Interstitial Cells of Cajal and P2X3 Receptors at Ureteropelvic Junction Obstruction and Their Relationship with Pain Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Immunohistochemistry and Evaluation of P2X3 and CD117 Expression
2.2. Statistical Analysis
3. Results
3.1. The Number of ICCs
3.2. The Expression of P2X3 Receptors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murugapoopathy, V.; Gupta, I.R. A Primer on Congenital Anomalies of the Kidneys and Urinary Tracts (CAKUT). Clin. J. Am. Soc. Nephrol. 2020, 15, 723–731. [Google Scholar] [CrossRef]
- Costigan, C.S.; Rosenblum, N.D. Understanding ureteropelvic junction obstruction: How far have we come? Front. Urol. 2023, 3, 1154740. [Google Scholar] [CrossRef]
- Senol, C.; Onaran, M.; Gurocak, S.; Gonul, I.I.; Tan, M.O. Changes in Cajal cell density in ureteropelvic junction obstruction in children. J. Pediatr. Urol. 2016, 12, 89.e1–89.e5. [Google Scholar] [CrossRef] [PubMed]
- Solari, V.; Piotrowska, A.P.; Puri, P. Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J. Urol. 2003, 170, 2420–2422. [Google Scholar] [CrossRef]
- Metzger, R.; Schuster, T.; Till, T.; Stehr, M.; Franke, F.E.; Dietz, H.G. Cajal-like cells in the human upper urinary tract. J. Urol. 2004, 172, 769–772. [Google Scholar] [CrossRef]
- Murnaghan, G. The dynamics of the renal pelvis and ureter with reference to congenital hydronephrosis. Br. J. Urol. 1958, 30, 321. [Google Scholar] [CrossRef]
- Tokat, E.; Gurocak, S.; Akdemir, O.; Gonul, I.I.; Tan, M.O. Relation between Cajal Cell Density and Radiological and Scintigraphic Outcomes in Patients with Ureteropelvic Junction Obstruction. Urol. Int. 2021, 105, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Bilge, I. Symptomatology and Clinic of Hydronephrosis Associated with Uretero Pelvic Junction Anomalies. Front. Pediatr. 2020, 8, 520. [Google Scholar] [CrossRef]
- Burnstock, G. Purinergic signalling: From discovery to current developments. Exp. Physiol. 2014, 99, 16–34. [Google Scholar] [CrossRef]
- Burnstock, G.; Evans, L.C.; Bailey, M.A. Purinergic signalling in the kidney in health and disease. Purinergic Signal. 2014, 10, 71–101. [Google Scholar] [CrossRef]
- Burnstock, G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal. 2014, 10, 103–155. [Google Scholar]
- Burnstock, G. Purinergic mechanisms and pain—An update. Eur. J. Pharmacol. 2013, 716, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Illes, P.; Müller, C.E.; Jacobson, K.A.; Grutter, T.; Nicke, A.; Fountain, S.J.; Kennedy, C.; Schmalzing, G.; Jarvis, M.F.; Stojilkovic, S.S.; et al. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br. J. Pharmacol. 2021, 178, 489–514. [Google Scholar] [CrossRef]
- Witt, N.; Coynor, S.; Edwards, C.; Bradshaw, H. A Guide to Pain Assessment and Management in the Neonate. Curr. Emerg. Hosp. Med. Rep. 2016, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pillai Riddell, R.R.; Craig, K.D. Judgments of infant pain: The impact of caregiver identity and infant age. J. Pediatr. Psychol. 2007, 32, 501–511. [Google Scholar] [CrossRef]
- McPherson, C.; Miller, S.P.; El-Dib, M.; Massaro, A.N.; Inder, T.E. The influence of pain, agitation, and their management on the immature brain. Pediatr. Res. 2020, 88, 168–175. [Google Scholar] [CrossRef] [PubMed]
- ElSheemy, M.S. Postnatal management of children with antenatal hydronephrosis. Afr. J. Urol. 2020, 26, 86. [Google Scholar] [CrossRef]
- Radmayr, C.; Bogaert, G.; Burgu, B.; Castagnetti, M.S.; Dogan, H.S.; O’Kelly, F.; Quaedackers, J.; Rawashdeh, Y.F.H.; Silay, M.S.; Hoen, L.A. EAU Guidelines on Pediatric Urology; Edn. Presented at the EAU Annual Congress Milan; EAU Guidelines Office, European Society for Pediatric Urology and European Association of Urology: Arnhem, The Netherlands, 2023; pp. 64–68. Available online: http://uroweb.org/guidelines/compilations-of-all-guidelines/ (accessed on 10 March 2023).
