The Effects of Acute Deep Seawater Supplementation on Muscle Function after Triathlon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Ethics
2.2. Experimental Design
2.3. Experimental Trial
2.4. Anthropometric and Strength Variables
2.5. Statistical Analysis
3. Results
Participants’ Anthropometric and Functional Characteristics
4. Discussion
Limitations and Strength
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, P.R.; Keen, D.A.; Constantopoulos, E.; Weninger, S.N.; Hines, E.; Koppinger, M.P.; Khalpey, Z.I.; Konhilas, J.P. Fluid type influences acute hydration and muscle performance recovery in human subjects. J. Int. Soc. Sports Nutr. 2019, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Nuccio, R.P.; Barnes, K.A.; Carter, J.M.; Baker, L.B. Fluid Balance in Team Sport Athletes and the Effect of Hypohydration on Cognitive, Technical, and Physical Performance. Sports Med. 2017, 47, 1951–1982. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Gonzalez-Millan, C.; Salinero, J.J.; Abian-Vicen, J.; Soriano, L.; Garde, S.; Perez-Gonzalez, B. Muscle damage and its relationship with muscle fatigue during a half-iron triathlon. PLoS ONE 2012, 7, e43280. [Google Scholar] [CrossRef]
- Brown, M.B.; Haack, K.K.; Pollack, B.P.; Millard-Stafford, M.; McCarty, N.A. Low abundance of sweat duct Cl-channel CFTR in both healthy and cystic fibrosis athletes with exceptionally salty sweat during exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R605–R615. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Gonzalez-Millan, C.; Salinero, J.J.; Abian-Vicen, J.; Areces, F.; Lledo, M.; Lara, B.; Gallo-Salazar, C.; Ruiz-Vicente, D. Effects of oral salt supplementation on physical performance during a half-ironman: A randomized controlled trial. Scand. J. Med. Sci. Sports 2016, 26, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Gonzalez, C.; Abian-Vicen, J.; Salinero Martin, J.J.; Soriano, L.; Areces, F.; Ruiz, D.; Gallo, C.; Lara, B.; Calleja-Gonzalez, J. Relationship between physiological parameters and performance during a half-ironman triathlon in the heat. J. Sports Sci. 2014, 32, 1680–1687. [Google Scholar] [CrossRef]
- Edwards, A.M.; Noakes, T.D. Dehydration: Cause of fatigue or sign of pacing in elite soccer? Sports Med. 2009, 39, 1–13. [Google Scholar] [CrossRef]
- Nowaczyk, P.M.; Adamczewski, J.; Durkalec-Michalski, K. Practical Application and Methodological Considerations on the Basics of Sports Nutrition in Basketball: A Comprehensive Systematic Review of Observational and Interventional Studies. Nutrients 2023, 15, 4484. [Google Scholar] [CrossRef]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.; Armstrong, L.; Burke, L.M.; Close, G.L. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef]
- Oliveira, C.C.; Ferreira, D.; Caetano, C.; Granja, D.; Pinto, R.; Mendes, B.; Sousa, M. Nutrition and supplementation in soccer. Sports 2017, 5, 28. [Google Scholar] [CrossRef]
- Danielik, K.; Książek, A.; Zagrodna, A.; Słowińska-Lisowska, M. How Do Male Football Players Meet Dietary Recommendations? A Systematic Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 9561. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, H.; Karczemna, A.; Włodarek, D. Nutrition for female soccer players—Recommendations. Medicina 2020, 56, 28. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, J. Nutritional Practices, Interventions and recommendations for junior rugby league players. Sports Nutr. Ther. 2016, 1, 110. [Google Scholar] [CrossRef]
- Logue, D.; Madigan, S.M.; Delahunt, E.; Heinen, M.; Mc Donnell, S.J.; Corish, C.A. Low Energy Availability in Athletes: A Review of Prevalence, Dietary Patterns, Physiological Health, and Sports Performance. Sports Med. 2018, 48, 73–96. [Google Scholar] [CrossRef]
