Bronchiectasis in the Last Five Years: New Developments
Abstract
:1. Introduction
2. Natural History/Epidemiology
3. Microbiological Developments
The Lung Microbiome
4. Phenotyping Bronchiectasis: Clinical, Radiological, and Microbiological Features
- Cluster 1: Chronic infection with P. aeruginosa;
- Cluster 2: Other chronic infection;
- Cluster 3: Daily sputum;
- Cluster 4: Dry bronchiectasis.
- Cluster 1: Younger women with mild disease;
- Cluster 2: Older women with mild disease;
- Cluster 3: Older patients with severe disease and frequent exacerbations;
- Cluster 4: Older patients with severe disease and without frequent exacerbations.
Inflammatory Phenotyping in Bronchiectasis
5. Co-Morbidities and Bronchiectasis: COPD and Asthma
6. Screening and Assessment Tools for Bronchiectasis
7. Databases and Registries for Bronchiectasis
8. Treatments for Bronchiectasis
8.1. Non-Pharmacological
8.1.1. Airway Clearance Techniques (ACTs)
8.1.2. Exercise
8.2. Pharmacological
8.2.1. Macrolide in Non-CF Bronchiectasis
8.2.2. Inhaled Antibiotics
8.2.3. Inhaled Hyperosmolar Agents, and Inhaled and Ingested Mucolytic Agents
8.2.4. Other Anti-Inflammatory Agents
Neutrophil Elastase Inhibitors
Statins
Chemokine Receptor 2 (CXCR2) Antagonists
9. Conclusions
Author Contributions
Conflicts of Interest
References
- Chang, A.B.; Bell, S.C.; Torzillo, P.J.; King, P.T.; Maguire, G.P.; Byrnes, C.A.; Holland, A.E.; O’Mara, P.; Grimwood, K. Chronic suppurative lung disease and bronchiectasis in children and adults in Australia and New Zealand Thoracic Society of Australia and New Zealand guidelines. Med. J. Aust. 2015, 202, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Pasteur, M.C.; Bilton, D.; Hill, A.T.; British Thoracic Society Bronchiectasis non-CF Guideline Group. British thoracic society guideline for non-cf bronchiectasis. Thorax 2010, 65 (Suppl. 1), i1–i58. [Google Scholar] [CrossRef] [PubMed]
- Polverino, E.; Cacheris, W.; Spencer, C.; Operschall, E.; O’Donnell, A. Global burden of non-cystic fibrosis bronchiectasis: A simple epidemiological analysis. ERJ 2012, 40, P3983. [Google Scholar]
- Kovesi, T. Respiratory disease in canadian first nations and inuit children. Paediatr. Child Health 2012, 17, 376–380. [Google Scholar] [PubMed]
- Bibby, S.; Milne, R.; Beasley, R. Hospital admissions for non-cystic fibrosis bronchiectasis in new zealand. N. Z. Med. J. 2015, 128, 30–38. [Google Scholar] [PubMed]
- Roberts, M.E.; Lowndes, L.; Milne, D.G.; Wong, C.A. Socioeconomic deprivation, readmissions, mortality and acute exacerbations of bronchiectasis. Intern. Med. J. 2012, 42, e129–e136. [Google Scholar] [CrossRef] [PubMed]
- King, P.T.; Holdsworth, S.R.; Freezer, N.J.; Villanueva, E.; Holmes, P.W. Microbiologic follow-up study in adult bronchiectasis. Respir. Med. 2007, 101, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- King, P.T.; Holdsworth, S.R.; Freezer, N.J.; Villanueva, E.; Gallagher, M.; Holmes, P.W. Outcome in adult bronchiectasis. COPD 2005, 2, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Anwar, G.A.; McDonnell, M.J.; Worthy, S.A.; Bourke, S.C.; Afolabi, G.; Lordan, J.; Corris, P.A.; DeSoyza, A.; Middleton, P.; Ward, C.; et al. Phenotyping adults with non-cystic fibrosis bronchiectasis: A prospective observational cohort study. Respir. Med. 2013, 107, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Finch, S.; McDonnell, M.J.; Abo-Leyah, H.; Aliberti, S.; Chalmers, J.D. A comprehensive analysis of the impact of pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann. Am. Thorac. Soc. 2015, 12, 1602–1611. [Google Scholar] [PubMed]
