, P. Pregnancy in women with primary focal and segmental hyalinosis and sclerosis. Clin. Nephrol. 1988, 29, 185–192. [Google Scholar]
- Jungers, P.; Houillier, P.; Forget, D.; Henry-Amar, M. Specific controversies concerning the natural history of renal disease in pregnancy. Am. J. Kidney Dis. 1991, 17, 116–122. [Google Scholar] [CrossRef]
- O’Shaughnessy, M.M.; Jobson, M.A.; Sims, K.; Liberty, A.L.; Nachman, P.H.; Pendergraft, W.F. Pregnancy Outcomes in Patients with Glomerular Disease Attending a Single Academic Center in North Carolina. Am. J. Nephrol. 2017, 45, 442–451. [Google Scholar] [CrossRef]
- De Castro, I.; Easterling, T.R.; Bansal, N.; Jefferson, J.A. Nephrotic syndrome in pregnancy poses risks with both maternal and fetal complications. Kidney Int. 2017, 91, 1464–1472. [Google Scholar] [CrossRef]
- Malik, G.; AlMohaya, S.; AlWakeel, J.; Shaikh, J.; AlHozaim, W.; AlDuhaimi, H.; Kechrid, M.; Gamal, H.E.; Shetia, M.S. Repeated pregnancies in patients with primary focal segmental glomerulosclerosis. Indian J. Nephrol. 2002, 12, 33–39. [Google Scholar]
- Cabiddu, G.; Longhitano, E.; Cataldo, E.; Lepori, N.; Chatrenet, A.; Torreggiani, M.; Attini, R.; Masturzo, B.; Rossini, M.; Versino, E.; et al. History of Preeclampsia in Patients Undergoing a Kidney Biopsy: A Biphasic, Multiple-Hit Pathogenic Hypothesis. Kidney Int. Rep. 2022, 7, 547–557. [Google Scholar] [CrossRef]
- Studd, J.W.; Blainey, J.D. Pregnancy and the nephrotic syndrome. Br. Med. J. 1969, 1, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.I.; Davison, J.M.; Hayslett, J.P.; Singson, E.; Lindheimer, M.D. Pregnancy in women with kidney disease. Kidney Int. 1980, 18, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Amagasaki, Y.; Konishi, K.; Kato, E.; Sakaguchi, H.; Iyori, S. The influence of antecedent renal disease on pregnancy. Am. J. Obstet. Gynecol. 1985, 153, 508–514. [Google Scholar] [CrossRef]
- Forland, M.; Spargo, B.H. Clinicopathological correlations in idiopathic nephrotic syndrome with membranous nephropathy. Nephron 1969, 6, 498–525. [Google Scholar] [CrossRef]
- Noel, L.H.; Zanetti, M.; Droz, D.; Barbanel, C. Long-term prognosis of idiopathic membranous glomerulonephritis. Study of 116 untreated patients. Am. J. Med. 1979, 66, 82–90. [Google Scholar] [CrossRef]
- Packham, D.K.; North, R.A.; Fairley, K.F.; Whitworth, J.A.; Kincaid-Smith, P. Membranous glomerulonephritis and pregnancy. Clin. Nephrol. 1987, 28, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-N.; Cui, Z.; He, Y.-D.; Zhang, Y.-M.; Wang, F.; Wang, X.; Meng, L.-Q.; Cheng, X.-Y.; Liu, G.; Zhao, M.-H. Membranous Nephropathy in Pregnancy. Am. J. Nephrol. 2020, 51, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Malik, G.H.; Al-Harbi, A.S.; Al-Mohaya, S.; Al-Wakeel, J.; Al-Hozaim, W.; Kechrid, M.; Shetia, M.S.; Hammed, D. Repeated pregnancies in patients with primary membranous glomerulonephritis. Nephron 2002, 91, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Han, S.; Yoo, D.; Kim, S.; Park, J.; Kim, J.-K.; Yoo, T.-H.; Kang, S.-W.; Choi, K. Reduced pre-pregnancy proteinuria is associated with improving postnatal maternal renal outcomes in IgA nephropathy women. Clin. Nephrol. 