
Citation: Mitranovici, M.-I.; Chiorean,

D.M.; Moraru, R.; Moraru, L.; Caravia,

L.; Tiron, A.T.; Craina, M.; Cotoi, O.S.

Understanding the Pathophysiology

of Preeclampsia: Exploring the Role of

Antiphospholipid Antibodies and

Future Directions. J. Clin. Med. 2024,

13, 2668. https://doi.org/10.3390/

jcm13092668

Academic Editor: Maria Efthymiou

Received: 24 March 2024

Revised: 26 April 2024

Accepted: 30 April 2024

Published: 2 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Review

Understanding the Pathophysiology of Preeclampsia: Exploring
the Role of Antiphospholipid Antibodies and Future Directions
Melinda-Ildiko Mitranovici 1,* , Diana Maria Chiorean 2,3, Raluca Moraru 4, Liviu Moraru 5, Laura Caravia 6,
Andreea Taisia Tiron 7 , Marius Craina 8 and Ovidiu Simion Cotoi 2,3,*

1 Department of Obstetrics and Gynecology, Emergency County Hospital Hunedoara, 14 Victoriei Street,
331057 Hunedoara, Romania

2 Department of Pathology, County Clinical Hospital of Targu Mures, 540072 Targu Mures, Romania;
diana.chiorean@umfst.ro

3 Department of Pathophysiology, “George Emil Palade” University of Medicine, Pharmacy, Science, and
Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania

4 Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology,
540142 Targu Mures, Romania; raluca.moraru@umfst.ro

5 Department of Anatomy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology,
540142 Targu Mures, Romania; liviu.moraru@umfst.ro

6 Division of Cellular and Molecular Biology and Histology, Department of Morphological Sciences,
“Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; laura.caravia@umfcd.ro

7 Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
taisia_andreea@yahoo.com

8 Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Victor Babes”,
300001 Timisoara, Romania; craina.marius@umft.ro

* Correspondence: mitranovicimelinda@yahoo.ro (M.-I.M.); ovidiu.cotoi@umfst.ro (O.S.C.)

Abstract: Preeclampsia (PE) is a hypertensive disorder in pregnancy associated with significant fetal
and maternal complications. Antiphospholipid syndrome (APS) is an acquired form of thrombophilia
characterized by recurrent venous or arterial thrombosis and obstetric complications that significantly
increases morbidity and mortality rates. While preeclampsia may not be the most prevalent obstetric
complication in APS, it significantly impacts the long-term health of both mother and child. The
treatment of preeclampsia in antiphospholipid syndrome is different from the treatment of preeclamp-
sia as an independent disease. Despite current treatments involving anticoagulants, antiplatelet
agents, and antihypertensive drugs, obstetric complications may persist, underscoring the need for
cohesive management and effective treatments. The objective of our review is to briefly present
knowledge about the physiopathology of preeclampsia and the role of antiphospholipid antibodies
in this process. Based on the existing literature, our review aims to identify future directions in
molecular pathology toward the discovery of biomarkers and targeted treatments. The application of
multidisciplinary approaches and prognostic models, including new biomarkers, could be beneficial
in the prediction of PE.

Keywords: preeclampsia; antiphospholipid syndrome; vascular endothelial growth factor; osteopon-
tin; biomarkers; personalized treatment

1. Introduction

Preeclampsia (PE) is a hypertensive disorder in pregnancy associated with significant
fetal and maternal complications such as eclampsia, intrauterine growth restriction (IUGR),
intrauterine fetal death, premature birth, and maternal cardiovascular diseases. Globally,
it affects 5–7% of pregnant women and ranks as the second leading cause of maternal
mortality. PE is characterized by the onset of hypertension and proteinuria after 20 weeks
of gestation in previously normotensive women. There are two main types of PE: early-
onset PE, which begins before 34 weeks of pregnancy and is less common but more severe,
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impacting both mother and fetus; and late-onset PE, which occurs after 34 weeks and tends
to have milder severity with more favorable neonatal and maternal outcomes. Although the
exact etiology of PE remains incompletely understood, it is widely accepted that abnormal
placentation plays a crucial role in its development [1–5].

Diagnostic criteria for PE include hypertension (systolic blood pressure of ≥140 mmHg
and diastolic blood pressure ≥90 mmHg on two occasions at least four hours apart af-
ter 20 weeks of gestation) and proteinuria (≥300 mg per 24 h urine collection or a pro-
tein/creatinine ratio of ≥0.3 mg/dL or dipstick reading of 2+). It causes the greatest
morbidity and mortality of pregnant women and is responsible for over 70,000 maternal
deaths and 500,000 fetal deaths. Additionally, PE may present with thrombocytopenia,
renal insufficiency, impaired liver function, pulmonary edema, neurological signs, visual
disturbances, or intrauterine growth restriction [2].

Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by recurrent
venous or arterial thrombosis and pregnancy morbidity in the presence of antiphospholipid
autoantibodies [3–5]. APS, an acquired form of thrombophilia, significantly increases mor-
bidity and mortality rates, with obstetric complications such as PE, IUGR, premature birth,
miscarriage, and fetal death being well documented. Moreover, thrombotic events are the
primary contributors to pregnancy complications in APS, affecting vascular development at
the implantation site. APS is estimated to contribute to 6% of all pregnancy morbidity. Clinical
features may include hemolytic anemia, persistent thrombocytopenia, nephropathy, cognitive
dysfunction, skin ulcers, and catastrophic APS. The estimated prevalence of APS is 50 cases
per 100,000, with an annual incidence of 2.1 per 100,000 [3,4,6–10].

Diagnostic criteria for APS include vascular thrombosis and/or pregnancy morbidity.
Clinical manifestations encompass vascular thrombosis (arterial, venous, and small vessel
thrombosis) and pregnancy morbidities such as recurrent miscarriages, fetal death, preterm
delivery, and PE/eclampsia [4,8]. Additional non-criteria clinical manifestations may include
persistent thrombocytopenia, hemolytic anemia, livedo reticularis, cardiac valve disease, skin
ulcers, nephropathy, cognitive dysfunction, seizure disorders, chorea, and myelitis [6].