- Nerli, R.; Reddy, M.; Jali, S.; Hiremath, M. Preliminary experience with laparoscopic Foley’s YV plasty for ureteropelvic junction obstruction in children. J. Minim. Access Surg. 2014, 10, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Janetschek, G.; Reinhard, P.; Bartsch, G. Laparoscopic Fenger Plasty. J. Endourol. 2000, 14, 889–893. [Google Scholar] [CrossRef]
- Culp, O.S.; DeWeerd, J.H. A pelvic flap operation for certain types of ureteropelvic obstruction: Preliminary report. Mayo Clin. Proc. 1951, 26, 483. [Google Scholar]
- Anderson, J.C.; Hynes, W. Retrocaval ureter; a case diagnosed pre-operatively and treated successfully by a plastic operation. Br. J. Urol. 1949, 21, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Nandan, R.; Jain, V.; Agarwala, S.; Das, P.; Goel, P.; Kalaivani, M.; Yadav, D.K. Evaluation of Interstitial Cells of Cajal-Like Cells at the Pelviureteric Junction in Children with Pelviureteric Junction Obstruction: A Prospective Study and Review of Literature. J. Indian. Assoc. Pediatr. Surg. 2022, 27, 395–401. [Google Scholar] [PubMed]
- Koleda, P.; Apoznanski, W.; Wozniak, Z.; Rusiecki, L.; Szydelko, T.; Pilecki, W.; Polok, M.; Kalka, D.; Pupka, A. Changes in interstitial cell of Cajal-like cells density in congenital ureteropelvic junction obstruction. Int. Urol. Nephrol. 2012, 44, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Kuvel, M.; Canguven, O.; Murtazaoglu, M.; Albayrak, S. Distribution of Cajal like cells and innervation in intrinsic ureteropelvic junction obstruction. Arch. Ital. Urol. Androl. 2011, 83, 128–132. [Google Scholar]
- Bayrak, O.; Basmaci, I.; Bozdag, Z.; Sen, H.; Erturhan, S.; Balat, A.; Seckiner, I. Immunohistochemical evaluation of Cajal-like cells and Caveolin-1 levels at ureteropelvic junction obstruction. Arch. Esp. Urol. 2019, 72, 690–696. [Google Scholar] [PubMed]
- Dey, S.K.; Pande, T.; Chand, K.; Kinra, P. Influence of Interstitial Cells of Cajal in Congenital Ureteropelvic Junction Obstruction. J. Indian. Assoc. Pediatr. Surg. 2020, 25, 231–235. [Google Scholar] [CrossRef]
- Mehrazma, M.; Tanzifi, P.; Rakhshani, N. Changes in Structure, Interstitial Cajal-like Cells and Apoptosis of Smooth Muscle Cells in Congenital Ureteropelvic Junction Obstruction. Iran. J. Pediatr. 2014, 24, 105–110. [Google Scholar] [CrossRef]
- Babu, R.; Vittalraj, P.; Sundaram, S.; Shalini, S. Pathological changes in ureterovesical and ureteropelvic junction obstruction explained by fetal ureter histology. J. Pediatr. Urol. 2019, 15, 240.e1–240.e7. [Google Scholar] [CrossRef]
- Samaranayake, U.M.J.E.; Mathangasinghe, Y.; Liyanage, U.A.; de Silva, M.V.C.; Samarasinghe, M.C.; Abeygunasekera, S.; Lamahewage, A.K.; Malalasekera, A.P. Variations in the Density and Distribution of Cajal Like Cells Associated With the Pathogenesis of Ureteropelvic Junction Obstruction: A Systematic Review and Meta-Analysis. Front. Surg. 2021, 8, 721143. [Google Scholar] [CrossRef]
- Cohen, S.; Raisin, G.; Dothan, D.; Jaber, J.; Kocherov, S.; Chertin, B. Robotic-assisted laparoscopic pyeloplasty (RALP), for ureteropelvic junction obstruction (UPJO), is an alternative to open pyeloplasty in the pediatric population. J. Robot. Surg. 2022, 16, 1117–1122. [Google Scholar] [CrossRef]