2011, 76, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, A.; Takei, T.; Moriyama, T.; Itabashi, M.; Uchida, K.; Nitta, K. Effect of Pregnancy and Delivery on the Renal Function and the Prognosis of Patients with Chronic Kidney Disease Stage 3 Caused by Immunoglobulin A Nephropathy. Intern. Med. 2015, 54, 3127–3132. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Lv, J.; Liu, Y.; Wang, J.; Ma, X.; Shi, S.; Liu, L.; Zhang, H. Pregnancy and Kidney Outcomes in Patients with IgA Nephropathy: A Cohort Study. Am. J. Kidney Dis. 2017, 70, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Attini, R.; Cabiddu, G.; Kooij, I.; Fassio, F.; Gerbino, M.; Maxia, S.; Biolcati, M.; Versino, E.; Todros, T. Maternal-foetal outcomes in pregnant women with glomerulonephritides. Are all glomerulonephritides alike in pregnancy? J. Autoimmun. 2017, 79, 91–98. [Google Scholar] [CrossRef]
- Park, S.; Yoo, K.D.; Park, J.S.; Hong, J.S.; Baek, S.; Park, S.K.; Chin, H.J.; Na, K.Y.; Choi, Y.; Kim, D.K.; et al. Pregnancy in women with immunoglobulin A nephropathy: Are obstetrical complications associated with renal prognosis? Nephrol. Dial. Transplant. 2018, 33, 459–465. [Google Scholar] [CrossRef]
- Tang, C.; Si, F.; Yao, Y.; Lv, J.; Shi, S.; Chen, Y.; Liu, L.; Zhang, H. The efficacy and safety of hydroxychloroquine in pregnant patients with IgA nephropathy: A retrospective cohort study. Nephrology 2022, 27, 155–161. [Google Scholar] [CrossRef]
- Attini, R.; Leone, F.; Montersino, B.; Fassio, F.; Minelli, F.; Colla, L.; Rossetti, M.; Rollino, C.; Alemanno, M.G.; Barreca, A.; et al. Pregnancy, Proteinuria, Plant-Based Supplemented Diets and Focal Segmental Glomerulosclerosis: A Report on Three Cases and Critical Appraisal of the Literature. Nutrients 2017, 9, 770. [Google Scholar] [CrossRef]
- Orozco Guillen, O.A.; Velazquez Silva, R.I.; Gonzalez, B.M.; Becerra Gamba, T.; Gutierrez Marin, A.; Paredes, N.R.; Pérez, J.A.C.; Abraham, V.S.; Piccoli, G.B.; Madero, M. Collapsing Lesions and Focal Segmental Glomerulosclerosis in Pregnancy: A Report of 3 Cases. Am. J. Kidney Dis. 2019, 74, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, I.F.; Silva, J.R.; Santos, C.; Carvalho, C. Maternal and fetal outcomes of pregnancy in chronic kidney disease: Diagnostic challenges, surveillance and treatment throughout the spectrum of kidney disease. Bras. J. Nefrol. 2021, 43, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Clowse, M.E. Lupus activity in pregnancy. Rheum. Dis. Clin. N. Am. 2007, 33, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Bremme, K.; Honkanen, S.; Gunnarsson, I.; Chaireti, R. The presence of lupus nephritis additionally increases the risk of preeclampsia among pregnant women with systemic lupus erythematosus. Lupus 2021, 30, 1031–1038. [Google Scholar] [CrossRef]
- Lucas, A.; Eudy, A.M.; Gladman, D.; Petri, M.; Urowitz, M.; Wyatt, C.M.; Clowse, M.E.B. The association of lupus nephritis with adverse pregnancy outcomes among women with lupus in North America. Lupus 2022, 31, 1401–1407. [Google Scholar] [CrossRef]
- Imbasciati, E.; Tincani, A.; Gregorini, G.; Doria, A.; Moroni, G.; Cabiddu, G.; Marcelli, D. Pregnancy in women with pre-existing lupus nephritis: Predictors of fetal and maternal outcome. Nephrol. Dial. Transplant. 2009, 24, 519–525. [Google Scholar] [CrossRef]
- Maynard, S.; Guerrier, G.; Duffy, M. Pregnancy in Women With Systemic Lupus and Lupus Nephritis. Adv. Chronic Kidney Dis. 2019, 26, 330–337. [Google Scholar] [CrossRef]