Laboratory criteria for APS diagnosis include the presence of lupus anticoagulant
in plasma, medium- or high-titer anticardiolipin antibodies (IgG or IgM isoforms), and
medium or high anti-beta 2 glycoprotein I antibodies (IgG or IgM isoforms) on two occa-
sions at least 12 weeks apart [4,6,10–15].

The treatment of preeclampsia associated with antiphospholipid syndrome is different
from the treatment of preeclampsia as an independent disease. In addition to antihyperten-
sive drugs, it includes anticoagulants and antiplatelet agents [4,6,8].

Based on a review of the existing literature, the objective of our study is to briefly
present knowledge about the physiopathology of preeclampsia and the role of antiphospho-
lipid antibodies in this process. We aim to identify future directions in molecular pathology
to discover biomarkers and targeted treatments. Despite current treatments involving
anticoagulants, antiplatelet agents, and antihypertensive drugs, obstetric complications
may persist, underscoring the need for cohesive management and effective treatments.

2. Materials and Methods
Protocol and Information Sources

This study adhered to the PRISMA guidelines for conducting reviews [16]. Our
search strategy involved the utilization of carefully constructed search strings and was
conducted in 2023, focusing on publications from the past decade. Specific keywords,
including “preeclampsia”, “antiphospholipid syndrome”, “vascular endothelial growth
factor”, “osteopontin”, “biomarkers”, and “personalized treatment”, were employed. A
thorough literature review spanning the period from 2015 to 2024 was conducted, utilizing
electronic databases such as PubMed and Google Scholar.

Initially, the literature search yielded a total of 296 titles. The abstracts of articles
identified in our search were meticulously scrutinized against predetermined inclusion
criteria, which required peer-reviewed, full-text articles written in English and exhibiting
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appropriate study design, methods clearly defined, with results that were compatible with
each outcome domain, without any missing or unclear information. Exclusions comprised
books, editorials, literature reports, and studies not aligned with the objectives of this review.
Additionally, duplicate findings, case reports, and studies with inappropriate designs were
systematically eliminated from consideration. The article selection process involved two
authors meticulously assessing the suitability of each study against predefined inclusion
and exclusion criteria. Subsequently, pertinent information from the selected studies was
independently extracted by the authors. In cases of disagreement, resolution was achieved
through consultation with a third author. Ultimately, the selection process yielded a total of
101 articles, which prompted the adoption of a narrative approach given the impracticality
of data pooling. A rigorous evaluation of quality, reliability, and validity was conducted
for all chosen articles, with any discrepancies promptly addressed. The article selection
process is visually depicted in the accompanying flow diagram [Figure 1].
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3. Physiopathology of Implantation

Due to ethical constraints on studying early placental development, our understanding
of placental function remains limited. Instead, we explore the maternal endometrium and
the fetal–maternal dialogue [17,18]. Implantation relies on both embryo quality and the
physiological state of the endometrium. The ovarian hormones progesterone, estradiol, and
relaxin prompt the accumulation of intracellular cAMP (cyclic adenosine monophosphate),
synthesized from adenosine triphosphate via the activation of adenylate cyclase. cAMP
synergistically enhances decidualization [3,19,20]. The interaction among immune cells,
decidual stromal cells, and trophoblastic cells forms the maternal–fetal interface. Any
imbalance in this network of cellular connections may result in adverse effects such as
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preeclampsia. The dynamic changes in immune cells at the maternal–fetal interface have
yet to be fully elucidated [21,22].

Implantation of the embryo leads to the invasion of the trophoblast after it adheres
to the uterine wall. For this semi-allogenic graft to occur, the endometrium undergoes
some modifications. An ”implantation window” opens as a result of decidualization in
synchronization with embryonic development. The extravillous cytotrophoblast (EVCTs)
cells invade the decidua and then modify the walls of spiral arteries, which are controlled
in time and space. Any anomaly in this complex process leads to pregnancy-related disease.
To invade the decidua, trophoblastic cells need to recognize, via integrins and cadherins,
the components of the membrane and the extracellular matrix (ECM). To control the inva-
sion, the endometrium secretes transforming growth factor (TGF) and tissue inhibitors of
metalloproteinases (TIMPs). Moreover, the decidua is colonized by immune system cells,
natural killer (NK) cells, lymphocytes, and macrophages, which produce cytokines that
have a key role in the invasion of the trophoblast [19,23–25]. One crucial role of extravillous
cytotrophoblast (EVCTs) cells is to mediate vascular remodeling, which destroys the smooth
muscle media. Their dysfunction leads to PE, intrauterine growth retard (IUGR) in nor-
motensive condition, placental abruption, and preterm delivery. Uncontrolled trophoblast
invasion in the absence of the decidua results in placenta accreta spectrum [17]. The pres-
ence of TIMPs blocks the enzyme activity, thus limiting the invasion in time and space.
The most important metalloproteinase (MMP) secreted by trophoblast is MMP9, which is
balanced by TIMP1. Moreover, TGF beta is expressed at the fetal–maternal interface and
inhibits trophoblast proliferation and invasion [23].