- IOC consensus statement on sports nutrition 2010. J. Sports Sci. 2011, 29 (Suppl. S1), S3–S4. [CrossRef]
- Arnaoutis, G.; Anastasiou, C.A.; Suh, H.; Maraki, M.; Tsekouras, Y.; Dimitroulis, E.; Echegaray, M.; Papamichalopoulou, D.; Methenitis, S.; Sidossis, L.S.; et al. Exercise-Associated Hyponatremia during the Olympus Marathon Ultra-Endurance Trail Run. Nutrients 2020, 12, 997. [Google Scholar] [CrossRef]
- Lopez-Torres, O.; Rodriguez-Longobardo, C.; Escribano-Tabernero, R.; Fernandez-Elias, V.E. Hydration, Hyperthermia, Glycogen, and Recovery: Crucial Factors in Exercise Performance-A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 4442. [Google Scholar] [CrossRef]
- Kataoka, R.; Vasenina, E.; Hammert, W.B.; Ibrahim, A.H.; Dankel, S.J.; Buckner, S.L. Is there Evidence for the Suggestion that Fatigue Accumulates Following Resistance Exercise? Sports Med. 2022, 52, 25–36. [Google Scholar] [CrossRef]
- Aragon-Vela, J.; Gonzalez-Acevedo, O.; Plaza-Diaz, J.; Casuso, R.A.; Huertas, J.R. Physiological Benefits and Performance of Sea Water Ingestion for Athletes in Endurance Events: A Systematic Review. Nutrients 2022, 14, 4609. [Google Scholar] [CrossRef]
- Stasiule, L.; Capkauskiene, S.; Vizbaraite, D.; Stasiulis, A. Deep mineral water accelerates recovery after dehydrating aerobic exercise: A randomized, double-blind, placebo-controlled crossover study. J. Int. Soc. Sports Nutr. 2014, 11, 34. [Google Scholar] [CrossRef]
- Hou, C.W.; Tsai, Y.S.; Jean, W.H.; Chen, C.Y.; Ivy, J.L.; Huang, C.Y.; Kuo, C.H. Deep ocean mineral water accelerates recovery from physical fatigue. J. Int. Soc. Sports Nutr. 2013, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, O.G.; Aragon-Vela, J.; De la Cruz Marquez, J.C.; Marin, M.M.; Casuso, R.A.; Huertas, J.R. Seawater Hydration Modulates IL-6 and Apelin Production during Triathlon Events: A Crossover Randomized Study. Int. J. Environ. Res. Public Health 2022, 19, 9581. [Google Scholar] [CrossRef] [PubMed]
- Pahnke, M.D.; Trinity, J.D.; Zachwieja, J.J.; Stofan, J.R.; Hiller, W.D.; Coyle, E.F. Serum sodium concentration changes are related to fluid balance and sweat sodium loss. Med. Sci. Sports Exerc. 2010, 42, 1669–1674. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports, M.; Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef]
- Rodrigues, P.; Trajano, G.S.; Stewart, I.B.; Minett, G.M. Potential role of passively increased muscle temperature on contractile function. Eur. J. Appl. Physiol. 2022, 122, 2153–2162. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M.N.; Noakes, T.D. Does dehydration impair exercise performance? Med. Sci. Sports Exerc. 2007, 39, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Goulet, E.D.B.; Hoffman, M.D. Impact of Ad Libitum Versus Programmed Drinking on Endurance Performance: A Systematic Review with Meta-Analysis. Sports Med. 2019, 49, 221–232. [Google Scholar] [CrossRef]
- Gonzalez-Alonso, J.; Mora-Rodriguez, R.; Below, P.R.; Coyle, E.F. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J. Appl. Physiol. 1997, 82, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, D.S.; Houltham, S.D. Multiple-Transportable Carbohydrate Effect on Long-Distance Triathlon Performance. Med. Sci. Sports Exerc. 2017, 49, 1734–1744. [Google Scholar] [CrossRef]
- Bejder, J.; Andersen, A.B.; Buchardt, R.; Larsson, T.H.; Olsen, N.V.; Nordsborg, N.B. Endurance, aerobic high-intensity, and repeated sprint cycling performance is unaffected by normobaric “Live High-Train Low”: A double-blind placebo-controlled cross-over study. Eur. J. Appl. Physiol. 2017, 117, 979–988. [Google Scholar] [CrossRef]
