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Abstract: Veno-arterial (V-A) and Veno-venous (V-V) extracorporeal membrane oxygenation (ECMO)
support is increasingly utilized for acute cardiogenic shock and/or respiratory failure. Echocardiogra-
phy and point-of-care ultrasonography (POCUS) play a critical role in the selection and management
of these critically ill patients, however, there are limited guidelines regarding their application.
This comprehensive review describes current and potential application of echocardiography and
POCUS for pre-ECMO assessment and patient selection, cannulation guidance with emphasis on
dual-lumen configurations, diagnosis of ECMO complications and trouble-shooting of cannula mal-
position, diagnosis of common cardiac or pulmonary pathologies, and assessment of ECMO weaning
appropriateness including identification of the aortic mixing point in V-A ECMO.

Keywords: ECMO; echocardiography; POCUS; vascular access; ARDS; cardiogenic shock; mechanical
circulatory support

1. Introduction

Extracorporeal membrane oxygenation (ECMO) has become an integral tool in the
care of the critically ill patients with cardiac and/or respiratory failure. Over the last
12 years, the numbers of registered centers worldwide have increased from 187 in 2010 to
583 in 2022, while the number of ECMO applications has increased from 3447 to 18,159
in the same timespan [1]. Although ECMO survival continues to improve, its associated
mortality is still nearly 50%, therefore this therapy is often reserved for only the most critical
patients. Veno-arterial ECMO (V-A ECMO), should be utilized in cardiogenic shock when
conventional medical management and intra-aortic balloon pump (IABP) support have
failed. Classically, this is defined by systemic systolic pressure less than 90 mm Hg, urine
output < 30 mL/h, blood lactate over 2 mmol/L, venous oxygen saturation (SvO2) < 60%,
and altered consciousness for 6 h, and unresponsive to optimal treatment [2]. Indications for
V-A ECMO include acute myocardial infarction, myocarditis, intoxication with cardiotoxic
drugs, end-stage dilated or ischemic cardiomyopathy, hypothermia with cardiocirculatory
instability, massive pulmonary embolism, post-cardiotomoy cardiogenic shock, bridge to
durable ventricular assist device or transplantation, and following a witnessed arrest with
immediate, high-quality cardiopulmonary resuscitation (CPR). In contrast, veno-venous
ECMO (V-V ECMO) should be considered in severe, acute, reversible respiratory failure that
is refractory to maximal medical management. This is defined as severe acute respiratory
distress syndrome (ARDS) and refractory hypoxemia (PaO2/FiO2 < 80 mmHg) and/or se-
vere hypercapnia (pH < 7.25 with PaCO2 ≥ 60 mmHg) after conventional management [3].
Specific clinical conditions can include bacterial or viral pneumonia, acute eosinophilic
pneumonia, asthma, diffuse alveolar hemorrhage, chest trauma, inhalational injury, bron-
chopleural fistula, or ventilatory support as bridge to lung transplant. When considering
ECMO support, it is important to evaluate for contraindications and the potential for
nonrecovery without a viable plan for decannulation.
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There are many configurations for V-A and V-V ECMO, and access may be obtained
centrally or peripherally (through a percutaneous or open approach). For V-A ECMO, cen-
tral cannulation is often employed following post-cardiotomy shock or in those with severe
peripheral vascular disease precluding peripheral cannulation. Peripheral cannulation is
most often performed via the femoral vessels with the drainage (inflow) cannula in the
femoral vein and return (outflow) cannula in the femoral artery [4]. Subclavian and axillary
artery access are alternative arterial cannulation sites. Additionally, to limit limb ischemia,
a distal perfusion catheter should be placed, ideally in the superficial femoral artery, below
the level of the femoral bifurcation [5]. For V-V ECMO, flow is usually limited by cannula
size. Basic configuration includes a drainage (inflow) cannula that drains deoxygenated
blood from the patient and delivers blood to the ECMO circuit, while the return (outflow)
cannula returns oxygenated blood to the patient. This approach may involve access at
both femoral veins (bifemoral approach) or internal jugular vein-femoral vein approach.
Alternatively, a bicaval dual-lumen, single-site cannula may be placed through the internal
jugular vein, providing both drainage and return.