The success of a pregnancy depends on the correct remodeling of the uterine spiral
arteries. The invasion of the uterine spiral arteries consists of two successive interdependent
phenomena that accomplish the complete transformation of the placenta. The first vascular
invasion occurs from 5 to 8 weeks; in this phenomenon, EVCT cells disintegrate the wall of
decidual small vessels and create a trophoblastic shell around the vessels, moving from
the exterior to the lumen. These intravascular plugs obstruct the decidual capillaries
and act as a filter rather than a barrier. This vascular invasion corresponds to the future
intervillous space and is followed by a phase of branching angiogenesis. The expression
of placental growth factor (PIGF) is moderate during this period, but the expression of
vascular endothelial growth factor-A (VEGF-A) and fms-like tyrosine kinase-1 (Flt-1) are
immense [21,26,27]. Trophoblastic cells will colonize the surface of the inner wall of the
intra-myometrial spiral arteries and then penetrate the vascular tissue. The molecular
mechanisms of spiral artery remodeling are still not clear, but the cytotrophoblast cells that
enter between maternal endothelial cells lose their epithelial characteristics and acquire
an endothelial phenotype [27]. This effect causes the endothelial cells (ECs) and vascular
smooth muscle cells (VSMCs) of the tunica media and the internal elastic layer to disappear
progressively. The internal elastic layer is then replaced by a fibrin deposit that deprives the
vessels of their contractility. The trophoblastic cells progressively develop an endothelial
phenotype because of a switch from E-cadherin to VE-cadherin and the acquisition of
endothelial cell molecules, such as vascular cell adhesion molecules (VCAMs) [26,28,29].
A low oxygen tension provides a protective environment for the embryo against the
teratogenic effects of oxygen free radicals. This environment maintains stem cells in
a pluripotent state during the critical period of organogenesis. This is a physiological
low-oxygen environment, not hypoxia, with no difference in the adenosine triphosphate-
to-adenosine diphosphate (ATP/ADP) ratio; moreover, the placenta is not energetically
compromised. The trophoblast plugs begin to disappear at 12 weeks of gestation when
hematotrophic nutrition begins and maternal blood is delivered from converted uterine
spiral arteries [17]. The second vascular invasion of the intra-myometrial spiral arteries
occurs between 13 and 18 weeks [21,26,27]. Much morphological remodeling occurs in the
second trimester to optimize the supply of nutrients and oxygen. The formation of terminal
mature villi occurs after 20 weeks of gestation and then expands exponentially [17].
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The immune system has an essential role in the process of terminal mature villi
formation. Decidual natural killer cells (dNk cells) promote embryonic development and
are involved in decidual immune tolerance to embryos. Studies have shown that dNK cells
participate in trophoblast invasion and spiral artery remodeling [21,23,26,30]. NK cells are
implicated in VSMC hypertrophy and disorganization, EC vacuolization, the EVT breaks
in the VSMC and EC layers, and dNK secretion of angiogenic factors [26]. Macrophages are
categorized into two significant subpopulations: M1, mainly involved in pro-inflammatory
responses, and M2, mainly involved in anti-inflammatory responses. M2 is an activated
regenerative phenotypical and functional type responsible for immune tolerance and tissue
remodeling. Predominantly, the M2 phenotype protects the fetus and placenta.

During the implantation window, decidual macrophages create a pro-inflammatory
microenvironment conducive to embryo implantation. Their proximity to spiral arteries
induces disruption and disorganization of vascular smooth muscle cells and endothelial
cells even before extravillous trophoblasts (EVTs) are present [21]. Inadequate remodeling
of spiral arteries due to incomplete trophoblast invasion leads to obstetric complications
such as preeclampsia, fetal growth restriction, miscarriage, late spontaneous abortion,
preterm birth, and placental abruption [26].

4. Physiopathology in Preeclampsia

Early-placentation-impaired trophoblast invasion and defective maternal spiral artery
remodeling have been demonstrated in PE. Defective transformation of cytotrophoblast
into endothelial cells allows a superficial endovascular invasion [27]. Hypertension and
proteinuria are the cornerstones of PE; the disease begins with abnormal placentation with
subsequent release of anti-angiogenic factors, which are primarily mediated by fms-like
tyrosine kinase-1 and soluble endoglin. Placental ischemia leads to increased angiogenic
markers such as soluble fms-like tyrosine (sFlt-1) and soluble endoglin (sEng). Increased
levels of sFlt-1 and sEng result in endothelial dysfunction with a negative impact on
maternal and fetal organs [2,27,31]. High sFlt-1 levels inhibit podocyte-specific VEGF,
disturbing glomerular filtration and contributing to proteinuria. The imbalance of pro-
angiogenic and anti-angiogenic factors leads to podocyte injury. Renal biopsy showed
diffuse fibrin deposition, endothelial swelling, loss of podocytes, and loss of capillary space.
Damaged endothelial cells further induce clotting and loss of anticoagulant ability [2].

Changes in the placenta may also stem from reductions in phosphoinositide 3-kinases
genes (PI3K-AKT) and mammalian target of rapamycin (mTOR) signaling. Maternal vas-
cular malperfusion, resulting from the abnormal remodeling of uteroplacental arteries,
is acknowledged as a primary precursor to preeclampsia [17]. The incomplete or absent
second invasion contributes to diminished blood flow into the intervillous spaces, lead-
ing to fetal growth restriction. This condition exacerbates vasoconstriction and platelet
aggregation, elevating systemic vascular resistance. Therefore, initiating preventive aspirin
treatment as early as 13 weeks, or earlier when obstetric history or pro-coagulant factors
are present, is advisable [23].

In early pregnancy, genetic and endothelial cell dysfunction can lead to spasms of
the small spiral arteries of the uterus and reduced invasiveness of trophoblastic cells due
to ischemia, which ultimately leads to PE. According to Charkievicz et al., the reduced
gal-2 may be associated with autoantibodies against this protein and participate in the
immunological pathogenic process of PE. Individuals with antiphospholipid syndrome
produce antibodies against gal-2. Antiphospholipid syndrome is prevalent in individuals
with PE and they have lower levels of galectin-2 (gal-2) [32].

Upon exploring additional factors involved in the pathophysiology of preeclampsia,
inflammation emerges as a significant player. The inflammasome serves as a molecular
link between various components at the syncytiotrophoblast surface and in maternal blood.
Consequently, its chronic activation can instigate adverse inflammatory effects, leading
to vascular dysfunction and potentially culminating in preeclampsia [33,34]. Moreover,
vitamin D deficiency has been linked to pregnancy complications such as preeclampsia
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and intrauterine growth restriction (IUGR) due to incomplete spiral artery remodeling.
Additionally, granulocyte colony-stimulating factor (G-CSF) presents itself as a promis-
ing therapeutic target for preventing adverse obstetric outcomes [35]. Furthermore, low
preconception complement levels are associated with unfavorable pregnancy outcomes,
including adverse pregnancy outcomes (APOs) in antiphospholipid syndrome (APS) and
pregnancies among carriers of antiphospholipid antibodies (aPLs) [36].

One theory of pathophysiology in preeclamptic headache is that blocking vascular
endothelial growth factor (VEGF) and transforming growth factor beta (TGF beta) leads
to the loss of fenestrae on the choroid plexus, resulting in endothelial cell instability
and periventricular edema. These changes may precipitate seizures, as well as visual
disturbances, which may be due to retinopathy, retinal detachment, or cortical blindness.
Moreover, cardiac dysfunction increases by 30–50%. The balance between antioxidant
capacity and oxidative stress is upset in peripartum cardiomyopathy due to the higher
level of sFlt-1. Superoxide dismutase and peroxidase are elevated, and the resulting
lack of peroxisome proliferator-activated receptor gamma stat3 upregulates oxidative
enzymes, promotes angiogenesis, and mediates cardiomyocyte hypertrophy. Stat3 is
decreased in the placenta in cases of PE [2]. Pulmonary edemas occur due to increased
vascular permeability, cardiac dysfunction, corticosteroid/tocolytics, and iatrogenic volume
overload; the resulting increased vascular permeability damages the endothelial cells [2].