- Bramham, K.; Hunt, B.J.; Bewley, S.; Germain, S.; Calatayud, I.; Khamashta, M.A.; Nelson-Piercy, C. Pregnancy outcomes in systemic lupus erythematosus with and without previous nephritis. J. Rheumatol. 2011, 38, 1906–1913. [Google Scholar] [CrossRef]
- Clowse, M.E.; Jamison, M.; Myers, E.; James, A.H. A national study of the complications of lupus in pregnancy. Am. J. Obstet. Gynecol. 2008, 199, P127.E1–127.E6. [Google Scholar] [CrossRef]
- Gonzalez Suarez, M.L.; Kattah, A.; Grande, J.P.; Garovic, V. Renal Disorders in Pregnancy: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 73, 119–130. [Google Scholar] [CrossRef]
- Smyth, A.; Oliveira, G.H.; Lahr, B.D.; Bailey, K.R.; Norby, S.M.; Garovic, V.D. A systematic review and meta-analysis of pregnancy outcomes in patients with systemic lupus erythematosus and lupus nephritis. Clin. J. Am. Soc. Nephrol. 2010, 5, 2060–2068. [Google Scholar] [CrossRef]
- Fischer-Betz, R.; Specker, C. Pregnancy in systemic lupus erythematosus and antiphospholipid syndrome. Best Pract. Res. Clin. Rheumatol. 2017, 31, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Kattah, A.G.; Garovic, V.D. Pregnancy and Lupus Nephritis. Semin. Nephrol. 2015, 35, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, M.A.; Cruz-Reyes, C.; Vera-Lastra, O.; Romero, G.T.; Cruz-Cruz, P.; Arias-Flores, R.; Jara, L.J. Impact of previous lupus nephritis on maternal and fetal outcomes during pregnancy. Clin. Rheumatol. 2012, 31, 813–819. [Google Scholar] [CrossRef]
- Spotti, D. Pregnancy in women with diabetic nephropathy. J. Nephrol. 2019, 32, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Carr, D.B.; Koontz, G.L.; Gardella, C.; Holing, E.V.; Brateng, D.A.; Brown, Z.A.; Easterling, T.R. Diabetic nephropathy in pregnancy: Suboptimal hypertensive control associated with preterm delivery. Am. J. Hypertens. 2006, 19, 513–519. [Google Scholar] [CrossRef]
- Sandvik, M.K.; Iversen, B.M.; Irgens, L.M.; Skjaerven, R.; Leivestad, T.; Softeland, E.; Vikse, B.E. Are adverse pregnancy outcomes risk factors for development of end-stage renal disease in women with diabetes? Nephrol. Dial. Transplant. 2010, 25, 3600–3607. [Google Scholar] [CrossRef]
- Persson, M.; Norman, M.; Hanson, U. Obstetric and perinatal outcomes in type 1 diabetic pregnancies: A large, population-based study. Diabetes Care 2009, 32, 2005–2009. [Google Scholar] [CrossRef]
- Sibai, B.M. Risk factors, pregnancy complications, and prevention of hypertensive disorders in women with pregravid diabetes mellitus. J. Matern. Fetal Med. 2000, 9, 62–65. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Clari, R.; Ghiotto, S.; Castelluccia, N.; Colombi, N.; Mauro, G.; Tavassoli, E.; Melluzza, C.; Cabiddu, G.; Gernone, G.; et al. Type 1 diabetes, diabetic nephropathy, and pregnancy: A systematic review and meta-study. Rev. Diabet. Stud. 2013, 10, 6–26. [Google Scholar] [CrossRef]
- Veltri, N.L.; Hladunewich, M.; Bhasin, A.; Garland, J.; Thomson, B. De novo antineutrophil cytoplasmic antibody-associated vasculitis in pregnancy: A systematic review on maternal, pregnancy and fetal outcomes. Clin. Kidney J. 2018, 11, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Gatto, M.; Iaccarino, L.; Canova, M.; Zen, M.; Nalotto, L.; Ramonda, R.; Punzi, L.; Doria, A. Pregnancy and vasculitis: A systematic review of the literature. Autoimmun. Rev. 2012, 11, A447–A459. [Google Scholar] [CrossRef] [PubMed]