Point of care ultrasound (POCUS), transthoracic echocardiography (TTE), and trans-
esophageal (TEE) are pivotal in the pre-cannulation evaluation, cannulation phase, and
post-cannulation/monitoring phase in these patients. In the hands of a skilled provider,
these tools provide a safe and efficient bedside tool, that except for TEE, is non-invasive.

2. Pre-ECMO Assessment

Prior to placing a patient on ECMO, a POCUS exam can be very helpful in identifying
anatomy, selection of appropriate ECMO configuration and cannulation sites, and any
other concomitant pathologies (Tables 1 and 2).

Table 1. Echocardiographic/POCUS consideration for V-A ECMO.

Pre-Cannulation Cannulation Post-Cannulation (Monitoring)

Assessment of biventricular function Guidance of guidewire and
cannula(s) placement Assessment of biventricular function

Assessment for severe aortic insufficiency Guidance of LV vent placement Assessment of LV unloading
Assessment of peripheral vasculature for

size, disease, thrombus
Assessment for vascular or intracardiac

injury (dissection, tamponade) Assessment of aortic mixing point

Evaluation for pericardial fluid
Assessment for resolution of cardiogenic

shock (i.e., RV failure, resolution of
pulmonary artery thrombus)

Assessment for aortic
dissection, thrombus

Table 2. Echocardiographic/POCUS considerations for V-V ECMO.

Pre-Cannulation Cannulation Post-Cannulation (Monitoring)

Assessment of biventricular function Guidance of guidewire and
cannula(s) placement Assessment of RV function

Assessment of tricuspid valve disease
Assessment for vascular or intracardiac

injury (RV puncture, tamponade), tension
pneumothorax, hemothorax

Assessment of lung aeration and/or
new lung pathologies

Assessment of peripheral vasculature for
size, disease, thrombus Assessment of return (outflow) “jet” Confirmation of cannula position

Evaluation for pericardial fluid Guidance for cannula repositioning
Assessment for aortic dissection, thrombus

For both V-A and V-V ECMO candidates, vasculature should be evaluated with ul-
trasound for sizing of cannula, patency, location and trajectory, and potential pathology.
Major vascular injury (hemorrhage, arteriovenous fistula formation, thrombosis) may oc-
cur with a frequency as high as 15% following ECMO cannulation, and this occurs more
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commonly following percutaneous V-A than V-V cannulation [6]. In one series, limb is-
chemia secondary to femoral arterial injury occurred at a rate of 16.9% following peripheral
V-A cannulation. Fasciotomy was required in 10.3% of these patients and limb amputa-
tion in 4.7% [7]. There is abundant data to suggest reduction in vascular complications
with ultrasound guidance of vessel cannulation [8,9]. Ultrasound identification of con-
traindications to cannulation, such as thrombus, noncompressible vein, plaque, stenosis,
or prior stent placement, can avoid failed cannulation attempts or vascular injury. In one
series, POCUS-guided Seldinger technique demonstrated a success rate of 88% and 86%
in patients undergoing ECMO-cardiopulmonary resuscitation (eCPR) with a first pass
success rate > 50%. Factors associated with successful cannulation included femoral artery
diameter ≥ 4.5 mm, and left ventricular ejection fraction (LVEF) > 20% [10]. For cannula
sizing, the following formula is commonly used: cannula caliber (French (Fr)) = 3 × vessel
diameter (mm) [11].