Nonetheless, there remains a significant knowledge gap concerning the correlation be-
tween antiphospholipid syndrome (APS) and preeclampsia (PE). Antiphospholipid antibodies
(aPLs) exert dual effects on the maternal–fetal interface: firstly, they induce a pro-coagulant
phenotype by activating various cells such as platelets, monocytes, and endothelial cells,
thereby initiating processes such as complement system activation, inflammation, and anti-
fibrinolytic effects, ultimately leading to thrombosis. Conversely, aPLs directly impact tro-
phoblastic cells, resulting in apoptosis, impaired proliferation, decreased angiogenesis, and
a negative influence on spiral artery remodeling. Preeclampsia manifests as a syndrome
affecting multiple organs, characterized by systemic endothelial damage, yet the precise
mechanism remains elusive. The dysregulation of angiogenesis appears to contribute to
multi-system endothelial dysfunction. While preeclampsia may not be the most prevalent
obstetric complication in APS, it significantly impacts the long-term health of both mother
and child [37,38], with triple aPLs affecting the obstetric outcome the most [Table 1].

Table 1. Obstetric outcomes.

Studies Cohort aPL
Positivity

Other
Antibody
Positivity

Karen Gibbins
2018
[39]

148 women
with preterm

delivery
PREPI

11.5%

148 women
with preterm

delivery
controls

1.4%

Ryan Malcolm
Hum 2022

[40]

98 patients
with no
controls

26% 32% Ro
autoantibodies

Maria-Grazia
Lazzaron 2019

[41]

Adverse
pregnancy
outcome

aPL single
positive
2 (5%)

aPL double
positive

0

aPL triple
positive
4 (44.4%)

Thrombosis 1 (2.5%) 0 1 (11.1%)

aPL-positive antibodies are strongly associated with PREPI. Triple aPL-positive antibodies are related to a higher
risk of adverse pregnancy outcomes.
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The impact of aPLs on pregnancy outcome is presented below [Table 2].

Table 2. The impact of aPLs on pregnancy outcome.

Studies Study Cohort Miscarriage Fetal Death
(Stillbirth)

Neonatal
Death

Preterm
Delivery
(PREPI)

Preeclampsia
Small for

Gestational
Age

Jill P Bujon
2015 [42]

385 patients with
LAC/0 controls 0 4% 1% 9% 9% 10%

Ryan Malcolm
Hum 2022

[40]

98 patients (31
with aRo, 25 with
aPL)/0 controls

2% 1% 0 0 1% 0

Maddalene
Larosa 2022

[43]
238 LAC/0

controls 3.4% 2.9% 0.4% 2.9% 2.1% 2.1%

April Barnado
2014 [44] 577 aPL or lupus 124 (21.49%) 16

(2.77%) 0 66 (11.43%) 45 (7.8%) 58 (10.05%)

694 controls 85 (12.24%) 5 (0.7%) 0 29 (4.18%) 29 (4.18%) 28 (4.03%)

Jing Liu 2022
[45]

aPL with HCQ
93 66.1% 5.1% 0 0 13.6% 6.7%

aPL without
HCQ 46 43.2% 2.7% 0 0 16.2% 5.4%

Mohamed
Ibrahem Eid

2019 [46]

aPL-positive,
LMWH at
positive

pregnancy test 48
27.08% 0 0 10.41% 16.66% 14.53%

aPL-positive,
LMWH at

cardiac activity
confirmation 46

43.47% 0 0 8.69% 15.21% 10.86%

Elefteria
Lefkou 2016

[47]

aPL with PE
during LDA plus
LMWH control

10

Not
applicable 50% 0 100% 100% No data

aPL with PE
during LDA plus

LMWH,
cohort with

pravastatin 11

Not
applicable 0 0 0 100% No data

Shanying Chen
2015 [48]

LAC pregnancies
after 6-month
remission 52

17.3% 3.84% 0 7.69% 9.61%

LAC with active
lupus during
pregnancy 13

61.53% 15.38% 0 15.38% 7.69%

LAC discovered
during

pregnancy 19
42.10% 10.52% 0 26.31% 5.26%

Zeynep Belce
Erton 2021 [49]

55 patients
aPL-positive/no

controls
27% 12.5% 0 22.5% 5.45% 0

LAC—lupus anticoagulant-positive; aPL—antiphospholipid antibodies; HCQ—hydroxychloroquine; LDA—low-
dose aspirin; LMWH—low-molecular-weight heparin. aPL—associated with a high risk of adverse pregnancy
outcomes. HCQ only ameliorated miscarriages; moreover, the administration of LMWH from the positive test of
pregnancy has no significance and is only related to miscarriage. If pregnancy is planned, a favorable outcome
could be achieved.

5. Treatment Options in APS

The primary approach in the treatment of APS involves anticoagulation, although
some patients still experience thrombosis despite this treatment. Consequently, there is
a search for alternative pathophysiological mechanisms and immunomodulating agents.
Primary antithrombotic prophylaxis typically relies on antiplatelet agents such as low-



J. Clin. Med. 2024, 13, 2668 8 of 19

dose aspirin for arterial thrombosis [4,50]. On the other hand, secondary antithrombotic
prophylaxis usually entails antithrombotic therapy, with vitamin K antagonists being the
gold standard treatment for APS. Direct oral anticoagulants like rivaroxaban, apixaban,
and dabigatran are utilized for secondary prevention of venous thromboembolism (VTE),
although these medications are teratogenic. In pregnant women, accepted treatments
include low-molecular-weight heparin (LMWH) and low-dose aspirin [4,50–52].

