A Novel Method for Determining Fibrin/Fibrinogen Degradation Products and Fibrinogen Threshold Criteria via Artificial Intelligence in Massive Hemorrhage during Delivery with Hematuria
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tada, K.; Miyagi, Y.; Yasuhi, I.; Yoshida, M.; Yorozu, M.; Maegawa, Y.; Okura, N.; Kawakami, K.; Yamaguchi, K.; Ogawa, M.; et al. Clinical features of dilutional coagulopathy in massive obstetrical hemorrhage: A multicenter retrospective case series study. J. Jpn. Soc. Perinat. Neonatal Med. 2020, 56, 417–423. [Google Scholar]
- Venugopal, A. Disseminated intravascular coagulation. Indian J. Anaesth. 2014, 58, 603–608. [Google Scholar] [CrossRef]
- Gulumser, C.; Engin-Ustun, Y.; Keskin, L.; Celen, S.; Sanisoglu, S.; Karaahmetoglu, S.; Ozcan, A.; Sencan, I. Maternal mortality due to hemorrhage: Population-based study in Turkey. J. Matern. Fetal Neonatal Med. 2019, 32, 3998–4004. [Google Scholar] [CrossRef]
- Cunningham, F.G.; Nelson, D.B. Disseminated intravascular coagulation syndromes in obstetrics. Obstet. Gynecol. 2015, 126, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Rattray, D.D.; O’Connell, C.M.; Baskett, T.F. Acute disseminated intravascular coagulation in obstetrics: A tertiary centre population review (1980 to 2009). J. Obstet. Gynaecol. Can. 2012, 34, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Erez, O.; Novack, L.; Beer-Weisel, R.; Dukler, D.; Press, F.; Zlotnik, A.; Than, N.G.; Tomer, A.; Mazor, M. DIC score in pregnant women—A population based modification of the International Society on Thrombosis and Hemostasis score. PLoS ONE 2014, 9, e93240. [Google Scholar] [CrossRef]
- Taylor, F.B., Jr.; Toh, C.H.; Hoots, W.K.; Wada, H.; Levi, M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb. Haemost. 2001, 86, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Bonnar, J.; Davidson, J.F.; Pidgeon, C.F.; McNicol, G.P.; Douglas, A.S. Fibrin Degradation Products in Normal and Abnormal Pregnancy and Parturition. Br. Med. J. 1969, 19, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, Y.; Tada, K.; Yasuhi, I.; Maekawa, Y.; Okura, N.; Kawakami, K.; Yamaguchi, K.; Ogawa, M.; Kodama, T.; Nomiyama, M.; et al. New method for determining fibrinogen and FDP threshold criteria by artificial intelligence in cases of massive hemorrhage during delivery. J. Obstet. Gynaecol. Res. 2020, 46, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Tada, K.; Miyagi, Y.; Kumazawa, K.; Tsukahara, S.; Okimoto, N.; Yoshida, M.; Ooka, N. Feasibility of Applying Novel FDP Threshold Criteria to DIC Diagnostic Scoring Systems in Japanese Women with Placental Abruption. Eur. J. Clin. Biomed. Sci. 2022, 8, 27–32. [Google Scholar] [CrossRef]
- Drukker, L.; Noble, J.A.; Papageorghiou, A.T. Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obstet. Gynecol. 2020, 56, 498–505. [Google Scholar] [CrossRef]
- Shrestha, P.; Poudyal, B.; Yadollahi, S.; Wright, D.E.; Gregory, A.V.; Warner, J.D.; Korfiatis, P.; Green, I.C.; Rassier, S.L.; Mariani, A.; et al. A systematic review on the use of artificial intelligence in gynecologic imaging—Background, state of the art, and future directions. Gynecol. Oncol. 2022, 166, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.L.; Gong, T.T.; Liu, F.H.; Chen, H.Y.; Xiao, Q.; Hou, Y.; Huang, Y.; Sun, H.Z.; Shi, Y.; Gao, S.; et al. Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis. eClinicalMedicine 2022, 53, 101662. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, C.; Zhou, S. Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology. Semin. Cancer Biol. 2023, 96, 82–99. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, Y.; Hata, T.; Bouno, S.; Koyanagi, A.; Miyake, T. Artificial intelligence to understand fluctuation of fetal brain activity by recognizing facial expressions. Int. J. Gynecol. Obstet. 2023, 161, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, Y.; Fujiwara, K.; Nomura, H.; Yamamoto, K.; Coleman, R.L. Feasibility of New Method for the Prediction of Clinical Trial Results Using Compressive Sensing of Artificial Intelligence. BJHMR 2023, 10, 237–267. [Google Scholar] [CrossRef]
- Kann, B.H.; Hosny, A.; Aerts, H.J.W.L. Artificial intelligence for clinical oncology. Cancer Cell 2021, 39, 916–927. [Google Scholar] [CrossRef]
- Hashimoto, D.A.; Witkowski, E.; Gao, L.; Meireles, O.; Rosman, G. Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations. Anesthesiology 2020, 132, 379–394. [Google Scholar] [CrossRef]
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315–1360. [Google Scholar] [CrossRef]
- Huberty, C.J. Discriminant Analysis. Rev. Educ. Res. 1975, 45, 543–598. [Google Scholar] [CrossRef]
- Wikkelsø, A.J.; Edwards, H.M.; Afshari, A.; Stensballe, J.; Langhoff-Roos, J.; Albrechtsen, C.; Ekelund, K.; Hanke, G.; Secher, E.L.; Sharif, H.F.; et al. Pre-emptive treatment with fibrinogen concentrate for postpartum haemorrhage: Randomized controlled trial. Br. J. Anaesth. 2015, 114, 623–633. [Google Scholar] [CrossRef]
- Mavrides, E.; Allard, S.; Chandraharan, E.; Collins, P.; Green, L.; Hunt, B.J.; Riris, S.; Thomson, A.J.; on behalf of the Royal College of Obstetricians and Gynaecologists. Prevention and management of postpartum haemorrhage. BJOG 2016, 124, e106–e149. [Google Scholar] [CrossRef]
- Asakura, H.; Takahashi, H.; Uchiyama, T.; Eguchi, Y.; Okamoto, K.; Kawasugi, K.; Madoiwa, S.; Wada, H.; DIC subcommittee of the Japanese Society on Thrombosis and Hemostasis. Proposal for new diagnostic criteria for DIC from the Japanese Society on Thrombosis and Hemostasis. Thromb. J. 2016, 14, 42. [Google Scholar] [CrossRef]
- Asakura, H. Classifying types of disseminated intravascular coagulation: Clinical and animal models. J. Intensive Care 2014, 2, 20. [Google Scholar] [CrossRef]
- Dreiseitl, S.; Ohno-Machado, L. Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef]
- Mekkodathil, A.; El-Menyar, A.; Naduvilekandy, M.; Rizoli, S.; Al-Thani, H. Machine Learning Approach for the Prediction of In-Hospital Mortality in Traumatic Brain Injury Using Bio-Clinical Markers at Presentation to the Emergency Department. Diagnostics 2023, 13, 2605. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Vaidya, P.M. AnO(n logn) algorithm for the all-nearest-neighbors Problem. Discret. Comput. Geom. 1989, 4, 101–115. [Google Scholar] [CrossRef]
- Friedman, J.; Baskett, F.; Shustek, L. An algorithm for finding nearest neighbors. IEEE Trans. Comput. 1975, 100, 1000–1006. [Google Scholar] [CrossRef]
- Ben-Bassat, M.; Klove, K.L.; Weil, M.H. Sensitivity analysis in Bayesian classification models: Multiplicative deviations. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 3, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Domingos, P.; Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Mach. Learn. 1997, 29, 103–130. [Google Scholar] [CrossRef]
- Hardesty, L. Explained: Neural Networks. MIT News. 14 April 2017. Available online: https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414 (accessed on 2 June 2022).