In those presenting with acute respiratory failure needing V-V ECMO, it is important
to evaluate for lung pathology via POCUS exam. Pathologies like tension pneumothorax or
large pleural effusions are diagnosed quickly and facilitate immediate resolution, avoiding
unnecessary delay or aborted ECMO cannulation due patient instability. In addition, a
focused cardiac examination including assessment of biventricular and valvular function
may inform decision making regarding ECMO strategy. For example, acute left ventricular
failure could present with acute pulmonary edema and hypoxia. In this scenario, one
should consider V-A ECMO rather V-V ECMO. V-A ECMO should be considered with
severely decreased left ventricular systolic function, with an LVEF of 20%, with or without
wall motion abnormalities [12].

In the setting of acute respiratory failure, it is well known that up to 30% of these
patients can show signs of acute right ventricular (RV) dysfunction [12,13]. Hypoxia,
hypercarbia, pulmonary edema, and positive pressure ventilation are all variables that
increase pulmonary vascular resistance and can unmask RV dysfunction in the setting
of a normally highly compliant, low pressure circulation. In these patients, it might be
reasonable to consider V-A ECMO cannulation to allow for right heart decompression
and support. Echocardiographic features of acute cor pulmonale include RV dilation,
flattening of the interventricular septum, left ventricular hypo-diastolic state, enlarged right
atrium, tricuspid regurgitation from dilation, low tricuspid annular plane systolic excursion
(TAPSE), low tricuspid annular systolic peak velocity (S’), and free wall hypokinesis. Using
the simplified Bernoulli equation, the RV systolic pressure can be calculated by adding the
central venous pressure (CVP) to the measure peak velocity of the tricuspid regurgitation
jet. While most patients have degree of physiologic tricuspid regurgitation, severe tricuspid
regurgitation (TR) can be a clear sign of worsening dysfunction and potentially make V-V
ECMO less effective in delivering oxygenated blood to the pulmonary circulation. While
rare, tricuspid stenosis will also impair flow of oxygenated blood from the return cannula
to the pulmonary circulation.

Assessment of shunts, such as a patent foramen ovale (PFO) is also an important
consideration. An undiagnosed PFO could become problematic with weaning ECMO, as
an increase in right sided pressures could lead to a right to left shunt, and thereby, hypoxia.

In those patients being considered for V-A ECMO, POCUS and echocardiographic
evaluation is just as critical as for V-V ECMO. Basic evaluations for biventricular function
and valve function are important as this can become difficult once decompressed on ECMO.
Understanding ventricular size, wall thickness and regional wall abnormalities can be
help helpful in guiding management and treatment. Significant aortic insufficiency will
result in pulmonary edema and LV distention that leads to increased wall stress, oxygen
consumption and therefore ischemia in an already fragile left ventricle. Evaluation for
aortic dissection prior to any cannulation is important as its presence is a contraindication
to V-A ECMO (Figure 1).
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3. Procedural/Cannulation Guidance

There are no current recommendations regarding the optimal imaging modality for
ECMO cannulation, although the choice to utilize landmarks alone, fluoroscopy, or echocar-
diography (TTE or TEE) may be guided by urgency of cannulation (i.e., ongoing or immi-
nent cardiac arrest), selected ECMO configuration and involved vasculature, and other
patient-related factors that may complicate placement. While use of echocardiography
does not consistently prevent peri-cannulation complications, it offers a number of attrac-
tive benefits, including pre-cannulation assessment of vasculature to guide cannula size
selection and minimization of vascular or cardiac injuries, confirmation of cannula position,
avoidance of additional invasive vascular puncture, and avoidance of patient transport
to a fluoroscopy suite or operating room, which may minimize time to cannulation as
well as medical personnel exposure in infectious contexts (i.e., COVID-19 isolation). The
Extracorporeal Life Support Organization (ELSO) guidelines encourage the use of vascular
ultrasound to avoid vascular injury or ischemia, and recommend the use of noninvasive
TTE prior to the use of TEE to confirm visualization of cannula guidewire and final cannula
placement [14]. Support for echocardiography guidance in pediatric literature is even
more scarce, although there are few studies to suggest a potential role for TTE to guide
jugular cannulation in order to reduce repositioning events and TEE to guide dual-lumen
cannulation in patients with pneumomediastinum and massive air leak [15,16].

