Exploring the Link between Anticoagulation, Cognitive Impairment and Dementia in Atrial Fibrillation: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
- ▪
- Observational studies or randomized controlled trials.
- ▪
- Studies enrolling patients with AF, either permanent, persistent or paroxysmal, and who are >18 years old.
- ▪
- Studies enrolling patients with AF who are receiving anticoagulant therapy.
- ▪
- Studies whose outcomes of interest are clearly reported and assessed via recognized scoring systems, e.g., MMSE (Mini Mental State Exam), MoCA (Montreal Cognitive Assessment), IQCODE (Informant Questionnaire on Cognitive Decline in the Elderly), ICD codes, etc.
- ▪
- Studies enrolling patients who underwent open heart surgery or currently have underlying psychological disorders or cancer.
- ▪
- Studies focusing on the pathophysiology of AF or that do not report data on cognitive impairment or only provide results from brain imaging, biomarkers, or genetic markers.
- ▪
- Studies that do not include original data, or are editorials, case reports, case series, systematic reviews, or meta-analyses.
2.2. Study Identification
2.3. Data Extraction and Outcomes
2.4. Data Synthesis and Analysis
2.5. Risk of Bias Assessment
3. Results
3.1. Associations with Oral Anticoagulants
3.2. Association with Vitamin K Antagonists
3.3. Direct Oral Anticoagulant vs. Vitamin K Antagonists
3.4. Direct Oral Anticoagulant vs. Antiplatelet
3.5. Vitamin K Antagonist vs. Antiplatelet
3.6. Warfarin/VKAs and Time in Therapeutic Range (TTR): Evaluating the Relationship
3.7. Association between Cognitive Impairment, Time in Therapeutic Range (TTR) and Anticoagulation Control
3.8. Association of Non-Adherence to Antithrombotic Therapy and Medication Type with Cognitive Impairment
4. Discussion
4.1. Mechanism of Cognitive Impairment and Dementia in AF
4.2. Impact of Oral Anticoagulants on Cognition and Dementia
4.3. Comparing Different Medications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dietzel, J.; Haeusler, K.G.; Endres, M. Does atrial fibrillation cause cognitive decline and dementia? EP Eur. 2018, 20, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.Y.; Snyder, P.J.; Wu, W.C.; Zhang, M.; Echeverria, A.; Alber, J. Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. Alzheimers Dement. 2017, 7, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Diener, H.C.; Hart, R.G.; Koudstaal, P.J.; Lane, D.A.; Lip, G.Y.H. Atrial Fibrillation and Cognitive Function: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Qiu, C. Atrial Fibrillation, Cognitive Decline, and Dementia: An Epidemiologic Review. Curr. Epidemiol. Rep. 2018, 5, 252–261. [Google Scholar] [CrossRef]
- Blum, S.; Conen, D. Mechanisms and Clinical Manifestations of Cognitive Decline in Atrial Fibrillation Patients: Potential Implications for Preventing Dementia. Can. J. Cardiol. 2023, 39, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Chinta, V.; Askandar, S.; Nanda, A.; Sharma, A.; Abader, P.; Kabra, R.; Khouzam, R.N. Atrial Fibrillation and Deterioration in Cognitive Function. Curr. Probl. Cardiol. 2019, 44, 100386. [Google Scholar] [CrossRef]
- Kalantarian, S.; Ruskin, J.N. Atrial Fibrillation and Cognitive Decline: Phenomenon or Epiphenomenon? Cardiol. Clin. 2016, 34, 279–285. [Google Scholar] [CrossRef]