- Rumelhart, D.; Hinton, G.; Williams, R. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Tsochantaridis, I.; Joachims, T.; Hofmann, T.; Altun, Y. Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 2005, 6, 1453–1484. [Google Scholar]
- Pincus, S.; Singer, B.H. Randomness and degrees of irregularity. Proc. Natl. Acad. Sci. USA 1996, 93, 2083–2088. [Google Scholar] [CrossRef] [PubMed]
- Jamin, A.; Humeau-Heurtier, A. (Multiscale) Cross-Entropy Methods: A Review. Entropy 2020, 22, 45. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef]
- Erez, O.; Othman, M.; Rabinovich, A.; Leron, E.; Gotsch, F.; Thachil, J. DIC in Pregnancy—Pathophysiology, Clinical Characteristics, Diagnostic Scores, and Treatments. J. Blood Med. 2022, 13, 21–44. [Google Scholar] [CrossRef]
- Levi, M.; Toh, C.H.; Thachil, J.; Watson, H.G. Guidelines for the diagnosis and management of disseminated intravascular coagulation. Br. J. Haematol. 2009, 145, 24–33. [Google Scholar] [CrossRef]
- Thachil, J. Disseminated Intravascular Coagulation: A Practical Approach. Anesthesiology 2016, 125, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Yu, D. Deep Learning: Methods and Applications. Found. Trends Signal Process. 2014, 7, 197–387. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
Organ Dysfunction (Hematuria) | Non-Organ Dysfunction | t-Test | Mann–Whitney Test | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Factor | Mean ± SD | Min | Max | Median | 0.25 Quantile | 0.75 Quantile | Mean ± SD | Min | Max | Median | 0.25 Quantile | 0.75 Quantile | p-Value | p-Value |
FDP | 95.58 ± 0.73 | 94.73 | 96 | 96 | 94.73 | 96 | 17.52 ± 16.8 | 0.72 | 61.64 | 17.31 | 3.01 | 24.16 | 1.03 × 10−7 | 0.0053 |
DD | 350.63 ± 189.25 | 135.4 | 491 | 425.5 | 135.4 | 491 | 47.77 ± 54.65 | 3 | 219 | 34.05 | 10.61 | 47.9 | 3.32 × 10−6 | 0.0092 |
TAT | 120 ± 0.0 | 120 | 120 | 120 | 120 | 120 | 67.53 ± 42.88 | 15.4 | 120 | 63.25 | 19.9 | 113 | 2.80 × 10−5 | 0.0319 |
Hgb/fbg | 139.08 ± 73.17 | 56.96 | 197.37 | 162.9 | 56.96 | 197.37 | 61.42 ± 24.9 | 30.18 | 112 | 53.96 | 42.64 | 66.67 | 0.0009 | 0.0399 |
fbg | 59.67 ± 20.6 | 38 | 79 | 62 | 38 | 79 | 122.82 ± 34.2 | 50 | 169 | 127.5 | 103 | 143.8 | 0.0057 | 0.0198 |
PT-sec | 17.3 ± 2.14 | 15.6 | 19.7 | 16.6 | 15.6 | 19.7 | 13.62 ± 2.24 | 10.1 | 18.2 | 13.2 | 12 | 14.4 | 0.0145 | 0.0318 |
PT-INR | 1.61 ± 0.2 | 1.46 | 1.84 | 1.53 | 1.46 | 1.84 | 1.22 ± 0.25 | 0.96 | 2 | 1.11 | 1.06 | 1.22 | 0.0174 | 0.0317 |
PIC | 38.13 ± 26.67 | 17.7 | 68.3 | 28.4 | 17.7 | 68.3 | 8.87 ± 8.02 | 0.3 | 27.3 | 6.45 | 2 | 14.6 | 0.1962 | 0.0121 |
AP | 45.33 ± 11.93 | 32 | 55 | 49 | 32 | 55 | 53.7 ± 14.28 | 34 | 93 | 52.5 | 42 | 56 | 0.3479 | 0.4107 |
AT | 52.67 ± 19.01 | 34 | 72 | 52 | 34 | 72 | 45.2 ± 13.15 | 27 | 82 | 43 | 39 | 49 | 0.3925 | 0.4364 |
APTT | 54.3 ± 19.54 | 39.3 | 76.4 | 47.2 | 39.3 | 76.4 | 46.28 ± 17.05 | 29.7 | 93.6 | 40.65 | 32.5 | 51.8 | 0.4624 | 0.3858 |
FMC | 166.33 ± 121.48 | 27 | 250 | 222 | 27 | 250 | 184.12 ± 83.87 | 19.2 | 250 | 250 | 124 | 250 | 0.7477 | 0.6223 |
Hgb | 7.37 ± 2.8 | 4.5 | 10.1 | 7.5 | 4.5 | 10.1 | 6.82 ± 1.26 | 5 | 10.2 | 6.85 | 5.6 | 7.3 | 0.7692 | 0.6809 |
Plt | 105.33 ± 34.95 | 76 | 144 | 96 | 76 | 144 | 99.65 ± 33.7 | 39 | 183 | 88 | 78 | 119 | 0.7887 | 0.8190 |
Hct | 21.8 ± 8.02 | 13.5 | 29.5 | 22.4 | 13.5 | 29.5 | 20.78 ± 3.74 | 15 | 30.6 | 20.7 | 17.3 | 22.5 | 0.8473 | 0.7492 |
Formula | Estimate ± SE | p-Value | AIC | R-Squared |
---|---|---|---|---|
Hgb/fbg = β0 + β1 fbg | β0, 174.41 ± 15.277; β1, −0.898 ± 0.126 | β0, 1.81 × 10−10; β1, 5.31 × 10−7 | 213.79 | 0.7057 |