3.1. Echo Considerations

Percutaneous V-V access most often involves cannulation of the internal jugular
and/or femoral veins, and ultrasound should visualize the drainage cannula guidewire
and final cannula placement in the hepatic inferior vena cava (IVC) and/or superior vena
cava (SVC), and the return cannula guidewire and final placement in the right atrium
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(Table 1). Percutaneous V-A access most often involves cannulation of the femoral artery
and vein, and should include visualization of the return cannula in the descending aorta,
below the level of the left subclavian artery takeoff. This may be accomplished with TTE and
POCUS (suprasternal notch and abdominal aortic views), but it is best visualized with TEE
(aortic views). If the axillary artery is utilized as the return arterial vessel, echocardiography
should visualize the return cannula guidewire within the descending aorta, and confirm
that it does not course through the aortic valve and left ventricular outflow tract (Table 2).
Overall and first-pass success rate for vascular cannulation may be improved with vascular
POCUS guidance (vs. fluoroscopy or landmark technique), even in vulnerable populations
such as those presenting in cardiogenic shock or eCPR [17]. Similarly, cannulation time
was demonstrated to be faster under vascular POCUS guidance vs. landmark technique in
patients requiring urgent cannulation. In a series of patients with in-hospital cardiac arrest
presenting for catheterization for acute myocardial ischemia, cannulation under ultrasound
guidance was achieved in 82 min versus 128 min under the landmark technique [18].

3.2. Dual-Lumen Considerations

An alternative cannulation strategy for V-V ECMO involves placement of a dual-
lumen cannula (Avalon Elite Catheter by Getinge, Crescent Jugular Dual Lumen Catheter
by Medtronic) in the right internal jugular vein. Drainage occurs at SVC and hepatic
IVC sites, while blood is returned directly above the tricuspid valve. This configuration
may offer advantages including single-site placement, minimization of infectious and
vascular complications, improved efficiency of oxygenation via bicaval drainage, improved
patient mobility, and the ability to transition from V-A to V-V techniques without additional
cannulation or circuit disruption [19].

Dual lumen cannula placement occurs under either fluoroscopy or echocardiographic
guidance. Cannula markers indicative of outflow sites are confirmed by fluoroscopy. TEE,
however, has been well described to guide dual-lumen cannula placement, especially in
special populations (COVID-19) to avoid patient transport to a fluoroscopy suite and mini-
mize exposure to medical personnel [20]. TEE guidance is achieved via mid-esophageal
bicaval or modified bicaval view. The J-tip of the guidewire must be visualized passing
and terminating in the hepatic IVC, avoiding hepatic vein branches or inadvertent passage
into the right ventricle (Figure 2). Placement can be further confirmed by demonstration
of turbulent flow at cannula drainage pores in the SVC and IVC, and by the turbulent
outflow “jet” directed at the tricuspid valve, with minimal divergence or swirling within the
right atrium (Figure 3) to avoid complications such as intracardiac injury/right ventricular
perforation, hepatic congestion, recirculation, or structural damage [20]. Contrast echocar-
diography may additionally confirm optimal flow orientation, especially by providing high
resolution imagery in patients with significant lung pathology, but its application is less
frequently described [21].