- Lonni, S.; Chalmers, J.D.; Goeminne, P.C.; McDonnell, M.J.; Dimakou, K.; de Soyza, A.; Polverino, E.; van de Kerkhove, C.; Rutherford, R.; Davison, J.; et al. Etiology of non-cystic fibrosis bronchiectasis in adults and its correlation to disease severity. Ann. Am. Thorac. Soc. 2015, 12, 1764–1770. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-H.; Guan, W.-J.; Liu, S.-X.; Wang, L.; Cui, J.-J.; Chen, R.-C.; Zhang, G.-J. Aetiology of bronchiectasis in adults: A systematic literature review. Respirology 2016, 21, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.A.; de la Rosa Carrillo, D.; Soler-Cataluna, J.J.; Donat-Sanz, Y.; Serra, P.C.; Lerma, M.A.; Ballestin, J.; Sanchez, I.V.; Selma Ferrer, M.J.; Dalfo, A.R.; et al. Prognostic value of bronchiectasis in patients with moderate-to-severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013, 187, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Wilczynska, M.M.; Condliffe, A.M.; McKeon, D.J. Coexistence of bronchiectasis and rheumatoid arthritis: Revisited. Respir. Care 2013, 58, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Mao, B.; Yang, J.W.; Lu, H.W.; Xu, J.F. Asthma and bronchiectasis exacerbation. Eur. Respir. J. 2016, 47, 1680–1686. [Google Scholar] [CrossRef] [PubMed]
- Rogers, G.B.; Zain, N.M.; Bruce, K.D.; Burr, L.D.; Chen, A.C.; Rivett, D.W.; McGuckin, M.A.; Serisier, D.J. A novel microbiota stratification system predicts future exacerbations in bronchiectasis. Ann. Am. Thorac. Soc. 2014, 11, 496–503. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, M.J.; Jary, H.R.; Perry, A.; MacFarlane, J.G.; Hester, K.L.; Small, T.; Molyneux, C.; Perry, J.D.; Walton, K.E.; de Soyza, A. Non cystic fibrosis bronchiectasis: A longitudinal retrospective observational cohort study of pseudomonas persistence and resistance. Respir. Med. 2015, 109, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Tunney, M.M.; Einarsson, G.G.; Wei, L.; Drain, M.; Klem, E.R.; Cardwell, C.; Ennis, M.; Boucher, R.C.; Wolfgang, M.C.; Elborn, J.S. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am. J. Respir. Crit. Care Med. 2013, 187, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Martinez, F.J.; Huffnagle, G.B. The role of the microbiome in exacerbations of chronic lung diseases. Lancet 2014, 384, 691–702. [Google Scholar] [CrossRef]
- Dicker, A.; Fong, C.; Crichton, M.; Cassidy, A.; Suarez-Cuartin, G.; Sibila, O.; Einarsson, G.; Ibrahim, W.; Elborn, S.; Palmer, N.; et al. Altered lung microbiota profiles are associated with disease severity, exacerbation frequency and neutrophilic inflammation in bronchiectasis. Am. J. Respir. Crit. Care Med. 2016, 193, A2879. [Google Scholar]
- Cox, M.J.; Turek, E.M.; Hennessy, C.; Mirza, G.K.; James, P.L.; Coleman, M.; Jones, A.; Wilson, R.; Bilton, D.; Cookson, W.O.C.M.; et al. Longitudinal assessment of sputum microbiome by sequencing of the 16S rRNA gene in non-cf bronchiectasis patients. bioRxiv 2016. [Google Scholar] [CrossRef]
- Rogers, G.B.; Bruce, K.D.; Martin, M.L.; Burr, L.D.; Serisier, D.J. The effect of long-term macrolide treatment on respiratory microbiota composition in non-cystic fibrosis bronchiectasis: An analysis from the randomised, double-blind, placebo-controlled bless trial. Lancet Respir. Med. 2014, 2, 988–996. [Google Scholar] [CrossRef]