In Christina Han’s study, LMWH improved basal trophoblast migration and induced
sFlt-1 increase. The combined therapeutic approach of LMWH and low-dose aspirin
promoted migration but did not affect sFlt-1. Antiphospholipid syndrome increased
VEGF, PIGF, and sEng and decreased sFlt-1. Antiphospholipid-antibody-induced placental
changes were best reversed by LMWH on cytokine, but LMWH worsened the angiogenic
changes induced by aPLs with an increase in sFl-1. These findings may explain the inability
of current therapies to consistently prevent adverse outcomes [53].

Treatment options during pregnancy are restricted to a limited selection of safe medi-
cations. However, unresolved issues persist, such as refractory pregnancy loss associated
with aPLs and complete heart block linked to anti-Ro antibodies. Among these concerns,
perhaps the most significant is the elevated risk of preeclampsia, which occurs three to
five times more frequently and complicates 16–30% of pregnancies in women with SLE.
Neonatal lupus syndromes, characterized by a range of manifestations including rash,
hematologic, and hepatic abnormalities, stem from passively acquired fetal autoimmunity
due to maternal antibodies like anti-Ro and anti-La. Although these syndromes typically
resolve within six to eight months, cardiac complications may result from permanent
damage caused by maternal antibodies [54].

Alternative therapeutic strategies are being explored. For instance, non-steroidal anti-
inflammatory drugs, deemed safe during the first and second trimesters, represent one
avenue. Hydroxychloroquine, which demonstrates no adverse effects on the baby, has been
employed with success. Furthermore, it has been observed that hydroxychloroquine carries a
protective effect on endothelial function, although further assessment is warranted [4,54–57].

Azathioprine stands out as one of the very few immunosuppressive agents with docu-
mented safety during pregnancy. However, its dosage should be limited to a maximum of
2 mg/kg/day to mitigate the risk of fetal cytopenias and immune suppression. Tacrolimus
and cyclosporine are other immunosuppressive drugs that do not pose an increased risk
to the fetus. On the contrary, leflunomide is considered teratogenic. Studies on ritux-
imab and belimumab have shown no significant difference in aPL titers before and after
treatments [4,54,58]. Most other agents, such as methotrexate and cyclophosphamide, are
contraindicated during pregnancy. However, LMWH and low-dose aspirin are considered
safe for use during pregnancy [2,31,34,54,57].

Antithrombotic and anti-ischemic properties of sirolimus and defibrotide are under
investigation in APS [4]. Statins, such as pravastatin, which are used for the treatment of
hypercholesterolemia and in secondary prevention of atherosclerotic disease, were also used
in a study with pregnant individuals with APS who developed PE or IUGR. Pravastatin
improved placental blood flow [4,57]. However, other trials, for example, Ahmed et al.’s
study (2011-201), did not show any significant reduction in sFlt-1 or improvement in clinical
outcomes; furthermore, low compliance was recorded as an adverse effect.

However, the results endorse the safety of pravastatin utilization in high-risk preg-
nancies. Additionally, limited drug concentrations were observed in the umbilical cord,
supporting the notion of restricted transplacental transfer of pravastatin. Lefkou et al.
demonstrated that in women with antiphospholipid syndrome and preeclampsia or in-
trauterine growth restriction (IUGR), the administration of 20 mg of pravastatin led to im-
proved pregnancy outcomes and fetal health [59–61]. Furthermore, the efficacy of high-dose
intravenous immunoglobulin therapy for pregnant women with aspirin–heparin-resistant
secondary antiphospholipid syndrome was also evaluated [62]. Therapeutic options are
presented in Table 3.
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Table 3. Therapeutic options.

Studies Cohort LMWH HCQ HCQ + LDA Prednisone LDA + LMWH Immunosuppressive
Drugs/Tacrolimus LDA Other Drugs/

No Drugs

Maddalena Larossa
(2022) [43]

238 women with LAC/no
control (remission in 86.6%) 0 98.3% 0 50% 0 23.5% 69.3% 0

Rubine Izhar (2021)
[63]

aPLs during pregnancy
PREPI 98 21.4% 0 0 0 0 0 41.8% 0

aPLs during pregnancy
without PREPI 106 2.9% 0 0 0 0 0 7.5% 0

Shangqin Long
(2023) [64]

aPL-positive with
preeclampsia 0 0 0 0 36.36% 0 31.58% 65% no

medication

aPL-positive with fetal loss 0 0 0 0 0 0 10.53% 35% no
medication

Na Zhang (2022)
[65]

90 patients with LAC,
adverse outcomes: HTA 17.8% 2.2%

PE 11.1% 0

Preterm delivery 33.3% 17.8%

Small for gestational age 18.9% 9.5%

Neonatal asphyxia 16.2% 2.4%

Takehiro Nukai
(2024) [58]

LAC-positive patients with
Maternal APO

44.8%
(from a total of 29)

Other
medication:

26.2% (from a
total of 95)

Neonatal APO 51.7% 44.2%

Preeclampsia 10.3% 5.3%

Small for gestational age 34.8% 35.2%

Major malformations 4.3% 1.1%

Neonatal death 4.3% 0

Maternal death 0

Rahana Abd
Rahman

(2020) [66]
Patients with LAC HCQ

non-HCQ
*/other

medications

Outcomes: HTA 6.4% from 47 42.9% from 35

Preterm delivery 44.68% 60%

PE 11.8% 33.3%

HCQ—hydroxychloroquine; LDA—low-dose aspirin; LMW—low-molecular-weight heparin. * HCQ improved the prevention of PE; moreover, LDA + LMWH showed efficacy,
LAC-lupus anticoagulant, APO-adverse phospholipid outcome, PE-preeclampsia, aPL-antiphospholipid antibodies.
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6. Future Directions in Pathophysiology

Limited research has been focused on the role of osteopontin and glycodelin in the
pathophysiology of preeclampsia, with even fewer data available for APS. However, evi-
dence suggests that they play significant roles in embryo implantation and development.
Evaluating their potential as biomarkers or targeted treatments would be beneficial in
future studies. Additionally, investigating their correlation with pro-angiogenic factors like
VEGF could provide valuable insights [17].