TEE guidance for dual-lumen cannulation has been reported with a high success rate of
>90% [22,23]. In one series of patients with acute respiratory distress syndrome (ARDS), the
success rate was 99% and the repositioning rate was 13% [24]. Additionally, the number of
attempts at cannulation has been demonstrated to be equivalent among groups cannulated
under TEE vs. fluoroscopy, but TEE offered fewer low-flow and repositioning events [22].
In a series of COVID-19, ARDS patients, TEE again demonstrated high success rate, but
up to 38% patients required repositioning. Factors associated with difficult cannulation
included extreme body size, wire bending in the right atrium, and prominent eustachian
valve [23].
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3.3. Peri-Cannulation Support

Acute hemodynamic lability, hypoxemia, or even cardiac arrest may be incited by
cannulation itself. Often, this is due to profound hypoxemia and/or right ventricular
dysfunction in the case of acute respiratory pathology (V-V cannulations) and worsening
of acute cardiogenic shock during V-A cannulation. Here, echocardiography may serve
as a powerful tool to rapidly identify and manage reversible etiologies for decompensa-
tion. Visualization of acute myocardial dysfunction, tamponade, hemothorax, or tension
pneumothorax by POCUS have been well described with at least equivalent sensitivity to
conventional imaging, and often results in faster time to definitive management [25,26].

4. Monitoring of ECMO
4.1. V-A

Monitoring of V-A ECMO should include serial assessment of biventricular function.
Echocardiography may more accurately estimate cardiac output than alternative monitor-
ing strategies, i.e., overestimation by pulmonary artery catheterization/thermodilution
technique due to negative right atrial pressures, and underestimation by pulse contour
analysis due to low systemic pulsatility [27]. In addition, echocardiography may identify
complications related to ECMO management itself, such as the development of cardiac
tamponade due to anticoagulation or cardiac injury.

Most importantly, echocardiography may aid in the assessment of LV unloading to
minimize LV distension and myocardial demand, subendocardial ischemia and pulmonary
edema, and guide optimal ECMO flow rates. Echocardiographic visualization of left atrial
and left ventricular decompression, aortic valve opening, and absence of severe mitral
regurgitation or intracardiac spontaneous echo contrast or thrombus may help to confirm
appropriate left ventricular decompression [28]. Contrast echocardiography may addi-
tionally be helpful in changing ECMO management by detecting LV thrombi, intracardiac
masses and identifying LV dysfunction with greater resolution than conventional TEE [21].
However, microspheres associated with contrast administration may trigger or alarm cir-
cuit dysfunction, cause shutdown, or even be prone to destruction due to circuit shear
forces [21,29].

If left ventricular unloading is insufficient, placement of an LV vent is indicated
and associated with increased probability of ECMO weaning and reduced mortality [28].
Echocardiography may be a useful guide in placement and management of LV vents,
regardless of LV venting strategy. LV vents may be placed directly in the LV apex or
left atrium (via pulmonary vein) under TEE guidance. In addition, LV venting may be
achieved by inter-atrial septostomy. Septostomy is often guided by TEE, which facilitates
visualization of interatrial “tenting” and may benefit from en-face 3D image guidance
to aid interventionalists with fine intracardiac movements to avoid cardiac or vascular
injury (Figure 4) [30]. Intra-aortic balloon pulsation (IABP) is another often utilized strategy
to address LV distension via reduction in systemic afterload, and when utilized with
ECMO, may improve femoral arterial blood flow rates and overall survival compared with
ECMO therapy alone. TEE guidance has been described to guide appropriate placement.
IABP guidewire should be visualized 1–2 cm below the left subclavian artery takeoff, and
views should confirm absence of new cardiac injury, aortic dissection, or interference with
atheromatous disease [31–33]. Finally, the LV Impella (Abiomed) is a miniaturized left
ventricular assist device which provides continuous drainage of left ventricular blood
flow to the ascending aorta. It is often utilized in conjunction with ECMO therapy to
provide both LV unloading as well as a transitional form of mechanical circulatory support
following ECMO decannulation, and it has been associated with improved survival when
utilized in conjunction with ECMO vs. ECMO support alone [34]. TEE is frequently utilized
to guide Impella placement, and should demonstrate the Impella tip 3.5–5.5 cm (depending
on Impella version) from the aortic annulus on the ventricular side of the aortic valve, as
well as confirm absence of consequent aortic dissection, cardiac tamponade, or new aortic
valve or mitral valve dysfunction, or patent foramen ovale [35] (Figure 5).
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For cases of isolated RV failure, echocardiography continues to serve as a mainstay
for both initial diagnosis and assessment of ongoing management. Acute RV strain char-
acterized by increased RV to LV ratio, abnormal septal motion, tricuspid regurgitation,
visualization of right heart thrombus, RV hypokinesis, pulmonary hypertension, elevated
RV systolic pressure, reduced TAPSE, McConnell’s sign (RV mid-free wall akinesis with
normal apical motion), and “60/60” sign (tricuspid regurgitation jet< 60 mm HG and pul-
monary flow acceleration time < 60 ms) has been shown to perform as an adequate “Rule-in”
test for pulmonary embolism (PE), with high specificity and low sensitivity [36]. Similarly,
visualization of new deep venous thrombosis (DVT) by “2-point” vascular POCUS exam
(femoral and popliteal vessel interrogation) in the setting of suspected PE may justify treat-
ment for PE without further testing [37] (Figure 6). In addition, echocardiography and/or
POCUS may be useful to guide management decisions, for instance, main pulmonary
artery size has been associated with need for surgical embolectomy vs. ECMO and antico-
agulation alone [38]. Furthermore, echocardiography and POCUS may direct alternative
strategies including catheter-mediated suction embolectomy [39]. Resolution of acute RV
dysfunction and main pulmonary artery thrombus vs. transition to chronic RV dysfunction
with vascular remodeling may additionally be monitored by echocardiography [36].
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4.2. V-V