- Aliberti, S.; Lonni, S.; Dore, S.; McDonnell, M.J.; Goeminne, P.C.; Dimakou, K.; Fardon, T.C.; Rutherford, R.; Pesci, A.; Restrepo, M.I.; et al. Clinical phenotypes in adult patients with bronchiectasis. Eur. Respir. J. 2016, 47, 1113–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Garcia, M.A.; Vendrell, M.; Giron, R.; Maiz-Carro, L.; de la Rosa Carrillo, D.; de Gracia, J.; Olveira, C. The multiple faces of non-cystic fibrosis bronchiectasis: A cluster analysis approach. Ann. Am. Thorac. Soc. 2016, 13, 1468–1475. [Google Scholar] [CrossRef] [PubMed]
- Sibila, O.; Garcia-Bellmunt, L.; Giner, J.; Rodrigo-Troyano, A.; Suarez-Cuartin, G.; Torrego, A.; Castillo, D.; Solanes, I.; Mateus, E.F.; Vidal, S.; et al. Airway Mucin 2 is decreased in patients with severe COPD patients with bacterial colonization. Ann. Am. Thorac. Soc. 2016, 13, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Sibila, O.; Suarez-Cuartin, G.; Rodrigo-Troyano, A.; Fardon, T.C.; Finch, S.; Mateus, E.F.; Garcia-Bellmunt, L.; Castillo, D.; Vidal, S.; Sanchez-Reus, F.; et al. Secreted mucins and airway bacterial colonization in non-cf bronchiectasis. Respirology 2015, 20, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Agusti, A.; Calverley, P.M.; Celli, B.; Coxson, H.O.; Edwards, L.D.; Lomas, D.A.; MacNee, W.; Miller, B.E.; Rennard, S.; Silverman, E.K.; et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir. Res. 2010, 11, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Garcia, M.A.; Soler-Cataluna, J.J.; Donat Sanz, Y.; Catalan Serra, P.; Agramunt Lerma, M.; Ballestin Vicente, J.; Perpina-Tordera, M. Factors associated with bronchiectasis in patients with copd. Chest 2011, 140, 1130–1137. [Google Scholar] [PubMed]
- Gallego, M.; Pomares, X.; Espasa, M.; Castañer, E.; Solé, M.; Suárez, D.; Monsó, E.; Montón, C. Pseudomonas aeruginosaisolates in severe chronic obstructive pulmonary disease: Characterization and risk factors. BMC Pulm. Med. 2014, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Patel, I.S.; Vlahos, I.; Wilkinson, T.M.; Lloyd-Owen, S.J.; Donaldson, G.C.; Wilks, M.; Reznek, R.H.; Wedzicha, J.A. Bronchiectasis, exacerbation indices, and inflammation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2004, 170, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.W.; Kong, K.A.; Lee, J.H.; Lee, S.J.; Ryu, Y.J.; Chang, J.H. Characteristics and self-rated health of overlap syndrome. Int. J. COPD 2014, 9, 795–804. [Google Scholar]
- Quittner, A.L.; O’Donnell, A.E.; Salathe, M.A.; Lewis, S.A.; Li, X.; Montgomery, A.B.; O’Riordan, T.G.; Barker, A.F. Quality of life questionnaire-bronchiectasis: Final psychometric analyses and determination of minimal important difference scores. Thorax 2015, 70, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Goeminne, P.; Aliberti, S.; McDonnell, M.J.; Lonni, S.; Davidson, J.; Poppelwell, L.; Salih, W.; Pesci, A.; Dupont, L.J.; et al. The bronchiectasis severity index. An international derivation and validation study. Am. J. Respir. Crit. Care Med. 2014, 189, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.A.; de Gracia, J.; Vendrell Relat, M.; Giron, R.M.; Maiz Carro, L.; de la Rosa Carrillo, D.; Olveira, C. Multidimensional approach to non-cystic fibrosis bronchiectasis: The faced score. Eur. Respir. J. 2014, 43, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, M.J.; Aliberti, S.; Goeminne, P.C.; Dimakou, K.; Zucchetti, S.C.; Davidson, J.; Ward, C.; Laffey, J.G.; Finch, S.; Pesci, A.; et al. Multidimensional severity assessment in bronchiectasis: An analysis of seven European cohorts. Thorax 2016. [Google Scholar] [CrossRef] [PubMed]