- Deshayes, T.A.; Jeker, D.; Goulet, E.D.B. Impact of Pre-exercise Hypohydration on Aerobic Exercise Performance, Peak Oxygen Consumption and Oxygen Consumption at Lactate Threshold: A Systematic Review with Meta-analysis. Sports Med. 2020, 50, 581–596. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Graves, B.; Rosseel, Y.; Merkle, E.C. Computation and application of generalized linear mixed model derivatives using lme4. Psychometrika 2022, 87, 1173–1193. [Google Scholar] [CrossRef] [PubMed]
- Boullosa, D.; Del Rosso, S.; Behm, D.G.; Foster, C. Post-activation potentiation (PAP) in endurance sports: A review. Eur. J. Sport Sci. 2018, 18, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E. Nutritional implications for ultra-endurance walking and running events. Extrem. Physiol. Med. 2016, 5, 13. [Google Scholar] [CrossRef]
- Desbrosses, K.; Babault, N.; Scaglioni, G.; Meyer, J.P.; Pousson, M. Neural activation after maximal isometric contractions at different muscle lengths. Med. Sci. Sports Exerc. 2006, 38, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Van Hooren, B.; Zolotarjova, J. The Difference between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.; Gleeson, M. Sport Nutrition, 3rd ed.; Human Kinetics, Inc.: Champaign, IL, USA, 2019. [Google Scholar]
- Logan-Sprenger, H.M.; Heigenhauser, G.J.; Jones, G.L.; Spriet, L.L. Increase in skeletal-muscle glycogenolysis and perceived exertion with progressive dehydration during cycling in hydrated men. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Casa, D.J.; Cheuvront, S.N.; Galloway, S.D.; Shirreffs, S.M. Fluid Needs for Training, Competition, and Recovery in Track-and-Field Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 175–180. [Google Scholar] [CrossRef]
- Lopez de Lara, D.; Ruiz-Sanchez, J.G.; Cuesta, M.; Seara, G.; Calle-Pascual, A.L.; Rubio Herrera, M.A.; Runkle, I.; Verbalis, J.G. Exercise-Induced Hyponatremia: An Assessment of the International Hydration Recommendations Followed During the Gran Trail De Penalara and Vitoria-Gasteiz Ironman Competitions. Front. Nutr. 2021, 8, 781229. [Google Scholar] [CrossRef]
- Keen, D.A.; Constantopoulos, E.; Konhilas, J.P. The impact of post-exercise hydration with deep-ocean mineral water on rehydration and exercise performance. J. Int. Soc. Sports Nutr. 2016, 13, 17. [Google Scholar] [CrossRef]
- Perez-Turpin, J.A.; Trottini, M.; Chinchilla-Mira, J.J.; Cyganik, W. Effects of seawater ingestion on lactate response to exercise in runners. Biol. Sport 2017, 34, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Casazza, G.A.; Tovar, A.P.; Richardson, C.E.; Cortez, A.N.; Davis, B.A. Energy Availability, Macronutrient Intake, and Nutritional Supplementation for Improving Exercise Performance in Endurance Athletes. Curr. Sports Med. Rep. 2018, 17, 215–223. [Google Scholar] [CrossRef] [PubMed]
Experimental | Placebo | Control |
---|---|---|
27.297 mg/L sodium | 0.9 g/L sodium chloride | Tap water |
0.465 mg/L potassium | ||
19.5 mg/L magnesium | ||
1.377 mg/L calcium |
Variables | Control (n = 10) | Experimental (n = 19) | Placebo (n = 19) | p-Value |
---|---|---|---|---|
Age (years) | 40.7 ± 5.89 | 39.15 ± 5.28 | 39.15 ± 5.28 | n.s. |
Body height (cm) | 176.6 ± 8.04 | 176.89 ± 6.08 | 176.89 ± 6.08 | n.s. |
Body mass (Kg) | 71.92 ± 13.32 | 75.2 ± 11.03 | 75.72 ± 10.95 | n.s. |
Total Body Water (Kg) | 46.54 ± 6.58 | 46.2 ± 4.84 | 47.4 ± 5.32 | n.s. |
Protein (kg) | 12.72 ± 1.84 | 12.42 ± 1.31 | 12.98 ± 1.39 | n.s. |
Body Fat Mass (kg) | 7.2 ± 3.92 | 8.74 ± 3.86 | 8.22 ± 4.07 | n.s. |
Body Mass Index (kg/m2) | 22.58 ± 2.51 | 23.27 ± 2.27 | 23.49 ± 1.81 | n.s. |
VO2max (mL/kg/min) | 45.31 ± 9.52 | 41.5 ± 11.32 | 41.5 ± 11.32 | n.s. |