- Prins, N.D.; Van Dijk, E.J.; den Heijer, T.; Vermeer, S.E.; Koudstaal, P.J.; Oudkerk, M.; Hofman, A.; Breteler, M.M. Cerebral white matter lesions and the risk of dementia. Arch. Neurol. 2004, 61, 1531–1534. [Google Scholar] [CrossRef]
- Anstey, K.J.; von Sanden, C.; Salim, A.; O’Kearney, R. Smoking as a risk factor for dementia and cognitive decline: A meta-analysis of prospective studies. Am. J. Epidemiol. 2007, 166, 367–378. [Google Scholar] [CrossRef]
- Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006, 5, 64–74. [Google Scholar] [CrossRef]
- Wendell, C.R.; Waldstein, S.R.; Ferrucci, L.; O’Brien, R.J.; Strait, J.B.; Zonderman, A.B. Carotid atherosclerosis and prospective risk of dementia. Stroke 2012, 43, 3319–3324. [Google Scholar] [CrossRef] [PubMed]
- Soo, Y.; Zietz, A.; Yiu, B.; Mok, V.C.T.; Polymeris, A.A.; Seiffge, D.; Ambler, G.; Wilson, D.; Leung, T.W.H.; Tsang, S.F.; et al. Impact of Cerebral Microbleeds in Stroke Patients with Atrial Fibrillation. Ann. Neurol. 2023, 94, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Seong, H.J.; Lee, K.; Kim, B.H.; Son, Y.J. Cognitive impairment is independently associated with non-adherence to antithrombotic therapy in older patients with atrial fibrillation. Int. J. Environ. Res. Public. Health 2019, 16, 2698. [Google Scholar] [CrossRef] [PubMed]
- Mongkhon, P.; Fanning, L.; Lau, W.C.; Tse, G.; Lau, K.K.; Wei, L.; Kongkaew, C.; Wong, I.C. Oral anticoagulant and reduced risk of dementia in patients with atrial fibrillation: A population-based cohort study. Heart Rhythm. 2020, 17, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Jankowska-Polańska, B.; Katarzyna, L.; Lidia, A.; Joanna, J.; Dudek, K.; Izabella, U. Cognitive function and adherence to anticoagulation treatment in patients with atrial fibrillation. J. Geriatr. Cardiol. 2016, 13, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, S.; Rizos, T.; Saribas, M.; Efthymiou, E.; Rauch, G.; Veltkamp, R. Cognitive Impairment is Not a Predictor of Failure to Adhere to Anticoagulation of Stroke Patients with Atrial Fibrillation. Cerebrovasc. Dis. 2015, 39, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Caramelli, B.; Yu, P.C.; Cardozo, F.A.M.; Magalhães, I.R.; Spera, R.R.; Amado, D.K.; Escalante-Rojas, M.C.; Gualandro, D.M.; Calderaro, D.; Tavares, C.A.M.; et al. Effects of dabigatran versus warfarin on 2-year cognitive outcomes in old patients with atrial fibrillation: Results from the GIRAF randomized clinical trial. BMC Med. 2022, 20, 374. [Google Scholar] [CrossRef] [PubMed]
- Bunch, T.J.; May, H.; Cutler, M.; Woller, S.C.; Jacobs, V.; Stevens, S.M.; Carlquist, J.; Knowlton, K.U.; Muhlestein, J.B.; Steinberg, B.A.; et al. Impact of anticoagulation therapy on the cognitive decline and dementia in patients with non-valvular atrial fibrillation (cognitive decline and dementia in patients with non-valvular atrial fibrillation [CAF] trial). J. Arrhythmia 2022, 38, 997–1008. [Google Scholar] [CrossRef]
- Friberg, L.; Rosenqvist, M. Less dementia with oral anticoagulation in atrial fibrillation. Eur. Heart J. 2018, 39, 453–460. [Google Scholar] [CrossRef]