- Ellis, H.C.; Cowman, S.; Fernandes, M.; Wilson, R.; Loebinger, M.R. Predicting mortality in bronchiectasis using bronchiectasis severity index and faced scores: A 19-year cohort study. Eur. Respir. J. 2016, 47, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.L.; Burge, A.T.; Holland, A.E. Airway clearance techniques for bronchiectasis. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.L.; Hill, C.J.; McDonald, C.F.; Holland, A.E. Pulmonary Rehabilitation in Individuals with Non-Cystic Fibrosis Bronchiectasis: A Systematic Review. Arch. Phys. Med. Rehabil. 2016. [Google Scholar] [CrossRef] [PubMed]
- Altenburg, J.; de Graaff, C.S.; van der Werf, T.S.; Boersma, W.G. Immunomodulatory effects of macrolide antibiotics—Part 2: Advantages and disadvantages of long-term, low-dose macrolide therapy. Respiration 2011, 81, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Jayaram, L.; Karalus, N.; Eaton, T.; Tong, C.; Hockey, H.; Milne, D.; Fergusson, W.; Tuffery, C.; Sexton, P.; et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (embrace): A randomised, double-blind, placebo-controlled trial. Lancet 2012, 380, 660–667. [Google Scholar] [CrossRef]
- Altenburg, J.; de Graaff, C.S.; Stienstra, Y.; Sloos, J.H.; van Haren, E.H.; Koppers, R.J.; van der Werf, T.S.; Boersma, W.G. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: The bat randomized controlled trial. JAMA 2013, 309, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Serisier, D.J.; Martin, M.L.; McGuckin, M.A.; Lourie, R.; Chen, A.C.; Brain, B.; Biga, S.; Schlebusch, S.; Dash, P.; Bowler, S.D. Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: The bless randomized controlled trial. JAMA 2013, 309, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Valery, P.C.; Morris, P.S.; Byrnes, C.A.; Grimwood, K.; Torzillo, P.J.; Bauert, P.A.; Masters, I.B.; Diaz, A.; McCallum, G.B.; Mobberley, C.; et al. Long-term azithromycin for indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease (bronchiectasis intervention study): A multicentre, double-blind, randomised controlled trial. Lancet Respir. Med. 2013, 1, 610–620. [Google Scholar] [CrossRef]
- Gao, Y.H.; Guan, W.J.; Xu, G.; Tang, Y.; Gao, Y.; Lin, Z.Y.; Lin, Z.M.; Zhong, N.S.; Chen, R.C. Macrolide therapy in adults and children with non-cystic fibrosis bronchiectasis: A systematic review and meta-analysis. PLoS ONE 2014, 9, e90047. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Shen, W.; Cheng, H.; Zhou, X. Long-term macrolides for non-cystic fibrosis bronchiectasis: A systematic review and meta-analysis. Respirology 2014, 19, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhong, X.; He, Z.; Wei, L.; Zheng, X.; Zhang, J.; Bai, J.; Zhong, W.; Zhong, D. Effect of low-dose, long-term roxithromycin on airway inflammation and remodeling of stable noncystic fibrosis bronchiectasis. Mediat. Inflamm. 2014, 2014, 708608. [Google Scholar] [CrossRef] [PubMed]
- Ray, W.A.; Murray, K.T.; Hall, K.; Arbogast, P.G.; Stein, C.M. Azithromycin and the risk of cardiovascular death. N. Engl. J. Med. 2012, 366, 1881–1890. [Google Scholar] [CrossRef] [PubMed]
- Svanstrom, H.; Pasternak, B.; Hviid, A. Use of azithromycin and death from cardiovascular causes. N. Engl. J. Med. 2013, 368, 1704–1712. [Google Scholar] [CrossRef] [PubMed]
- Mosholder, A.D.; Mathew, J.; Alexander, J.J.; Smith, H.; Nambiar, S. Cardiovascular risks with azithromycin and other antibacterial drugs. N. Engl. J. Med. 2013, 368, 1665–1668. [Google Scholar] [CrossRef] [PubMed]
- Albert, R.K.; Schuller, J.L.; Network, C.C.R. Macrolide antibiotics and the risk of cardiac arrhythmias. Am. J. Respir. Crit. Care Med. 2014, 189, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Serisier, D.J. Risks of population antimicrobial resistance associated with chronic macrolide use for inflammatory airway diseases. Lancet Respir. Med. 2013, 1, 262–274. [Google Scholar] [CrossRef]