Refractory hypoxemia may occur despite VV ECMO support and may be caused by
a number of pathologies, for which echocardiography may serve as a useful diagnostic
tool. Cannula malposition may occur with patient movement or changing intrathoracic
volume (i.e., development of tension pneumothorax or worsening atelectasis), resulting in
inefficient return of oxygenated blood flow. TEE or TTE revisualization of return outflow
directed at the tricuspid valve may be required. In addition, malposition may be due to
recirculation, which occurs when inflow and outflow cannulas are in close approximation,
resulting in a low resistance pathway that bypasses the ECMO circuit. In patients with
dual-lumen cannula, recirculation can result from the cannula being either too high in the
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superior vena cava and right atrium or too deep with all ports within the hepatic IVC.
Clinically, this occurs in conjunction with high ECMO flow rates and high venous oxygen
saturation, which are often monitored by the ECMO circuit. Echocardiography may also
reveal close proximity of drainage and return cannula tips, for instance, visualization of
SVC and IVC cannula in close approximation within the right atrium.

Hypovolemia or cannula malposition deep within the hepatic IVC or terminating
within a small hepatic vein may cause a low-flow state and hypoxemia, and is suggested
by echocardiography confirmation of empty right ventricular chambers and visualization
of “suckdown” or collapse around the cannula with consequent obstructed drainage
around the drainage cannula tip or termination of the drainage cannula in a distal hepatic
venous branch. Similarly, visualization of intra-cannula thrombus may be confirmed as an
alternative etiologies of impaired drainage flows.

High cardiac output states seen in developing sepsis, fever, or high body mass index
may also cause hypoxemia due to increasing shunt fraction. Echocardiography may
be useful in quantifying shunt fraction by estimation of pulmonary blood flow (PBF).
This requires measurement of the right ventricular outflow tract (RVOT) diameter (mid-
esophageal RV inflow-outflow view), and RVOT velocity time integral (VTI) such that
PBF = [piX(RVOT diameter/2)ˆ]XRVOT VTI.