- Fredi, M.; Lazzaroni, M.G.; Tani, C.; Ramoni, V.; Gerosa, M.; Inverardi, F.; Sfriso, P.; Caramaschi, P.; Andreoli, L.; Sinico, R.A.; et al. Systemic vasculitis and pregnancy: A multicenter study on maternal and neonatal outcome of 65 prospectively followed pregnancies. Autoimmun. Rev. 2015, 14, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.; Wuebbolt, D.; Pagnoux, C.; D’Souza, R. Pregnancy outcomes in women with primary systemic vasculitis: A retrospective study. J. Matern. Fetal Neonatal Med. 2021, 34, 2771–2777. [Google Scholar] [CrossRef]
- Partalidou, S.; Mamopoulos, A.; Dimopoulou, D.; Sarafidis, P.; Dimitroulas, T. Pregnancy outcomes in ANCA-associated vasculitis patients: A systematic review and meta-analysis. Jt. Bone Spine 2023, 90, 105609. [Google Scholar] [CrossRef]
- Wiles, K.; Chappell, L.; Clark, K.; Elman, L.; Hall, M.; Lightstone, L.; Mohamed, G.; Mukherjee, D.; Nelson-Piercy, C.; Webster, P.; et al. Clinical practice guideline on pregnancy and renal disease. BMC Nephrol. 2019, 20, 401. [Google Scholar] [CrossRef]
- de Jong, M.F.C.; van Hamersvelt, H.W.; van Empel, I.W.H.; Nijkamp, E.J.W.; Lely, A.T.; Dutch Guideline Working Group on Pregnancy in CKD. Summary of the Dutch Practice Guideline on Pregnancy Wish and Pregnancy in CKD. Kidney Int. Rep. 2022, 7, 2575–2588. [Google Scholar] [CrossRef]
- Schmidt, M.; Stracke, S.; Schneider, U.; Kuschel, B.; Feldkamp, T.; Habbig, S.; Mayer-Pickel, K.; Hartung, A.; Bader, B.; Weinmann-Menke, J.; et al. Chronic Kidney Disease and Pregnancy. Guideline of the DGGG, OEGGG, DGfN (S2k Level, AWMF Registry No. 015–090). Geburtshilfe Frauenheilkd. 2022, 82, 795–830. [Google Scholar] [CrossRef]
- Hewawasam, E.; Stallard, B.; Orsillo, A.; Boag, J.; Green, C.; Heffernan, L.; Maistry, C.; Muthuramalingam, S.; Tolic, A.; Williamson, A.; et al. Patient and Partner Perspectives of Pregnancy-Related Counseling and Information Needs in Women With Kidney Disease: An Australian National Survey. Kidney Int. Rep. 2023, 8, 2802–2813. [Google Scholar] [CrossRef]
- Longhitano, E.; Zirino, F.; Calabrese, V.; Giuffrida, A.; Gembillo, G.; Cernaro, V.; Masturzo, B.; Attini, R.; Torreggiani, M.; Piccoli, G.B.; et al. Commonly used immunosuppressive drugs for kidney diseases and pregnancy: Focus on open questions. Expert Rev. Clin. Pharmacol. 2021, 14, 1321–1323. [Google Scholar] [CrossRef]
- Skorpen, C.G.; Hoeltzenbein, M.; Tincani, A.; Fischer-Betz, R.; Elefant, E.; Chambers, C.; da Silva, J.; Nelson-Piercy, C.; Cetin, I.; Costedoat-Chalumeau, N.; et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann. Rheum. Dis. 2016, 75, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Coscia, L.A.; Armenti, D.P.; King, R.W.; Sifontis, N.M.; Constantinescu, S.; Moritz, M.J. Update on the Teratogenicity of Maternal Mycophenolate Mofetil. J. Pediatr. Genet. 2015, 4, 42–55. [Google Scholar]
- Cabiddu, G.; Spotti, D.; Gernone, G.; Santoro, D.; Moroni, G.; Gregorini, G.; Giacchino, F.; Attini, R.; Limardo, M.; Gammaro, L.; et al. A best-practice position statement on pregnancy after kidney transplantation: Focusing on the unsolved questions. The Kidney and Pregnancy Study Group of the Italian Society of Nephrology. J. Nephrol. 2018, 31, 665–681. [Google Scholar] [CrossRef] [PubMed]