- Jacobs, V.; May, H.T.; Bair, T.L.; Crandall, B.G.; Cutler, M.J.; Day, J.D.; Mallender, C.; Osborn, J.S.; Stevens, S.M.; Weiss, J.P.; et al. Long-Term Population-Based Cerebral Ischemic Event and Cognitive Outcomes of Direct Oral Anticoagulants Compared With Warfarin Among Long-term Anticoagulated Patients for Atrial Fibrillation. Am. J. Cardiol. 2016, 118, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Cadogan, S.L.; Powell, E.; Wing, K.; Wong, A.Y.; Smeeth, L.; Warren-Gash, C. Anticoagulant prescribing for atrial fibrillation and risk of incident dementia. Heart 2021, 107, 1898–1904. [Google Scholar] [CrossRef] [PubMed]
- Field, T.S.; Weijs, B.; Curcio, A.; Giustozzi, M.; Sudikas, S.; Katholing, A.; Wallenhorst, C.; Weitz, J.I.; Cohen, A.T.; Martinez, C. Incident Atrial Fibrillation, Dementia and the Role of Anticoagulation: A Population-Based Cohort Study. Thromb. Haemost. 2019, 119, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Petroni, R.; Magnano, R.; Pezzi, L.; Petroni, A.; Di Mauro, M.; Mattei, A.; Fiasca, F.; Angelone, A.M.; Gallina, S.; Penco, M.; et al. Analysis of Risk Factors Independently Associated with Cognitive Impairment in Patients with Permanent Atrial Fibrillation: A Cross-sectional Observational Study. J. Stroke Cerebrovasc. Dis. 2020, 29, 104895. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Roalfe, A.; Fletcher, K.; Lip, G.Y.; Hobbs, F.R.; Fitzmaurice, D.; Mant, J. Warfarin versus aspirin for prevention of cognitive decline in atrial fibrillation: Randomized controlled trial (birmingham atrial fibrillation treatment of the aged study). Stroke 2014, 45, 1381–1386. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Huang, D.; Zhou, M.; Hai, J.; Yue, W.S.; Li, W.-H.; Yin, L.-X.; Zuo, M.-L.; Feng, Y.Q.; Tan, N.; et al. Antithrombotic therapy and the risk of new-onset dementia in elderly patients with atrial fibrillation. Postgrad. Med. J. 2022, 98, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, C.; Ferland, G.; Barberger-Gateau, P.; Brangier, A.; Rolland, Y.; Beauchet, O. Vitamin K antagonists and cognitive impairment: Results from a cross-sectional pilot study among geriatric patients. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, M.; Hu, T.Y.; Gersh, B.J.; Roger, V.L.; Killian, J.; Weston, S.A.; Graff-Radford, J.; Asirvatham, S.J.; Chamberlain, A.M. Efficacy of Warfarin Anticoagulation and Incident Dementia in a Community-Based Cohort of Atrial Fibrillation. Mayo Clin. Proc. 2018, 93, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Flaker, G.C.; Pogue, J.; Yusuf, S.; Pfeffer, M.A.; Goldhaber, S.Z.; Granger, C.B.; Anand, I.S.; Hart, R.; Connolly, S.J. Cognitive function and anticoagulation control in patients with atrial fibrillation. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 277–283. [Google Scholar] [CrossRef]
- Gorzelak-Pabiś, P.; Zyzak, S.; Krewko, Ł.; Broncel, M. Assessment of the mean time in the therapeutic INR range and the SAME-TT2R2 score in patients with atrial fibrillation and cognitive impairment. Pol. Arch. Med. 2016, 126, 494–501. [Google Scholar] [CrossRef]