PT-sec = β0 + β1 fbg | β0, 19.681 ± 1.118; β1, −0.048 ± 0.009 | β0, 4.80 × 10−14; β1, 3.30 × 10−5 | 93.54 | 0.5679 |
D-dimer = β0 + β1 FDP | β0, −9.535 ± 20.235; β1, 3.4946 ± 0.492 | β0, 0.642; β1; 5.24 × 10−7 | 265.83 | 0.7061 |
Accuracy ± SD | AUC | Class Mean Class Entropy | Cohen’s Kappa | F1 Score | PPV, Precision | Sensitivity, Recall | Specificity | |
---|---|---|---|---|---|---|---|---|
Logistic regression | 1.000 ± 0.22 | 1.000 | 1.417 × 10−4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Naïve Bayes | 0.9565 ± 0.04 | 0.9583 | 5.097 × 10−5 | 0.8321 | 0.8571 | 0.7500 | 1.000 | 0.950 |
Nearest neighbors | 1.000 ± 0.22 | 1.000 | 0.3285 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Neural network | 1.000 ± 0.22 | 1.000 | 2.253 × 10−5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Random forest | 0.9130 ± 0.06 | 1.000 | 0.2407 | 0.7013 | 0.7500 | 0.6000 | 1.000 | 0.9000 |
Support vector machine | 0.9565 ± 0.04 | 1.000 | 0.4967 | 0.7767 | 0.8000 | 1.000 | 0.6667 | 1.000 |
FDP Criteria (mg/dL) | Accuracy ± SD | AUC | Class Mean Entropy | Cohen’s Kappa | F1 Score | PPV, Precision | Sensitivity, Recall | Specificity | |
---|---|---|---|---|---|---|---|---|---|
Logistic regression | 84.96 | 1.000 ± 0.22 | 1.000 | 1.417 × 10−5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Naïve Bayes | 86.94 | 0.9565 ± 0.04 | 0.958 | 5.097 × 10−5 | 0.832 | 0.857 | 0.750 | 1.000 | 0.950 |
Nearest neighbors | 73.38 | 1.000 ± 0.22 | 1.000 | 0.3285 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Neural network | 92.23 | 1.000 ± 0.22 | 1.000 | 3.569 × 10−4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Random forest | 101.16 | 0.9130 ± 0.06 | 1.000 | 0.2407 | 0.701 | 0.750 | 0.600 | 1.000 | 0.900 |
Support vector machine | 79.67 | 0.9565 ± 0.04 | 1.000 | 0.4967 | 0.7767 | 0.800 | 1.000 | 0.6667 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyagi, Y.; Tada, K.; Yasuhi, I.; Tsumura, K.; Maegawa, Y.; Tanaka, N.; Mizunoe, T.; Emoto, I.; Maeda, K.; Kawakami, K.; et al. A Novel Method for Determining Fibrin/Fibrinogen Degradation Products and Fibrinogen Threshold Criteria via Artificial Intelligence in Massive Hemorrhage during Delivery with Hematuria. J. Clin. Med. 2024, 13, 1826. https://doi.org/10.3390/jcm13061826
Miyagi Y, Tada K, Yasuhi I, Tsumura K, Maegawa Y, Tanaka N, Mizunoe T, Emoto I, Maeda K, Kawakami K, et al. A Novel Method for Determining Fibrin/Fibrinogen Degradation Products and Fibrinogen Threshold Criteria via Artificial Intelligence in Massive Hemorrhage during Delivery with Hematuria. Journal of Clinical Medicine. 2024; 13(6):1826. https://doi.org/10.3390/jcm13061826
Chicago/Turabian StyleMiyagi, Yasunari, Katsuhiko Tada, Ichiro Yasuhi, Keisuke Tsumura, Yuka Maegawa, Norifumi Tanaka, Tomoya Mizunoe, Ikuko Emoto, Kazuhisa Maeda, Kosuke Kawakami, and et al. 2024. "A Novel Method for Determining Fibrin/Fibrinogen Degradation Products and Fibrinogen Threshold Criteria via Artificial Intelligence in Massive Hemorrhage during Delivery with Hematuria" Journal of Clinical Medicine 13, no. 6: 1826. https://doi.org/10.3390/jcm13061826
APA StyleMiyagi, Y., Tada, K., Yasuhi, I., Tsumura, K., Maegawa, Y., Tanaka, N., Mizunoe, T., Emoto, I., Maeda, K., Kawakami, K., & on behalf of the Collaborative Research in National Hospital Organization Network Pediatric and Perinatal Group. (2024). A Novel Method for Determining Fibrin/Fibrinogen Degradation Products and Fibrinogen Threshold Criteria via Artificial Intelligence in Massive Hemorrhage during Delivery with Hematuria. Journal of Clinical Medicine, 13(6), 1826. https://doi.org/10.3390/jcm13061826