Uterine secretions contain lipid droplets and glycoproteins such as glycodelin-A and
osteopontin, which play important roles in nutritional and immunomodulatory functions
at the maternal–fetal interface. Glycodelin-A is implicated in the regulation of extravil-
lous trophoblast invasion and maternal immunotolerance; osteopontin mediates spiral
artery remodeling by promoting the migration of smooth muscle cells and it exerts both
pro-inflammatory and anti-inflammatory effects. In addition, gland epithelial cells secrete
vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) with angio-
genic effects and mitogenic promoters. Perturbed endometrial function may be detrimental
to placental development. The use of progesterone improves decidualization and gland
function. Moreover, endometrial glands respond to HCG (choriogonadotropin hormone),
prolactin, and other hormones by upregulating glycodelin-A and osteopontin. HCG in-
duces the secretion of FGF (fibroblast growth factor), EGF (epidermal growth factor), and
VEGF [17,20]. The enhancement of villous fetal capillarization is facilitated by Hofbauer
cells, the fetal immune cell type in the villous stroma, which secrete trophic and remodeling
factors including osteopontin, VEGF-A, and MMP-9. These angiogenic factors are also
produced by secretory-stage decidual NK cells. Alteration in decidual NK cells with a
deficiency in osteopontin and osteoglycin can cause complications during pregnancy such
as PE and fetal growth restriction [17,21,26]. Diverse genes are implicated in transcrip-
tional expression in VEGF with an impact on placenta development [30]. In the same way,
VEGF and osteopontin were found to have an important role in plaque formation in HTA
associated with atherosclerosis [67].

In the process of trophoblast adhesion to fibronectin and laminin, additional lig-
ands like osteopontin and fibronectin are involved. These mechanisms are regulated by
hormones and other factors such as hCG, prokineticin-1, and leukemia inhibitory factor
(LIF), which contribute to receptivity and the maintenance of pregnancy [3,20]. Exploring
other factors pertinent to preeclampsia induced by aPLs involves omics research. Var-
ious omics, including miRNAs, which are small, single-stranded RNAs approximately
18-24 nucleotides long, are implicated in placental formation. miRNAs play a crucial role
in regulating gene transcription, with deregulation of certain miRNAs implicated in PE,
particularly in angiogenesis mediated by VEGF [68].

PIGF and sFLT-1 appear to be the biomarkers with the highest sensitivity and speci-
ficity in predicting early-onset PE; however, these biomarkers cannot be used to predict
late-onset PE or other complications of pregnancy such as IUGR or preterm birth. VEGFs
are a family of angiogenic factors whose genetic polymorphism leads to adverse pregnancy
outcomes [27]. VEGF-A, PIGF, and the VEGF receptor 1 fms-like tyrosine kinase receptor 1
are expressed in the human placenta and the VEGF family is known as a pro-angiogenic
factor implicated in maternal spiral artery remodeling. In addition, a splice variant of FLT-1,
designated soluble FLT-1, is expressed in the placenta and is known to have potent anti-
angiogenic properties [27]. VEGF, sFlt-1, soluble endogline, antiprothrombin antibodies
(aPTs), and PIGF have been evaluated as possible predictors and diagnostic tools. Moreover,
uterine artery Doppler is a useful tool [54,69]. Elevated IFN-alfa early in pregnancy could
be associated with poor pregnancy outcomes related to angiogenic imbalance in pregnant
women with lupus [70].

Osteopontin (OPN) deserves special attention as a biomarker of severe disease as
it has been correlated with renal involvement and neuropsychiatric events. OPN levels
are significantly higher in cerebrospinal fluid; therefore, OPN could be a novel diagnostic
marker. OPN levels are also significantly higher in serum; thus, it could be used as a
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biomarker for lupus, and OPN and VEGF are found in urine. Clinical manifestations
include using OPN as a biomarker for infections, lymphoma, primary aPL syndrome,
early rheumatoid arthritis, autoimmune thyroiditis, autoimmune hepatitis, interstitial lung
disease, and fibromyalgia [71].

It was also observed that cancers and early pregnancy have similar mechanisms in
evolution and development; the major difference is that the process is limited in time and
space in the case of pregnancy. However, this fact offers a new approach regarding research
models [32].

The result of oncology studies has shown that angiogenesis is regulated in tumors
by galectin-1 (GAL-1), and this can be a potential therapeutic target. This pro-angiogenic
activity has been demonstrated in early pregnancy by promoting vascular remodeling
through VEGF. Moreover, an inhibitor of gal-1 was found to inhibit tumor proliferation,
invasion, and angiogenesis. The results of endometriosis studies have confirmed the
involvement of gal-1 to be synergic with gal-2 and the role of gal-2 in angiogenesis by
activating VEGF. The modulation of gal-2 may become a new therapeutic strategy for
stimulating angiogenesis [32].

7. Future Directions in Therapy
7.1. Nanotechnology as a New Therapeutic Approach

Currently, antihypertensive drugs are the first-line therapy for PE and evidence sug-
gests that low-dose aspirin initiated early in high-risk pregnancies may reduce the risk
of development of PE [72]. Extracellular vesicles (EVs) are highlighted as potential novel
targets and platforms for therapeutic intervention and/or drug delivery. It is necessary to
investigate their biogenesis, biodistribution, metabolism, extraction, and safety and their
roles in different organs [73]. EVs contain proteins, nucleic acids, and lipids, and act as
messengers for cell-to-cell communication and signaling, particularly between immune
cells. Moreover, EVs are known to have roles in reproductive processes [74].

EVs have been investigated in autoimmune diseases, inflammatory disorders, and
cancers, but they are also involved in pregnancy complications, particularly in PE. Several
studies have shown an increased level of EVs in the maternal circulation in PE; specifically,
increased levels of EVs have been associated with PE complicated by fetal growth restriction.
Furthermore, EVs may also play a role in the postpartum worsening of the disease. Limited
studies have addressed this issue [74–76].

Extracellular vesicles are lipid bilayer vesicles released and taken up by diverse
types of cells. They serve as facilitators of intercellular communication. In pathological
circumstances, they play roles in the aggravation and resilience of various diseases. This
is why they hold significant promise in innovative therapeutic approaches for various
pathologies. Different nonclinical trials have aimed to provide comprehensive data on the
pharmacokinetics and toxicity of EV products. Moreover, EVs have physiological roles in
different organs and crucial pathological roles in the development of several diseases [73].
Therefore, EVs are a new powerful therapeutic option for various diseases, providing a
potential therapeutic target and, as mentioned, a platform for therapeutic interventions
and/or delivery [77].