- Barber, M.; Tait, R.C.; Scott, J.; Rumley, A.; Lowe, G.D.O.; Stott, D.J. Dementia in subjects with atrial fibrillation: Hemostatic function and the role of anticoagulation. J. Thromb. Haemost. 2004, 2, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, V.; Woller, S.C.; Stevens, S.; May, H.T.; Bair, T.L.; Anderson, J.L.; Crandall, B.G.; Day, J.D.; Johanning, K.; Long, Y.; et al. Time outside of therapeutic range in atrial fibrillation patients is associated with long-term risk of dementia. Heart Rhythm. 2014, 11, 2206–2213. [Google Scholar] [CrossRef] [PubMed]
- Bunch, T.J.; May, H.T.; Bair, T.L.; Crandall, B.G.; Cutler, M.J.; Day, J.D.; Jacobs, V.; Mallender, C.; Osborn, J.S.; Stevens, S.M.; et al. Atrial Fibrillation Patients Treated with Long-Term Warfarin Anticoagulation Have Higher Rates of All Dementia Types Compared with Patients Receiving Long-Term Warfarin for Other Indications. J. Am. Heart Assoc 2016, 5, e003932. [Google Scholar] [CrossRef] [PubMed]
- Van Deelen, B.A.J.; Van Den Bemt, P.M.L.A.; Egberts, T.C.G.; Van’t Hoff, A.; Maas, H.A.A.M. Cognitive impairment as determinant for sub-optimal control of oral anticoagulation treatment in elderly patients with atrial fibrillation. Drugs Aging 2005, 22, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Malavasi, V.L.; Zoccali, C.; Brandi, M.C.; Micali, G.; Vitolo, M.; Imberti, J.F.; Mussi, C.; Schnabel, R.B.; Freedman, B.; Boriani, G. Cognitive impairment in patients with atrial fibrillation: Implications for outcome in a cohort study. Int. J. Cardiol. 2021, 323, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Mongkhon, P.; Naser, A.Y.; Fanning, L.; Tse, G.; Lau, W.C.; Wong, I.C.; Kongkaew, C. Oral anticoagulants and risk of dementia: A systematic review and meta-analysis of observational studies and randomized controlled trials. Neurosci. Biobehav. Rev. 2019, 96, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, L.G.; Billett, H.H.; Freeman, K.; Dinglas, C.; Jumaquio, L. Anticoagulation for stroke prevention in elderly patients with atrial fibrillation, including those with falls and/or early-stage dementia: A single-center, retrospective, observational study. Am. J. Geriatr. Pharmacother. 2009, 7, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Ott, A.; Breteler, M.M.; de Bruyne, M.C.; van Harskamp, F.; Grobbee, D.E.; Hofman, A. Atrial fibrillation and dementia in a population-based study. The Rotterdam Study. Stroke 1997, 28, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Thacker, E.L.; McKnight, B.; Psaty, B.M.; Longstreth, W.; Sitlani, C.M.; Dublin, S.; Arnold, A.M.; Fitzpatrick, A.L.; Gottesman, R.F.; Heckbert, S.R. Atrial fibrillation and cognitive decline: A longitudinal cohort study. Neurology 2013, 81, 119–125. [Google Scholar] [CrossRef]
- Konno, S.; Meyer, J.S.; Terayama, Y.; Margishvili, G.M.; Mortel, K.F. Classification, diagnosis and treatment of vascular dementia. Drugs Aging 1997, 11, 361–373. [Google Scholar] [CrossRef]
- Bellmann, B.; Fiebach, J.; Guttmann, S.; Lin, T.; Haeusler, K.; Bathe-Peters, R.; Koehler, L.; Steffens, D.; Kasner, M.; Tscholl, V.; et al. Incidence of MRI-detected brain lesions and neurocognitive function after electrical cardioversion in anticoagulated patients with persistent atrial fibrillation. Int. J. Cardiol. 2017, 243, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Knecht, S.; Oelschläger, C.; Duning, T.; Lohmann, H.; Albers, J.; Stehling, C.; Heindel, W.; Breithardt, G.; Berger, K.; Ringelstein, E.B.; et al. Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. Eur. Heart J. 2008, 29, 2125–2132. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Lopez, F.L.; Gottesman, R.F.; Huxley, R.R.; Agarwal, S.K.; Loehr, L.; Mosley, T.; Alonso, A. Atrial fibrillation and cognitive decline-the role of subclinical cerebral infarcts: The atherosclerosis risk in communities study. Stroke 2014, 45, 2568–2574. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Jiang, C.; Su, C.; Tan, Y.; Wu, J. Anticoagulation in atrial fibrillation and cognitive decline: A systematic review and meta-analysis. Medicine 2019, 98, e14499. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, R.F.A.G.; Heeringa, J.; Wolters, F.J.; Franco, O.H.; Stricker, B.H.C.; Hofman, A.; Koudstaal, P.J.; Ikram, M.A. Association between atrial fibrillation and dementia in the general population. JAMA Neurol. 2015, 72, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.; Okin, P.M.; Elkind, M.S.V.; Iadecola, C. Atrial Fibrillation and Mechanisms of Stroke: Time for a New Model. Stroke 2016, 47, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Ezekowitz, M.D.; James, K.E.; Nazarian, S.M.; Davenport, J.; Broderick, J.P.; Gupta, S.R.; Thadani, V.; Meyer, M.L.; Bridgers, S.L. Silent cerebral infarction in patients with nonrheumatic atrial fibrillation. The Veterans Affairs Stroke Prevention in Nonrheumatic Atrial Fibrillation Investigators. Circulation 1995, 92, 2178–2182. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, W.M.; Seeger, J.F.; Carmody, R.F.; Anderson, D.C.; Hart, R.G.; Pearce, L.A. Epidemiologic features of asymptomatic cerebral infarction in patients with nonvalvular atrial fibrillation. Arch. Intern. Med. 1990, 150, 2340–2344. [Google Scholar] [CrossRef] [PubMed]
- Gaita, F.; Corsinovi, L.; Anselmino, M.; Raimondo, C.; Pianelli, M.; Toso, E.; Bergamasco, L.; Boffano, C.; Valentini, M.C.; Cesarani, F.; et al. Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function. J. Am. Coll. Cardiol. 2013, 62, 1990–1997. [Google Scholar] [CrossRef]
- Bretzman, J.P.; Tseng, A.S.; Graff-Radford, J.; Lee, H.-C.; Asirvatham, S.J.; Mielke, M.M.; Knopman, D.S.; Petersen, R.C.; Jack, C.R., Jr.; Vemuri, P.; et al. Silent cerebral infarcts in patients with atrial fibrillation: Clinical implications of an imaging-adjusted CHA2DS2-VASc score. Cardiol. J. 2022, 29, 766–772. [Google Scholar] [CrossRef]
- Saito, T.; Kawamura, Y.; Tanabe, Y.; Asanome, A.; Takahashi, K.; Sawada, J.; Katayama, T.; Sato, N.; Aizawa, H.; Hasebe, N. Cerebral microbleeds and asymptomatic cerebral infarctions in patients with atrial fibrillation. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2014, 23, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Corica, B.; Romiti, G.F.; Raparelli, V.; Cangemi, R.; Basili, S.; Proietti, M. Epidemiology of cerebral microbleeds and risk of adverse outcomes in atrial fibrillation: A systematic review and meta-analysis. Europace 2022, 24, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Kalantarian, S.; Stern, T.A.; Mansour, M.; Ruskin, J.N. Cognitive impairment associated with atrial fibrillation: A meta-analysis. Ann. Intern. Med. 2013, 158 Pt 1, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Graff-Radford, J.; Madhavan, M.; Vemuri, P.; Rabinstein, A.A.; Cha, R.H.; Mielke, M.M.; Kantarci, K.; Lowe, V.; Senjem, M.L.; Gunter, J.L.; et al. Atrial fibrillation, cognitive impairment, and neuroimaging. Alzheimers Dement. J. Alzheimers Assoc. 