Acute or chronic worsening of lung processes may also cause worsening hypoxemia
and/or acute RV dysfunction with consequent remodeling of the pulmonary vascula-
ture [40]. POCUS has been well described as a sensitive exam for detecting new pneumoth-
orax (visualization of “lung point”), hemothorax or large pleural effusion (Figure 7), or
consolidation [26]. In addition, cardiac POCUS and/or TEE has been utilized in ARDS
patients to detect and grade severity of new acute RV dysfunction, evidenced by RV dila-
tion, estimated pulmonary artery pressure, septal dyskinesis, and RV hypertrophy, which
may have implications regarding pharmacologic and/or ventilatory strategy, in addition to
prognosis [40].
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5. ECMO Weaning
5.1. V-A

Echocardiography has been well described as a useful adjunct in weaning V-A ECMO
to complete liberation or transitioning to alternative mechanical circulatory support [41].
While there are no standardized echocardiography protocols, assessment should demon-
strate recovery of cardiac function with reduction in ECMO flow to minimal ranges
(1–1.5 L/min). A number of markers have been associated with cardiac recovery and
successful V-A ECMO weaning, including LVEF > 20–25%, mitral valve lateral annulus
tissue(s′) doppler > 6 cm/s, LVOT VTI > 10 cm/s on 1.5 L of ECMO flow, strain or strain
rate > 20% baseline, improvement of lateral e′ velocity, and improvement of tricuspid annu-
lar S′ velocity [42]. In addition, with recovery of LV performance in peripheral V-A ECMO,
aortic mixing point (where LV stroke volume interfaces with femoral arterial cannula flow)
should move distally with identification in the descending aorta. Localization of mixing
point has been described utilizing aortic ultrasound and doppler flow measurement [43].
For etiologies of cardiogenic shock and isolated right ventricular failure requiring V-A
ECMO, right ventricular function may be similarly assessed via TTE or TEE.

5.2. V-V

There is little data to support the use of echocardiography in weaning of V-V ECMO,
however, echocardiography may be useful to assess markers of improving right ventricular
function and lung aeration. Markers of right ventricular function that may be useful include
measurement of right ventricular size, right ventricular fractional area change, and right
ventricular strain. In contrast, TAPSE and severity of tricuspid regurgitation have not been
well correlated with successful weaning [28].

Assessment of lung function, however, has been well studied in special populations,
including those with decompensated heart failure, end stage renal disease, or requiring
intensive care unit admission [44,45]. The presence of pulmonary edema has been well
correlated with lung scoring systems through identification of “B-lines”, an ultrasound
artifact created by the accumulation of water within the interlobular septa of alveolar spaces,
resulting in vertical “B-line” beams originating from the pleura, and extending throughout
the depth of visualized lung parenchyma [26] (Figure 8). Most commonly, lung aeration
is scored numerically within a regional lung “zone” described according to presence of
B-lines or demonstration of consolidation, such that higher scores are assigned to poorer
lung aeration. Individual lung zone scores are then summed for a composite lung score.
There are several studies which have correlated lung aeration score with conventional
imaging (chest X-ray, computed tomography) to assess improving lung volume status and
lung compliance in ECMO patients [46,47]. Regional scores of lung zones are then summed
for a composite lung score. Similarly, lung ultrasound score has correlated with V-V
ECMO weaning success in COVID-19 patients and neonates and survivorship following
ECMO-supported ARDS [48–50].
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6. Conclusions and Future Directions

Despite a lack of comprehensive guidelines on the use of echocardiography and
POCUS in pre-ECMO assessment, peri-cannulation, management and weaning of ECMO
patients, it is clear that the application of these tools is instrumental in caring for these
critically ill patients. Daily evaluation with echocardiography, lung ultrasound and vascular
ultrasound should be a priority in ECMO patients, assuming the equipment and expertise
are available. Ultrasound allows one to gather information with a high diagnostic capacity
in an efficient and non-invasive fashion. It has become standard of care in the critical care
populations and should be no different in the ECMO population. Consensus guidelines
for the use of these modalities is needed for patients being considered for and on ECMO
support to improve clinical management, care and outcomes.
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