- Sammaritano, L.R.; Bermas, B.L.; Chakravarty, E.E.; Chambers, C.; Clowse, M.E.B.; Lockshin, M.D.; Marder, W.; Guyatt, G.; Branch, D.W.; Buyon, J.; et al. 2020 American College of Rheumatology Guideline for the Management of Reproductive Health in Rheumatic and Musculoskeletal Diseases. Arthritis Rheumatol. 2020, 72, 529–556. [Google Scholar] [CrossRef]
- Caretto, A.; Caldara, R.; Castiglioni, M.T.; Scavini, M.; Secchi, A. Pregnancy after pancreas-kidney transplantation. J. Nephrol. 2020, 33, 1009–1018. [Google Scholar] [CrossRef]
- Nelson-Piercy, C.; Agarwal, S.; Lams, B. Lesson of the month: Selective use of cyclophosphamide in pregnancy for severe autoimmune respiratory disease. Thorax 2016, 71, 667–668. [Google Scholar] [CrossRef]
- Sarno, L.; Tufano, A.; Maruotti, G.M.; Martinelli, P.; Balletta, M.M.; Russo, D. Eculizumab in pregnancy: A narrative overview. J. Nephrol. 2019, 32, 17–25. [Google Scholar] [CrossRef] [PubMed]
Drugs | Safety According to Food Drug Administration |
---|---|
Allowed | |
Steroids | C (risk cannot be ruled out) |
Azathioprine | D (positive evidence of risk) |
Hydroxychloroquine | B (no evidence of risk in humans) |
Tacrolimus | C (risk cannot be ruled out) |
Cyclosporine | C (risk cannot be ruled out) |
Insufficient evidence | |
Cyclophosphamide | D (positive evidence of risk) |
Rituximab | C (risk cannot be ruled out) |
Eculizumab | C (risk cannot be ruled out) |
Intravenous Immunoglobulins | C (risk cannot be ruled out) |
To be avoided | |
Methotrexate | X (contraindicated in pregnancy) |
Mycophenolate Mofetil | D (positive evidence of risk) |
Sirolimus and Everolimus | C (risk cannot be ruled out) |
MCD/FSGS | MN | IgAN | LN |
---|---|---|---|
CS | CNI | CS | HCQ |
CNI | CNI | CS | |
AZA | AZA | AZA | |
CNI |
Drugs | Safety According to Food Drug Administration |
---|---|
Allowed—First choice | |
Alpha-methyl dopa | B (no evidence of risk in humans) |
Niphedipine | C (risk cannot be ruled out) |
Labetalole | C (risk cannot be ruled out) |
Allowed—Second choice | |
Atenolole | D (positive evidence of risk) |
Pindolole | B (no evidence of risk in humans) |
Metoprolol | C (risk cannot be ruled out) |
Clonidine Alpha blockers | C (risk cannot be ruled out) C (risk cannot be ruled out) |
To be avoided | |
Short acting niphedipine | D (positive evidence of risk) |
ACE-I and ARB | C (risk cannot be ruled out) 1st trimester D (positive evidence of risk) 2nd 3rd trimester |
Guidelines | Blood Pressure | Preeclampsia | Immunosuppressive Drugs | ||||
---|---|---|---|---|---|---|---|
Role of Biomarkers | Indications for Acetylsalicylic Acid Administration | Other Medications | |||||
Target Pressure | Antihypertensive Therapy | To Who? | Dose | ||||
Italian best practices (2016) [31] | Ideal: <130/80 mmHg Acceptable: <140/90 mmHg | FIRST CHOICE drugs: α-methyldopa Niphedipine Labetalole SECOND CHOICE drugs: β-blockers Clonidine α-blockers To be AVOIDED: Short acting niphedipine ACEi, ARB and related drugs | For the differential diagnosis between CKD and PE, the sFlt-1/PIGF ratio is considered one of the most promising predictors of PE. | Subject of ongoing debate. Current evidence supports acetylsalicylic acid use in high risk of PE populations. For patients with SLE, high antiphospholipid antibody titers, or triple antibody positivity, low-molecular-weight heparin with or without low-dose aspirin should be used. | Low-dose | No evidence supports the use of vitamin D supplementation to reduce adverse pregnancy outcomes, including PE. | RELATIVE SAFE: Azathioprine Cyclosporine A Tacrolimus Steroids Hydroxychloroquine To be AVOIDED: Cyclophosphamide Mycophenolate Rituximab |