- Hare, K.M.; Leach, A.J.; Morris, P.S.; Smith-Vaughan, H.; Torzillo, P.; Bauert, P.; Cheng, A.C.; McDonald, M.I.; Brown, N.; Chang, A.B.; et al. Impact of recent antibiotics on nasopharyngeal carriage and lower airway infection in Indigenous Australian children with non-cystic fibrosis bronchiectasis. Int. J. Antimicrob. Agents 2012, 40, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.T. Macrolides for Clinically Significant Bronchiectasis in Adults: Who Should Receive this Treatment? Chest 2016. [Google Scholar] [CrossRef] [PubMed]
- Brodt, A.M.; Stovold, E.; Zhang, L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: A systematic review. Eur. Respir. J. 2014, 44, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.P.; Govan, J.R.; Doherty, C.J.; Simpson, A.J.; Wilkinson, T.S.; Chalmers, J.D.; Greening, A.P.; Haslett, C.; Hill, A.T. A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 2011, 183, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.F.; Couch, L.; Fiel, S.B.; Gotfried, M.H.; Ilowite, J.; Meyer, K.C.; O’Donnell, A.; Sahn, S.A.; Smith, L.J.; Stewart, J.O.; et al. Tobramycin solution for inhalation reduces sputum pseudomonas aeruginosa density in bronchiectasis. Am. J. Respir. Crit. Care Med. 2000, 162, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Scheinberg, P.; Shore, E. A pilot study of the safety and efficacy of tobramycin solution for inhalation in patients with severe bronchiectasis. Chest 2005, 127, 1420–1426. [Google Scholar] [CrossRef]
- Drobnic, M.E.; Sune, P.; Montoro, J.B.; Ferrer, A.; Orriols, R. Inhaled tobramycin in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection with pseudomonas aeruginosa. Ann. Pharmacother. 2005, 39, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Hoppentocht, M.; Akkerman, O.W.; Hagedoorn, P.; Alffenaar, J.W.; van der Werf, T.S.; Kerstjens, H.A.; Frijlink, H.W.; de Boer, A.H. Tolerability and pharmacokinetic evaluation of inhaled dry powder tobramycin free base in non-cystic fibrosis bronchiectasis patients. PLoS ONE 2016, 11, e0149768. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Welte, T.; Polverino, E.; de Soyza, A.; Greville, H.; O’Donnell, A.; Alder, J.; Reimnitz, P.; Hampel, B. Ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis: A phase ii randomised study. Eur. Respir. J. 2013, 41, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Serisier, D.J.; Bilton, D.; de Soyza, A.; Thompson, P.J.; Kolbe, J.; Greville, H.W.; Cipolla, D.; Bruinenberg, P.; Gonda, I.; ORBIT-2 Investigators. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (orbit-2): A randomised, double-blind, placebo-controlled trial. Thorax 2013, 68, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.S.; Foweraker, J.E.; Wilkinson, P.; Kenyon, R.F.; Bilton, D. Inhaled colistin in patients with bronchiectasis and chronic pseudomonas aeruginosa infection. Am. J. Respir. Crit. Care Med. 2014, 189, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.F.; O’Donnell, A.E.; Flume, P.; Thompson, P.J.; Ruzi, J.D.; de Gracia, J.; Boersma, W.G.; de Soyza, A.; Shao, L.; Zhang, J.; et al. Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): Two randomised double-blind, placebo-controlled phase 3 trials. Lancet Respir. Med. 2014, 2, 738–749. [Google Scholar] [CrossRef]
- Hart, A.; Sugumar, K.; Milan, S.J.; Fowler, S.J.; Crossingham, I. Inhaled hyperosmolar agents for bronchiectasis. Cochrane Database Syst. Rev. 2014, 5, CD002996. [Google Scholar]