- Sarhan, O.; Al Otay, A.; Al Faddagh, A.; El Helaly, A.; Al Hagbani, M.; Al Ghanbar, M.; Al Kawai, F.; Nakshabandi, Z. Pyeloplasty in children with low differential renal function: Functional recoverability. J. Pediatr. Urol. 2021, 17, e1–e658. [Google Scholar] [CrossRef] [PubMed]
- Babu, R.; Vittalraj, P.; Sundaram, S.; Manjusha, M.P.; Ramanan, V.; Sai, V. Comparison of different pathological markers in predicting pyeloplasty outcomes in children. J. Pediatr. Surg. 2020, 55, 1616–1620. [Google Scholar] [CrossRef] [PubMed]
- Issi, O.; Deliktas, H.; Gedik, A.; Ozekinci, S.; Bircan, M.K.; Sahin, H. Does the histopathologic pattern of the ureteropelvic junction affect the outcome of pyeloplasty. Urol. J. 2015, 12, 2028–2031. [Google Scholar] [PubMed]
- Svennersten, K.; Hallén-Grufman, K.; de Verdier, P.J.; Wiklund, N.P.; Poljakovic, M. Localization of P2X receptor subtypes 2, 3 and 7 in human urinary bladder. BMC Urol. 2015, 15, 81. [Google Scholar] [CrossRef]
- Ransley, P.; Dhillon, H.; Gordon, I.; Duffy, P.; Dillon, M.; Barratt, T. The Postnatal Management of Hydronephrosis Diagnosed by Prenatal Ultrasound. J. Urol. 1990, 144, 584–587. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.P.; Undem, B.J. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders. Front. Cell. Neurosci. 2013, 7, 267. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G.; Kennedy, C. Is there a basis for distinguishing two types of P2-purinoceptor? General. Pharmacol. 1985, 16, 433–440. [Google Scholar] [CrossRef]
- Krajewski, J.L. P2X3-containing receptors as targets for the treatment of chronic pain. Neurotherapeutics 2020, 17, 826–838. [Google Scholar] [CrossRef]
Variable | All n = 50 n (%) | Pain Response or Its Equivalents | p | |
---|---|---|---|---|
Yes n = 11 n (%) | No n = 39 n (%) | |||
Gender: | 1.000 | |||
Female | 9 (18.0%) | 2 (18.2%) | 7 (17.9%) | |
Male | 41 (82.0%) | 9 (81.8%) | 32 (82.1%) | |
Age (months): | 0.017 | |||
M ± SD | 41.7 ± 50.8 | 84.5 ± 64.6 | 29.7 ± 39.3 | |
Me [Q1; Q3] | 18 [7; 63] | 77 [25; 144] | 17 [6; 35] | |
Min—Max | 2–189 | 2–187 | 3–189 |
Variable | Patient’s Age | Pain Response or Its Equivalents | p | |
---|---|---|---|---|
Yes n = 11 | No n = 39 | |||
ICCs Sub in 10 HPFs | Entire population | |||
Me [Q1; Q3] | 30 [20; 51] | 24 [14; 38] | 0.308 | |
Min—Max | 7–67 | 6–69 | ||
ICCs LMP in 10 HPFs | ||||
Me [Q1; Q3] | 20 [17; 39] | 20 [15; 24] | 0.251 | |
Min—Max | 4—44 | 4–37 | ||
ICCs Sub in 10 HPFs | <2 years | n = 2 | n = 26 | 0.006 |
Me [Q1; Q3] | 14 [7; 20] | 24.5 [14; 40] | 0.181 | |
Min—Max | 7–20 | 6–69 | ||
ICCs LMP in 10 HPFs | ||||
Me [Q1; Q3] | 11 [4; 18] | 17.5 [14; 26] | 0.305 | |
Min—Max | 4–18 | 4–37 | ||
ICCs Sub in 10 HPFs | =>2 years | n = 9 | n = 13 | |
Me [Q1; Q3] | 32 [28; 51] | 22 [15; 24] | 0.025 | |
Min—Max | 8–67 | 6–47 | ||
ICCs LMP in 10 HPFs | ||||
Me [Q1; Q3] | 29 [20; 39] | 21 [16; 23] | 0.142 | |
Min—Max | 10–44 | 4–26 |
P2X3 Intensity | Epithelium n of Specimens | Smooth Muscle n of Specimens | Chi-Square Test |