British guidelines (2019) [106] | ≤135/85 mmHg | SAFE: Labetalol Nifedipine Amlodipine Methyldopa Doxazosin Hydralazine β-blockers UNSAFE: ACEi (Continue until conception if required for nephroprotection) ARB Thiazide diuretics | A role for angiogenic markers (PlGF ± sFlt-1) is suggested in the diagnosis of superimposed PE, although further evidence on their efficacy is needed. | Acetylsalicylic acid decreases risk of PE in the general obstetric population included women with CKD. | 75–150 mg (insufficient data on optimum dose 75 vs. 150) | Calcium supplementation’s impact on PE remains uncertain. Considering potential cardiovascular risks associated with positive calcium balance in CKD women, the guideline advises against calcium supplementation to mitigate pre-eclampsia risk, based on the current evidence. Oral vitamin D supplementation seems to reduce PE, low birth weight, and preterm birth risks. Optimal serum calcifediol (25(OH)-vitamin D) levels and cholecalciferol/ergocalciferol doses are unknown. Guidelines recommend monitoring calcifediol levels, offering replacement therapy (cholecalciferol 20,000 IU per week) until > 20 ng/mL (>50 nmol/L). Upon restoring calcifediol levels, continue activated vitamin D analogues (alfacalcidol, calcitriol) during pregnancy at maintenance doses. Women with CKD not needing activated analogues may receive a daily vitamin D maintenance dose (400–1000 IU) during pregnancy, based on ethnicity and BMI. | SAFE: Corticosteroids Hydroxychloroquine Azathioprine Ciclosporin Tacrolimus UNSAFE: Mycophenolate mofetil (contraception during treatment and for 6 weeks after treatment) Cyclophosphamide (contraception during treatment and for 3 months after treatment) Sirolumus/Everolimus (contraception during treatment and for 3 months after treatment) UNCLEAR: Rituximab (treatment decision depends on indication and alternative options) Eculizumab (treatment decision depends on indication and alternative options) |
Dutch guidelines (2022) [107] | Preconceptionally <130/80 mmHg; During pregnancy, for patients in antihypertensives treatment, range is between 130/80 mmHg and 140/90 mmHg; After birth ≤130/80 mmHg. | SAFE: Methyldopa β-blocking agents α and β-blocking agents (labetalol) Lipophilic β-blocking agents (metoprolol, bisoprolol) Lipophilic β-blocking agents with partial agonist activity (pindolol) Dihydropyridine calcium antagonists in 2nd and 3rd trimester (limited evidence for safety in 1st trimester) Loop and thiazide diuretics can be continued during pregnancy if used preconceptionally; start only with strict indication in 2nd half of pregnancy UNSAFE: Triamterene Spironolactone Renin-angiotensin inhibitors (ACEi, ARB, renin inhibitors) (until 8 weeks amenorrhoea probably safe, but after teratogenic and fetotoxic). UNCLEAR: Hydrophilic β-blocking agents (atenolol, sotalol) Amiloride (very limited data for safety in 1st trimester) | Do not rely on the sFlt-1/PIGF ratio in routine clinical practice for