2016, 12, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Liu, W.; Li, B.; Li, D. Relationship of Anticoagulant Therapy With Cognitive Impairment Among Patients With Atrial Fibrillation: A Meta-Analysis and Systematic Review. J. Cardiovasc. Pharmacol. 2018, 71, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kong, M.C.; Lee, L.H.; Ng, H.J.; Ko, Y. Knowledge, satisfaction, and concerns regarding warfarin therapy and their association with warfarin adherence and anticoagulation control. Thromb. Res. 2014, 133, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, P.; Lane, D.A.; Park, H.; O’Connell, J.; Quinn, T.J. Thromboprophylaxis in atrial fibrillation and association with cognitive decline: Systematic review. Age Ageing 2016, 45, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, M.; Dover, D.C.; Sandhu, R.K.; Hawkins, N.M.; Kaul, P.; McAlister, F.A. The Introduction of Direct Oral Anticoagulants Has Not Resolved Treatment Gaps for Frail Patients With Nonvalvular Atrial Fibrillation. Can. J. Cardiol. 2022, 38, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Gerstenecker, A.; Norling, A.M.; Jacob, A.; Lazar, R.M. Silent Brain Infarction, Delirium, and Cognition in Three Invasive Cardiovascular Procedures: A Systematic Review. Neuropsychol. Rev. 2023, 33, 474–491. [Google Scholar] [CrossRef]
- Herm, J.; Schurig, J.; Martinek, M.R.; Höltgen, R.; Schirdewan, A.; Kirchhof, P.; Wieczorek, M.; Pürerfellner, H.; Heuschmann, P.U.; Fiebach, J.B.; et al. MRI-detected brain lesions in AF patients without further stroke risk factors undergoing ablation—A retrospective analysis of prospective studies. BMC Cardiovasc. Disord. 2019, 19, 58. [Google Scholar] [CrossRef]
Article | Type of Study | Cognitive Evaluation Method | Age (Year) | Sample Size (n) | Male (%) | Treatment | Main Findings | Magnitude of Association |
---|---|---|---|---|---|---|---|---|
Bunch et al. [19], 2022 | RCT | MMSE, ADAS, DAD | 73.7 | 63 | 57.1 | DOACs, VKAs |
| MMSE after 24 months: Dabigatran: 28.8 ± 1.8 Warfarin: 28.4 ± 1.8 |
Caramelli et al. [18], 2022 | RCT | MMSE, MoCA | 75 | 149 | 60.4 | DOACs, VKAs | No difference observed between DOACs and VKAs regarding the main outcome. | Difference D-W (95% CI): −0.12 (−0.88 to 0.63) |
No difference in change in cognitive scores from baseline according to TTR subgroups (<70% and ≥70%). | MMSE: Contrast (95% CI): −0.19 (−1.20 to 0.83) MoCA: Contrast (95% CI): 0.14 (−1.13 to 1.41) | |||||||
Wong et al. [26], 2022 | Retrospective Cohort | Not Mentioned | 76.4 | 3284 | 51.6 | VKAs, Antiplatelets | Lower incidence with VKAs vs. no VKAs. | 0.14%/year vs. 1.04%/year |
No significant difference in dementia incidence between >65% TTR vs. <65%TTR. | 0.16% per year vs. 0% per year | |||||||
Cadogan et al. [22], 2021 | Retrospective Cohort | Read Codes GP-recorded | 76 | 39,200 | 55.4 | DOACs, VKAs | Negative association with DOACs vs. VKAs. | HR (95% CI): 0.84 (0.73, 0.98) |
Negative association with >65% TTR. | HR (95% CI): 0.73 (0.57, 0.92) | |||||||
Malavasi et al. [35], 2021 | Prospective Cohort | MMSE | 74 | 437 | 61.3 | Antiplatelets | Positive association with cognitive impairment. | OR (95% CI): 4.352 (1.583, 11.963) |