---|---|---|---|
0 | 0 | 1 | χ2 = 5.41 df = 4 p = 0.248 |
1 | 26 | 28 | |
2 | 19 | 19 | |
3 | 1 | 2 |
Variable | Patient’s Age | Pain Response or Its Equivalents | Chi-Square Test | |
---|---|---|---|---|
Yes N = 11 | No N = 39 | |||
P2X3 epithelium intensity | Entire population | χ2 = 1.79 df = 3 p = 0.618 | ||
0 | 0 (0.0%) | 0 (0.0%) | ||
1 | 7 (63.6%) | 19 (48.7%) | ||
2 | 4 (36.4%) | 15 (38.5%) | ||
3 | 0 (0.0%) | 1 (2.6%) | ||
N/A * | 0 (0.0%) | 4 (10.3%) | ||
P2X3 muscle intensity | χ2 = 1.77 df = 3 p = 0.622 | |||
0 | 0 (0.0%) | 1 (2.6%) | ||
1 | 7 (63.6%) | 21 (53.8%) | ||
2 | 3 (27.3%) | 16 (41.0%) | ||
3 | 1 (9.1%) | 1 (2.6%) | ||
P2X3 epithelium intensity | <2 years | n = 2 | n = 26 | χ2 = 0.08 df = 2 p = 0.959 |
1 | 1 (50.0%)) | 13 (50.0%) | ||
2 | 1 (50.0%) | 12 (46.2%) | ||
3 | 0 (0.0%) | 1 (3.8%)) | ||
P2X3 muscle intensity | χ2 = 1.62 df = 2 p = 0.446 | |||
1 | 2 (100.0%) | 14 (53.8%) | ||
2 | 0 (0.0%) | 11 (42.3%) | ||
3 | 0 (0.0%) | 1 (3.8%) | ||
P2X3 epithelium intensity | ≥2 years | n = 9 | n = 13 | χ2 = 3.38 df = 2 p = 0.184 |
1 | 6 (66.7%) | 6 (46.2%) | ||
2 | 3 (33.3%) | 3 (23.1%) | ||
N/A * | 0 (0.0%) | 4 (30.8%) | ||
P2X3 muscle intensity | χ2 = 2.18 df = 3 p = 0.536 | |||
0 | 0 (0.0%) | 1 (7.7%) | ||
1 | 5 (55.6%) | 7 (53.8%) | ||
2 | 3 (33.3%) | 5 (38.5%) | ||
3 | 1 (11.1%) | 0 (0.0%) |
Symptomatic Patients | Asymptomatic Patients |
---|---|
Significantly older | Younger |
Higher overall number of ICCs | Lower overall number of ICCs |
Significant and more conspicuous differences in ICC distribution in the wall | Significant, but less conspicuous, differences in ICC distribution in the wall |
Indication for surgery: symptoms with or without changes in renal function | Indication for surgery: deterioration in kidney function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borselle, D.; Kaczorowski, M.; Gogolok, B.; Patkowski, D.; Polok, M.; Hałoń, A.; Apoznański, W. Interstitial Cells of Cajal and P2X3 Receptors at Ureteropelvic Junction Obstruction and Their Relationship with Pain Response. J. Clin. Med. 2024, 13, 2109. https://doi.org/10.3390/jcm13072109
Borselle D, Kaczorowski M, Gogolok B, Patkowski D, Polok M, Hałoń A, Apoznański W. Interstitial Cells of Cajal and P2X3 Receptors at Ureteropelvic Junction Obstruction and Their Relationship with Pain Response. Journal of Clinical Medicine. 2024; 13(7):2109. https://doi.org/10.3390/jcm13072109
Chicago/Turabian StyleBorselle, Dominika, Maciej Kaczorowski, Bartosz Gogolok, Dariusz Patkowski, Marcin Polok, Agnieszka Hałoń, and Wojciech Apoznański. 2024. "Interstitial Cells of Cajal and P2X3 Receptors at Ureteropelvic Junction Obstruction and Their Relationship with Pain Response" Journal of Clinical Medicine 13, no. 7: 2109. https://doi.org/10.3390/jcm13072109
APA StyleBorselle, D., Kaczorowski, M., Gogolok, B., Patkowski, D., Polok, M., Hałoń, A., & Apoznański, W. (2024). Interstitial Cells of Cajal and P2X3 Receptors at Ureteropelvic Junction Obstruction and Their Relationship with Pain Response. Journal of Clinical Medicine, 13(7), 2109. https://doi.org/10.3390/jcm13072109