- Bilton, D.; Tino, G.; Barker, A.F.; Chambers, D.C.; de Soyza, A.; Dupont, L.J.; O’Dochartaigh, C.; van Haren, E.H.; Vidal, L.O.; Welte, T.; et al. Inhaled mannitol for non-cystic fibrosis bronchiectasis: A randomised, controlled trial. Thorax 2014, 69, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.; Sugumar, K.; Milan, S.J.; Hart, A.; Crockett, A.; Crossingham, I. Mucolytics for bronchiectasis. Cochrane Database Syst. Rev. 2014, 5, CD001289. [Google Scholar]
- Stockley, R.; de Soyza, A.; Gunawardena, K.; Perrett, J.; Forsman-Semb, K.; Entwistle, N.; Snell, N. Phase ii study of a neutrophil elastase inhibitor (azd9668) in patients with bronchiectasis. Respir. Med. 2013, 107, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Hothersall, E.; McSharry, C.; Thomson, N.C. Potential therapeutic role for statins in respiratory disease. Thorax 2006, 61, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.; Chalmers, J.; Graham, C.; Harley, C.; Sidhu, M.; Doherty, C.; Govan, J.W.; Sethi, T.; Davidson, D.J.; Rossi, A.G.; et al. Atorvastatin as a stable treatment in bronchiectasis: A randomized controlled trial. Lancet Respir. Med. 2014, 2, 455–463. [Google Scholar] [CrossRef]
- De Soyza, A.; Pavord, I.; Elborn, J.S.; Smith, D.; Wray, H.; Puu, M.; Larsson, B.; Stockley, R. A randomised, placebo-controlled study of the cxcr2 antagonist azd5069 in bronchiectasis. Eur. Respir. J. 2015, 46, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Aliberti, S.; Masefield, S.; Polverino, E.; de Soyza, A.; Loebinger, M.R.; Menendez, R.; Ringshausen, F.C.; Vendrell, M.; Powell, P.; Chalmers, J.D.; et al. Research priorities in bronchiectasis: A consensus statement from the embarc clinical research collaboration. Eur. Respir. J. 2016, 48, 632–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bronchiectasis Severity Index (BSI) Criteria | 0 Point | 1 Point | 2 Points | 3 Points | 4 Points | 5 Points | 6 Points | FACED Bronchiectasis Severity Criteria | 0 Point | 1 Point | 2 Points |
---|---|---|---|---|---|---|---|---|---|---|---|
FEV1 % predicted | >80% | 50%–80% | 30%–49% | <30% | - | - | - | FEV1 % predicted | >50% | - | ≤50% |
Age (years) | <50 | - | 50–69 | - | 70–79 | - | >80 | Age (years) | ≤70 | - | >70 |
Colonisation | No | Chronic colonisation with any organism | - | P. aeruginosa colonisation | - | - | - | Colonisation | No P. aeruginosa | Presence of P. aeruginosa | - |
Radiology: extension | <3 lobes | ≥3 lobes or cystic changes | - | - | - | - | - | Extension | 0–2 | >2 lobe | |
Dyspnoea score (MRC) | 1–3 | - | 4 | 5 | - | - | - | Dyspnoea score (MRC) | 1–2 | 3–4 | - |
BMI kg/m2 | ≥18.5 | - | <18.5 | - | - | - | - | - | - | - | |
Exacerbations in the last 12 months | 0–2 | - | ≥3 | - | - | - | - | - | - | - | - |
Hospital admissions in the last 2 years | No | - | - | - | - | Yes | - | - | - | - | - |
BSI Score: Mild bronchiectasis:
| FACED Score: Mild: 0–2 points: 5-year mortality 4.3% Moderate: 3–4 points : 5-year mortality 24.7% Severe: 5–7 points: 5-year mortality 55.9% |
Macrolide RCT | Regimen | n | Duration | Exacerbation Rate Ratio (95% CI) | QoL (SGRQ) Mean Difference (95% CI) | FEV1 (L or % Predicted) Mean Difference (95% CI) | Adverse Effects |
---|---|---|---|---|---|---|---|
Azithromycin | 500 mg 3 times a/week; EMBRACE [40] | 141 | 6 mths treatment, 6 mths followup | 0.38 (0.26, 0.54); p < 0.0001 | –3.25 (–7.21, 0.72); NS | 0.04 L (−0.03, 0.12); NS | Mild GI p = 0.005 |
Adult | 250 mg daily; BAT [41] | 83 | 12 | Hazard ratio = 0.29 (0.16, 0.51) | −2.06 (−11.1, 7.01); NS | −3.66 L (−14.78, 7.46); NS | Diarrhoea |