Mongkhon et al. [15], 2020 | Prospective Cohort | Read Codes or Antidementia drugs | NA | 84,521 | NA | DOACs, VKAs, Antiplatelets | Negative association with warfarin vs. no OACs. | HR (95% CI): 0.90 (0.85, 0.95) |
Positive association with dual therapy vs. no treatment. | HR (95% CI): 1.17, (1.05, 1.31) | |||||||
Negative association with OACs vs. antiplatelet. | HR (95% CI): 0.84 (0.79, 0.90) | |||||||
No significant difference between DOACs and warfarin. | HR (95% CI): 0.89 (0.70, 1.14) | |||||||
Petroni et al. [24], 2020 | Cross Sectional | SPMSQ (≥5 errors) | 80 | 212 | 45.0 | VKAs, Antiplatelets | Negative association with antiplatelets vs. VKAs | OR (95% CI): 24.74 (1.27, 482.12) |
Lower incidence of cognitive improvement with VKAs compared to aspirin. | Incidence at 33 months: Warfarin: 13% vs. Aspirin 64% | |||||||
Negative association with below-median TTR vs. VKAs. | OR (95% CI): 21.71 (4.35, 108) | |||||||
Field et al. [23], 2019 | Retrospective Cohort | ICD-10 § | 70.1 | 15,276 | 61.2 | DOACs, VKAs | Negative association with DOACs vs. no DOACs. | HR (95% CI): 0.87 (0.70, 1.08) |
Seong et al. [14], 2019 | Cross Sectional | MMSE | 74.2 | 277 | 59.2 | DOACs, VKAs, Antiplatelets | Negative association with OACs vs. no OACs. | HR (95% CI): 0.90 (0.85, 0.95) |
Friberg et al. [20], 2018 | Retrospective Cohort | ICD-10 | 74.8 | 444,106 | 55.3 | DOACs, VKAs | Negative association with DOACs vs. no DOACs. | HR (95% CI): 0.52 (0.50, 0.55) |
Negative association with VKAs vs. no VKAs. | HR (95% CI): 0.62 (0.60, 0.64) | |||||||
No differences between DOACs and VKAs. | HR (95% CI): 0.97 (0.67–1.40). | |||||||
Madhavan et al. [28], 2018 | Prospective Cohort | ICD-9 | 71.2 | 2800 | 53.4 | VKAs | Mean TTR percentage was lower in patients who developed dementia compared to over a year prior and those without dementia. | TTR (dementia): 51.6% ± 26.5% TTR (baseline): 52.2% ± 24.8% TTR (no dementia): 52.5% ± 26.7% |
Risk reduction was consistent, regardless of whether the increase in TTR percentage coincided with a decrease in time spent in the supratherapeutic range or the subtherapeutic range | Supra- vs. sub-therapeutic range: HR (95% CI): 0.67 (0.57, 0.79) vs. (HR (95% CI): 0.71, (0.64, 0.79), respectively | |||||||
Bunch et al. [33], 2016 | Retrospective Cohort | ICD-9, ICD-10 | 72.5 | 4460 | 53.5 | VKAs | Multivariate adjusted risk for dementia was incrementally higher as TTR worsened. | TTR 51–75% vs. >75%: HR = 1.30, p = 0.10. TTR: 26–50% vs. >75%: HR = 1.57, p = 0.02. TTR: ≤25% vs. >75%: HR = 1.92, p = 0.005. |
Gorzelak-Pabiś et al. [30], 2016 | Prospective Cohort | MMSE | 76 | 104 | 44.2 | VKAs | Patients with lower MMSE scores had lower TTR values | MMSE ≥ 27: TTR = 61% ± 27% MMSE < 24: TTR = 28% ± 26% MMSE 24–26: TTR = 43% ± 23% |
Patients with cognitive decline used more VKA-interacting drugs. | 52% vs. 39% | |||||||
TTR value and number of interacting drugs did not significantly correlate with MMSE score groups. | Normal MMSE: r = 0.01; p > 0.05 MMSE < 27: r = 0.15; p > 0.05 | |||||||
Jacobs et al. [21], 2016 | Retrospective Cohort | ICD-9 § | 72.4 | 5254 | 59.0 | DOACs, VKAs | Negative association with DOACs vs. VKAs | HR(95% CI): 0.49 (0.35, 0.69). |