Control Condition | Placebo Condition | Experimental Condition | p-Value | |
---|---|---|---|---|
Swimming time (Min) | 14.69 ± 1.41 | 14.76 ± 1.39 | 14.67 ± 1.2 | n.s. |
Cycling time (Min) | 157.2 ± 8.02 | 167.21 ± 12.04 | 166.68 ± 11.79 | n.s. |
Running time (Min) | 48.61 ± 6.46 | 51.58 ± 8.69 | 52.23 ± 7.2 | n.s. |
Complete test time (Min) | 220.2 ± 14.39 | 233.56 ± 19.65 | 233.59 ± 18.09 | n.s. |
Pre-Body Mass (kg) | 73.08 ± 12.3 | 74.47 ± 12 | 75.77 ± 11.81 | n.s. |
Post-Body Mass (kg) | 70.48 ± 11.64 | 71.57 ± 11.62 | 72.59 ± 11.56 | n.s. |
Weight loss percentage | −3.55 ± 1.51 | −3.89 ± 2.17 | −4.19 ± 2.7 | n.s |
Swimming RPE | 7.94 ± 0.93 | 7.03 ± 0.65 | 6.72 ± 0.65 | n.s. |
Cycling RPE | 8.4 ± 0.54 | 7.78 ± 0.41 | 8.02 ± 1.26 | n.s. |
Running RPE | 8.87 ± 0.54 | 9.01 ± 0.8 | 9.13 ± 0.85 | n.s. |
Initial temperature (°C) | 16.3 ± 1.16 | 15.21 ± 7.27 | 16.21 ± 6.63 | n.s. |
Final temperature (°C) | 28.7 ± 1.88 | 27.05 ± 8.07 | 29.49 ± 7.37 | n.s. |
Countermovement Vertical Jump Test | Control Condition | Placebo Condition | Experimental Condition | p-Value | |||||
Pre | Post | Pre | Post | Pre | Post | Time (T) | Treatment (t) | T × t | |
Flight Time (s) | 0.48 ± 0.07 | 0.51 ± 0.04 | 0.50 ± 0.1 | 0.49 ± 0.06 | 0.48 ± 0.09 | 0.48 ± 0.06 | 0.619 | 0.925 | 0.887 |
Jump height (m) | 0.30 ± 0.07 | 0.32 ± 0.06 | 0.33 ± 0.1 | 0.31 ± 0.06 | 0.30 ± 0.09 | 0.30 ± 0.06 | 0.349 | 0.996 | 0.982 |
Take-off vertical velocity (m/s) | 2.1 ± 0.4 | 2.4 ± 0.4 | 2.2 ± 0.3 | 2.4 ± 0.5 | 2.7 ± 1.2 | 2.5 ± 0.8 | 0.024 | 0.736 | 0.905 |
Peak relative power (PP) (W/Kg) | 21.0 ± 5.9 | 27.4 ± 3.9 | 22.0 ± 5.0 | 27.8 ± 6.8 | 27.6 ± 9.7 | 29.1 ± 8.7 | 0.019 | 0.027 | 0.705 |
Peak net force (N) | 881.0 ± 261.5 | 1026.2 ± 276.8 | 1009.2 ± 312.4 | 1106.9 ± 276.6 | 962.8 ± 253.2 | 1099.5 ± 233.6 | 0.277 | 0.012 | 0.467 |
Isometric Muscle Strength Test | Control Condition | Placebo Condition | Experimental Condition | p-Value | |||||
Pre | Post | Pre | Post | Pre | Post | Time (T) | Treatment (t) | T × t | |
Peak relative power (PP) (W/Kg) | 72.4 ± 44.2 | 47.5 ± 34.3 | 71.0 ± 103.0 | 64.2 ± 87.3 | 80.9 ± 97.9 | 51.8 ± 48.7 | 0.402 | 0.003 | 0.901 |
Peak net force (N) | 764.2 ± 271.6 | 616.8 ± 280.3 a | 742.8 ± 195.3 | 604.3 ± 131.6 a | 734.7 ± 253.2 | 675.0 ± 164.2 b | 0.093 | 0.043 | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aragón-Vela, J.; González-Acevedo, O.; De la Cruz-Márquez, J.C.; Rojas Ruíz, F.J.; Marín, M.M.; Casuso, R.A.; Plaza-Diaz, J.; Huertas, J.F.R. The Effects of Acute Deep Seawater Supplementation on Muscle Function after Triathlon. J. Clin. Med. 2024, 13, 2258. https://doi.org/10.3390/jcm13082258
Aragón-Vela J, González-Acevedo O, De la Cruz-Márquez JC, Rojas Ruíz FJ, Marín MM, Casuso RA, Plaza-Diaz J, Huertas JFR. The Effects of Acute Deep Seawater Supplementation on Muscle Function after Triathlon. Journal of Clinical Medicine. 2024; 13(8):2258. https://doi.org/10.3390/jcm13082258
Chicago/Turabian StyleAragón-Vela, Jerónimo, Olivia González-Acevedo, Juan Carlos De la Cruz-Márquez, Francisco Javier Rojas Ruíz, Manuel Martínez Marín, Rafael A. Casuso, Julio Plaza-Diaz, and Jesus F. Rodriguez Huertas. 2024. "The Effects of Acute Deep Seawater Supplementation on Muscle Function after Triathlon" Journal of Clinical Medicine 13, no. 8: 2258. https://doi.org/10.3390/jcm13082258
APA StyleAragón-Vela, J., González-Acevedo, O., De la Cruz-Márquez, J. C., Rojas Ruíz, F. J., Marín, M. M., Casuso, R. A., Plaza-Diaz, J., & Huertas, J. F. R. (2024). The Effects of Acute Deep Seawater Supplementation on Muscle Function after Triathlon. Journal of Clinical Medicine, 13(8), 2258. https://doi.org/10.3390/jcm13082258