Furthermore, EVs are currently in the preclinical stage of application and are being
investigated for suitable dosage forms for specific applications. Intravenous injection is
the most common method of administering extracellular vesicles (EVs). Compared with
several nanoparticle (NP) delivery systems, lipid bilayer vesicles offer a versatile platform
for drug packing and delivery. Based on their origin, they are classified into synthetically
originated lipid particles (LPs), biologically originated EVs, and hybrid liposomes originat-
ing from the fusion of LPs and EVs. LPs are self-assembled synthetic nanoparticles that
provide a prominent platform consisting of fatty acids and lipids centered in a spherical
bilayer membrane surrounding an aqueous chamber. Moreover, LPs have a significant
advantage in the context of drug delivery. Additionally, EVs have shown great potential for
integrating many small molecules for therapeutic and diagnostic applications [73]. EVs can
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carry matrix-remodeling enzymes such as metalloproteinases as well as their regulators,
contributing to modifications of the extracellular matrix (ECM) [72,78].

EVs originating from dendritic cells, B lymphocytes, and macrophages possess sig-
nificant therapeutic potential without the need for specific manipulation, exhibiting anti-
apoptotic, anti-inflammatory, pro-angiogenic, and anti-proliferative effects. Enhancing the
therapeutic potential of EVs can be achieved through engineering EV-producing cells [8].
Additionally, monitoring pEXO expression profiles during pregnancies could offer in-
sights into pregnancy outcomes and serve as novel predictive biomarkers for preeclamp-
sia [74,79,80].

Nanomedicine platforms can be designed to achieve more efficient cytosolic localiza-
tion, which is a crucial consideration for the delivery of mRNA therapeutics. The cytosol is
responsible for protein translation within the cellular machinery [81].

7.2. Cancer-Based Therapy

As previously highlighted in this article, there are similarities between cancers and
early pregnancy. While conducting diverse research during pregnancy is unethical, studies
in cancer are more advanced, holding potential applicability to pregnancy in the future.
In cancer treatment, the combination of PD-1 checkpoint blockade has further improved
efficacy, resulting in a 35% tumor regression rate. Additionally, mRNA-based vaccines can
enhance the effectiveness of CAR T-cell therapy. CARs are genetically engineered receptors
that redirect T-cells to identify and eliminate a specific target antigen [81,82].

Manufacturing mRNA delivery vehicles requires the establishment of new approaches
for purification, quality control, translational control, long-term stability, and novel sta-
bilizer excipients, leading to widespread use [81]. The monoclonal antibody mAb 1N11
prevents aPL antagonism of endothelial cell migration in mice; however, further studies
are needed [82].

7.3. Stem Cell Therapy

Mesenchymal stem cells are the most frequently used stem cells in clinical trials due
to their easy isolation from various adult tissues, their ability to home to injury sites,
and their potential to differentiate into multiple cell types. All the soluble factors and
vesicles secreted by MSCs are commonly known as secretomes. MSC secretomes have a key
role in cell-to-cell communication and are actively involved in immune modulation and
regeneration. The secretome composition has a key advantage in cell-based therapies with
a large number of therapeutic possibilities including pregnancy complications [34,72,83].

7.4. Angiogenic Factors

Treatment with angiogenic factors was taken into consideration in the case of PE.
Studies have demonstrated the role of microvascular injury in HTA and have demonstrated
that treatment with an angiogenic factor aimed at ameliorating microvascular and renal
injury would prevent the development of HTA. Cyclosporine was administered in rats
with renal lesions with afferent arteriopathy. The rats received vascular endothelial growth
factor as treatment, which resulted in lower blood pressure. VEGF treatment was also
associated with a decrease in osteopontin expression. Moreover, treatment with VEGF
reduces the hypertensive response and accelerates histological recovery. VEGF also has a
vascular-protective effect [84].

It has been reported that circulating fms-like tyrosine kinase 1 sFlt-1 is an anti-
angiogenic factor while placental growth factor PIGF is a pro-angiogenic factor; therefore,
the sFlt-1/PIGF ratio demonstrated the highest significance in PE. VEGF is a key regulator
of vascular function and angiogenesis. Further, soluble endoglin, cell-free fetal DNA, and
vasoactive factors have been highlighted as prospective predictive biomarkers for PE [79].
The administration of VEGF in rats with chronic nephropathy and HTA improved their
condition [84]. Moreover, the effect of VEGF on osteopontin expression in the renal cortex
in microscopy showed a significant decrease of 1.4 ± 0.5 vs. 2.3 ± 0.2% [84]. The most
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plausible effect of VEGF is the mechanism by which VEGF lowers blood pressure by ac-
celerating recovery from renal tubulointerstitial and microvascular injury. It dramatically
improved arteriopathy [84].

Furthermore, VEGF treatment also results in lower blood pressure in pregnancy. A
previously described model of preeclampsia was reproduced by adenoviral overexpression
of the soluble vascular endothelial growth factor VEGF receptor sFlt-1 in pregnant and
nonpregnant rats. The animals were treated with recombined VEGF 121 at 0, 100, 200, and
400 micrograms/kg once or twice daily and compared with normal rats [85].

VEGF121 treatment alleviated the symptoms and reversed the sFlt-1 changes in gene
expression, demonstrating that VEGF121 had beneficial effects on PE. VEGF is a platelet-
derived growth factor that induces vascular health by suppressing endothelial apoptosis,
inhibiting leukocyte adhesion, and inhibiting platelet aggregation and thrombosis. The bio-
logical role of VEGF depends on its interaction with two receptors, VEGFR1 and VEGFR2.
Deprivation of VEGF activity is induced by overexpression of sFlt-1 or by VEGF antibodies.
Therefore, agents that bind sFlt-1, such as VEGF121, may be a useful targeted therapy in
PE [85].

These agents reduce endothelial swelling and fibrin deposits, provide a good histolog-
ical score of p < 0.05, and are dose-dependent. A significant reduction in blood pressure
with p < 0.01 was recorded, along with a reduction in urinary albumin per creatinine. The
effects on gene expression were shown to reverse genes. The expression levels of six genes
encoding soluble secreted proteins were affected by sFlt-1 transfection, PAI-I, MMP-9,
MMP-12, osteopontin, and IGFBP5 [85].