Jankowska-Polańska et al. [16], 2016 | Prospective Cohort | MMSE | 73.5 | 111 | 50.5 | DOACs, VKAs | Higher cognitive function was independently linked to improved medication adherence in AF patients | β = 1.139, SEβ: 0.093 |
Annweiler et al. [27], 2015 | Cross Sectional | MMSE | 83.4 | 267 | 43.1 | VKAs | Negative association with VKAs by the backward stepwise model | OR (95% CI): 14.38 (1.57, 131.76) |
Crude risk difference of cognitive decline across types of VKAs exists based on use vs. non-use of: | ||||||||
Acenocoumarol | OR (95% CI): 0.26 (0.16, 0.69) | |||||||
Warfarin | OR (95% CI): 0.08 (0.15, 0.32) | |||||||
Fluindione | OR (95% CI): 0.15 (0.02, 0.28) | |||||||
Horstmann et al. [17], 2015 | Prospective Cohort | MoCA | 72.9 | 160 | 62.3 | DOACs, VKAs | Better adherence with DOACs vs. VKAs. | 94.6% vs. 82.6% |
No difference in cognitive function between DOACs and VKAs at 12 months | Median MoCA for VKAs vs. DOACs: 24 vs. 25 | |||||||
Jacobs et al. [32], 2014 | Retrospective Cohort | ICD-9 | 73.7 | 2605 | 54 | VKAs | Higher dementia risk with worsening TTR range. | TTR ≤ 25%: HR 5.34, TTR 26%–50%: HR 4.10, TTR 51%–75%: HR 2.57, p < 0.0001 |
Mavaddat et al. [25], 2014 | RCT | MMSE | 81.5 | 238 | 54.6 | VKAs, Antiplatelets | Warfarin was associated with cognitive improvement at 33 months compared to aspirin. | HR (95% CI): 1.48 (0.56, 3.91) |
van Deelen et al. [34], 2012 | Retrospective Cohort | MMSE | 79.1 | 152 | 55.9 | VKAs | MMSE score <23 linked to insufficient INR. | OR (95% CI): 2.57 (1.02, 6.48) |
Consistently no discernible difference between groups of patients with INR <2.0. | OR (95% CI): 1.03 (0.39, 2.67) | |||||||
Flaker et al. [29], 2010 | Prospective Cohort | MMSE | 71 | 2510 | 65.5 | VKAs | Baseline MMSE significantly affects INR control. Below-median TTR was linked to a modest cognitive decline. | 1-point decline in the MMSE (30 to 25) = 1-point reduction in TTR. |
Barber et al. [31], 2004 | Prospective Cohort | TICSm, IQCODE | 72 | 218 | 44.5 | VKAs | Negative association with warfarin vs. non-warfarin use. | OR (95% CI): 0.52 (0.26, 1.07). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, A.; Mostafa, M.A.; Ahmad, M.I.; Soliman, E.Z. Exploring the Link between Anticoagulation, Cognitive Impairment and Dementia in Atrial Fibrillation: A Systematic Review. J. Clin. Med. 2024, 13, 2418. https://doi.org/10.3390/jcm13082418
Agarwal A, Mostafa MA, Ahmad MI, Soliman EZ. Exploring the Link between Anticoagulation, Cognitive Impairment and Dementia in Atrial Fibrillation: A Systematic Review. Journal of Clinical Medicine. 2024; 13(8):2418. https://doi.org/10.3390/jcm13082418
Chicago/Turabian StyleAgarwal, Abhimanyu, Mohamed A. Mostafa, Muhammad Imtiaz Ahmad, and Elsayed Z. Soliman. 2024. "Exploring the Link between Anticoagulation, Cognitive Impairment and Dementia in Atrial Fibrillation: A Systematic Review" Journal of Clinical Medicine 13, no. 8: 2418. https://doi.org/10.3390/jcm13082418
APA StyleAgarwal, A., Mostafa, M. A., Ahmad, M. I., & Soliman, E. Z. (2024). Exploring the Link between Anticoagulation, Cognitive Impairment and Dementia in Atrial Fibrillation: A Systematic Review. Journal of Clinical Medicine, 13(8), 2418. https://doi.org/10.3390/jcm13082418