Child | 30 mg/kg once a week; BIS [43] | 88 | 24 | 0.50 (0.35–0.71); p < 0.0001 | NA | NA | NS |
Erythromycin | 400 mg ethylsuccinate twice daily; BLESS [42] | ||||||
Adult | 117 | 12 | 0.57 (0.42, 0.77); p = 0.003 | −5.3 (−12.6, 2.1); NS | 2.2% predicted (0.1%, 4.3%); p = 0.04 | NS | |
Roxithromycin Adult | 150 mg daily; [46] Open label | 52 | 6 mths | Delayed time to first exacerbation 264 vs. 113 days (p = 0.022) | NA | NA | Mild nausea |
Inhaled Antibiotic Adult RCT | Regimen & Delivery | n | Duration | Main Findings | Adverse Effects |
---|---|---|---|---|---|
Gentamicin | 80 mg BD via jet nebuliser [55] | 65 | 12 months | Greater reduction in sputum bacterial density (log10 CFU/g) | Broncho-Spasm |
Less sputum purulence | |||||
Greater exercise capacity | |||||
Fewer exacerbations | |||||
Increased time to first exacerbation | |||||
Greater improvements in Leicester Cough Questionnaire & SGRQ | |||||
No significant differences in 24 h sputum volume, FEV1, FVC, FEF | |||||
Colistin | 1 million IU BD via I-neb AAD system, administered within 21 days of completing a course of anti-pseudomonal antibiotics [62] | 144 | 6 months | No significant differences in time to first exacerbation in ITT population Increased time to first exacerbation in adherent patients | NS |
Greater decrease in sputum P. aeruginosa density (log10 CFU/g) | |||||
Significant improvement in SGRQ | |||||
No significantly increased P. aeruginosa resistance | |||||
No significant differences in FEV1 | |||||
Ciprofloxacin | 32.5 mg BD via dry powder inhalation (RESPIRE 1) [60] | 124 | 4 weeks | Greater reduction in sputum bacterial density (log10 CFU/g) | NS |
Increased sputum pathogen eradication rate at the end of treatment | |||||
No significant differences in FEV1 % pred, FVC, SGRQ | |||||
Liposomal ciprofloxacin 150 mg + free ciprofloxacin 60 mg daily via PARI LC sprint nebuliser over 3 treatment cycles of alternate 28 days “on” and 28 days “off” (ORBIT 2) [61] | 42 | 6 months | Greater decrease in sputum P. aeruginosa density (log10 CFU/g) | NS | |
Increased time to first exacerbation | |||||
No significant differences in FEV1, SGRQ, 6MWT distance | |||||
Greater reduction in sputum Gram-negative bacterial density (log10 CFU/g), but increasing towards baseline during off-treatment periods | |||||
Aztreonam | 75 mg TDS via eFlow nebuliser over 2 treatment cycles of alternate 28 days “on” and 28 days “off” (AIRBX1 & 2) [63] | 540 | 4 months | No difference in quality of life measured by Quality of Life-Bronchiectasis Respiratory Symptoms scores (QoL-B-RSS) | Dyspnea, Cough, Increased sputum |
No improvement in exacerbation risk | |||||
Higher MIC for aztreonam for target Gram-negative bacteria after 4 weeks |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoo, J.K.; Venning, V.; Wong, C.; Jayaram, L. Bronchiectasis in the Last Five Years: New Developments. J. Clin. Med. 2016, 5, 115. https://doi.org/10.3390/jcm5120115
Khoo JK, Venning V, Wong C, Jayaram L. Bronchiectasis in the Last Five Years: New Developments. Journal of Clinical Medicine. 2016; 5(12):115. https://doi.org/10.3390/jcm5120115
Chicago/Turabian StyleKhoo, Jun Keng, Victoria Venning, Conroy Wong, and Lata Jayaram. 2016. "Bronchiectasis in the Last Five Years: New Developments" Journal of Clinical Medicine 5, no. 12: 115. https://doi.org/10.3390/jcm5120115
APA StyleKhoo, J. K., Venning, V., Wong, C., & Jayaram, L. (2016). Bronchiectasis in the Last Five Years: New Developments. Journal of Clinical Medicine, 5(12), 115. https://doi.org/10.3390/jcm5120115