distinguishing between PE and underlying CKD, as the currently available data are not yet deemed sufficiently reliable. | Prescribe acetylsalicylic acid to any pregnant woman with CKD because she has a higher risk of PE. | 80–150 mg/day. Starting from 12 weeks and preferably before the end of the 16 weeks. Stop treatment at least 1 week before expected natural birth or scheduled caesarean section. | Advise pregnant women with CKD to consume at least 1000 mg/day of elemental calcium, preferably from food, to potentially lower the risk of PE. If dietary calcium intake is insufficient initiate elemental calcium supplementation with 500–1000 mg (preferably, use a combination of calcium and 400–800 IU of cholecalciferol). Do not recommend sodium or protein restriction specifically for preventing PE in pregnant women with CKD. | SAFE: Corticosteroids Hydroxychloroquine Azathioprine Tacrolimus IVIG Ciclosporine Eculizumab CONTROINDICATED: Mycophenolate mofetil (discontinue at least 3 months before conception) Methotrexate (discontinue at least 3 months before conception) DISCOURAGED: Cyclofosfamide (use only with strict indication in 2nd or 3rd trimester) Rituximab (discontinue at least 6 months before conception) (use only when non safer alternative available) UNKNOWN RISK: Alemtuzumab Belatacept Belimumab rATG |
German guidelines (2022) [108] | Range is between 110/70 mmHg and 135/85 mmHg | SAFE: α-methyldopa (1st choice) Nifedipine retard Amlodipine UNSAFE: Diuretics ACEi ARB UNCLEAR: Urapidil Selective β1-blockers (metoprolol) | If there is a suspicion of PE or PE cannot be excluded, the sFlt-1/PIGF ratio can be used to exclude or confirm a diagnosis of PE. | Pregnant women with CKD. | 150 mg of acetylsalicylic acid for PE prophylaxis during weeks 12–36. For pregnant women with antiphospholipid syndrome lacking previous thrombosis history prescribe a combined treatment of 100 mg acetylsalicylic acid to and prophylactic doses of heparin. If there’s a prior history of arterial or venous thrombosis, administer therapeutic doses of heparin. | SAFE: Azathioprine Cyclosporine A Hydroxychloroquine Tacrolimus UNSAFE: Mycophenolate mofetil Cyclophosphamide Leflunomide UNCLEAR: Eculizumab Rituximab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maressa, V.; Longhitano, E.; Casuscelli, C.; Di Carlo, S.; Peritore, L.; Santoro, D. Pregnancy in Glomerular Disease: From Risk Identification to Counseling and Management. J. Clin. Med. 2024, 13, 1693. https://doi.org/10.3390/jcm13061693
Maressa V, Longhitano E, Casuscelli C, Di Carlo S, Peritore L, Santoro D. Pregnancy in Glomerular Disease: From Risk Identification to Counseling and Management. Journal of Clinical Medicine. 2024; 13(6):1693. https://doi.org/10.3390/jcm13061693
Chicago/Turabian StyleMaressa, Veronica, Elisa Longhitano, Chiara Casuscelli, Silvia Di Carlo, Luigi Peritore, and Domenico Santoro. 2024. "Pregnancy in Glomerular Disease: From Risk Identification to Counseling and Management" Journal of Clinical Medicine 13, no. 6: 1693. https://doi.org/10.3390/jcm13061693
APA StyleMaressa, V., Longhitano, E., Casuscelli, C., Di Carlo, S., Peritore, L., & Santoro, D. (2024). Pregnancy in Glomerular Disease: From Risk Identification to Counseling and Management. Journal of Clinical Medicine, 13(6), 1693. https://doi.org/10.3390/jcm13061693