8. Discussion

APS is a thrombo-inflammatory disease with a variety of clinical phenotypes. Throm-
bosis prophylaxis should take an individualized risk stratification approach. Obstetric
management is focused on close monitoring of the fetus and mother and low-dose aspirin
in asymptomatic aPL carriers. In patients with a history of PE or fetal death, treatment
with low-dose aspirin combined with LMWH is recommended; in women with a history
of thrombosis, treatment with low-dose aspirin combined with LMWH is recommended;
in women requiring postpartum management with no history of thrombosis, treatment
with LMWH for 6 weeks is recommended; and in women with a history of thrombosis,
treatment with warfarin or LMWH is recommended [6,10,11]. In addition, other pharmaco-
logical agents should be considered, such as hydroxychloroquine and statins. Moreover,
the implication of neutrophil extracellular traps in thrombin generation and initiation of
inflammatory cascades is a relatively recent discovery, but more data are needed [6,10–12].

Regarding medication safety, non-steroidal anti-inflammatory drugs are generally
accepted during pregnancy, except in the third trimester, which may cause premature
closure of the ductus arteriosus [86]. Other studies showed that NSAIDs are associated
with miscarriage, low birth weight, and premature closure of the ductus arteriosus [87].
Glucocorticoids and prednisone can lead to preterm birth, low birth, FGR, and malfor-
mations of oral clefts [86,87]. Low-dose aspirin and LMWH are safe for the prevention
of preeclampsia. Antihypertensive medications are widely used such as methyldopa and
hydralazine, but angiotensin II receptor blockers are contraindicated during pregnancy.
Hydroxychloroquine is encouraged because of its safety profile [87].

However, as indicated by other studies, hydroxychloroquine can lead to preterm
delivery and low birth weight depending on the dosage [86,88]. Among immunosuppres-
sive agents, cyclophosphamide, methotrexate, and mycophenolate are contraindicated in
pregnancy due to their association with congenital malformations, impacting the heart,
central nervous system, and skeleton [86,87]. Direct oral anticoagulants (DOACs) should
be avoided [89]. Azathioprine is considered relatively safe. Cyclosporine also seems to be
an acceptable option. Anti-TNF and rituximab do not seem to place the mother or fetus at
risk [86]. However, according to other studies, tumor necrosis factor inhibitors (anti-TNF
therapy) have been linked with VACTERL defects. Rituximab can be implicated in prema-



J. Clin. Med. 2024, 13, 2668 14 of 19

ture birth and hematologic abnormalities, but we have limited data [87,89]. Sulfasalazine
in some studies has shown a risk of preterm birth, low birth weight, and abnormalities;
leflunomide is similar to methotrexate; and tocilizumab is not related to significant prob-
lems [86]. Moreover, plasma exchange is a safe and efficient option [90]. Potential new
therapies such as Coenzyme Q improve endothelial function; adenosine receptor agonists
suppress antiphospholipid antibody-mediated NETs (neutrophil extracellular traps) release,
or agents targeting antibody-producing cells, but further studies are needed [89].

Despite the use of antiplatelets and anticoagulants, women with APS develop preg-
nancy complications [91]. As shown by Liping Liu in a review of eight different studies
with a total number of 212,954 participants, APS has been associated with significantly
worse pregnancy outcomes [92]. One-quarter of maternal deaths are due to PE. Therefore,
PE screening is essential to prevent complications. Preeclampsia screening is based on ma-
ternal risk factors and has a slow detection rate. The multiple theories behind PE etiology
should be the scientific base for establishing the risk factors [93,94].

Risk factors already established are previous pregnancy with PE, multiple gestation,
history of small-for-gestational-age delivery or adverse outcome, age extremes, lack of
seminal exposure, immunologic mismatch and absence of relaxin, pre-existing patient
health conditions (thrombophilia, autoimmune disease such as APS and SLE, obesity,
chronic hypertension, and diabetes mellitus), gene predisposition, and sociodemographic
condition [93,95–97].

Regarding biomarkers for screening, there is a lack of consensus among clinicians and
researchers: in 2018, the International Society for the Study of Hypertension in Pregnancy
recommended against the use of PIGF. Furthermore, ACOGs are not convinced of the
predictability of the statistical models because the heterogeneity of the predictors’ external
validation is difficult to perform [93].

Low-cost technologies are sought in the prevention and treatment of obstetric compli-
cations. Preconception analysis is an unmet need and there is a lack of biomarker specificity.
Moreover, there are discrepancies between studies due to differences in trophoblast prepa-
ration methods, and differences are found in the quantification of circulating biomarkers
due to different analysis methods. Machine learning could be useful. In addition, alterna-
tive biological samples, such as follicular fluid, should be considered for performing PE
biomarker studies. We can also improve the prediction of adverse pregnancy outcomes in
women with SLE and APS using machine learning [93,98,99].

The Fetal Medicine Foundation (FMF) suggested a screening paradigm based on
uterine artery pulsatility index and biochemical indicators, PIGF, and the pregnancy-
associated plasma protein A (PAPP-A) which predicts preterm PE at a 75% rate. At
present, some biomarkers such as VEGF, sEng, sFlt-1, placental protein-13 (PP-13), growth
differentiation factor 15 (GDF15), a disintegrin and metalloprotease 12 (ADAM12), and
inhibin alpha are considered as predictive factors for risk classification for PE pregnancies,
but no clinical relevance has been found so far, even if there are studies that would show
that, for example, the sFlt-1/PIGF ratio seems to have a high predictive value [100,101].

There is a need for strategies to improve pregnancy outcomes in patients with SLE and
APS, such as appropriate preconception, strict disease control before pregnancy, medication
adjustment, and intensive surveillance during and after pregnancy by obstetricians and
rheumatologists [87,102,103].

9. Conclusions

In conclusion, a detailed history of symptoms suggesting a systemic connective tis-
sue disease can be useful in the prevention of obstetric complications. Family planning
should be discussed as early as possible after diagnosis. A pregnancy could be successful if
measures are taken to reduce the risk of obstetric complications. Furthermore, pregnancy
can affect autoimmune disease progression. Risk stratification includes disease activity,
autoantibody profile, previous vascular thrombosis, hypertension, the use of drugs such as
anticoagulants/antiplatelets, and HCQ. Future directions in therapy are necessary. There-
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fore, the application of multidisciplinary approaches and prognostic models, including
new biomarkers, could be beneficial in the prediction of PE.
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