In Vitro and In Vivo Effects of Gracilaria verrucosa Extracts on Osteoclast Differentiation
Abstract
:1. Introduction
2. Experimental Section
2.1. Extract of Gracilaria verrucosa
2.2. Cell Cultures and Osteoclast Differentiation
2.3. Cytotoxicity Assay for Extract of Gracilaria verrucosa
2.4. Tartrate-Resistant Acid Phosphatase Staining Assay
2.5. Western Blot Analysis
2.6. Real-Time PCR
2.7. Ovariectomized-Induced Bone Erosion
2.8. Statistical Analysis
3. Results
3.1. Extract of Gracilaria verrucosa Inhibits Osteoclast Differentiation from Macrophages
3.2. No Cytotoxic Effect of Extract of Gracilaria verrucosa on Macrophages
3.3. Extract of Gracilaria verrucosa Suppresses RANKL-Induced c-Fos and NFATc1 Expression
3.4. Effects of Extract of Gracilaria verrucosa on Serum Biochemical Markers in Ovariectomized Mice
3.5. Extract of Gracilaria verrucosa Inhibits Bone Loss in Ovariectomized Mice
4. Discussion
Supplementary material
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, M. Skeletal remodeling in health and disease. Nat. Med. 2007, 13, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Rodan, G.A.; Martin, T.J. Therapeutic approaches to bone diseases. Science 2000, 289, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature 2003, 423, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Suda, T.; Takahashi, N.; Udagawa, N.; Jimi, E.; Gillespie, M.T.; Martin, T.J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 1999, 20, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Hanada, R.; Hanada, T.; Sigl, V.; Schramek, D.; Penninger, J.M. RANKL/RANK-beyond bones. J. Mol. Med. 2011, 89, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Theill, L.E.; Boyle, W.J.; Penninger, J.M. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Ann. Rev. Immunol. 2002, 20, 795–823. [Google Scholar] [CrossRef] [PubMed]
- Galibert, L.; Tometsko, M.E.; Anderson, D.M.; Cosman, D.; Dougall, W.C. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J. Biol. Chem. 1998, 273, 34120–34127. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Kogawa, M.; Wada, S.; Takayanagi, H.; Tsujimoto, M.; Katayama, S.; Hisatake, K.; Nogi, Y. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J. Biol. Chem. 2004, 279, 45969–45979. [Google Scholar] [CrossRef] [PubMed]
- Minkin, C. Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif. Tissue Int. 1982, 34, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Miyamoto, T.; Toyama, Y.; Suda, T. Role of DC-STAMP in cellular fusion of osteoclasts and macrophage giant cells. J. Bone Miner. Metab. 2006, 24, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Kazłowski, B.; Chiu, Y.; Kazłowska, K.; Pan, C.; Wu, C. Prevention of Japanese encephalitis virus infections by low-degree-polymerisation sulfated saccharides from Gracilaria sp. and Monostroma nitidum. Food Chem. 2012, 133, 866–874. [Google Scholar] [CrossRef]
- Jang, Y.S.; Kim, B.; Shin, J.H.; Choi, Y.J.; Choi, S.; Song, C.W.; Lee, J.; Park, H.G.; Lee, S.Y. Bio-based production of C2–C6 platform chemicals. Biotechnol. Bioeng. 2012, 109, 2437–2459. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Yeon, J.T.; Choi, S.W.; Moon, S.H.; Ryu, B.J.; Yu, R.; Park, S.J.; Kim, S.H.; Son, Y.J. Decursin inhibits osteoclastogenesis by downregulating NFATc1 and blocking fusion of pre-osteoclasts. Bone 2015, 81, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Rozen, S.; Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 2000, 132, 365–386. [Google Scholar] [PubMed]
- Takayanagi, H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 2007, 7, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Feng, X. RANKing intracellular signaling in osteoclasts. IUBMB Life 2005, 57, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, H. The role of NFAT in osteoclast formation. Ann. N. Y. Acad. Sci. 2007, 1116, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Perkins, N.D. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol. 2007, 8, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, H.; Kim, S.; Koga, T.; Nishina, H.; Isshiki, M.; Yoshida, H.; Saiura, A.; Isobe, M.; Yokochi, T.; Inoue, J.; et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 2002, 3, 889–901. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S.H.; Ha Kim, J.; Choi, Y.; Kim, N. NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 2008, 22, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Jee, W.S.; Yao, W. Overview: Animal models of osteopenia and osteoporosis. J. Musculoskelet. Neuronal Interact. 2001, 1, 193–207. [Google Scholar] [PubMed]
- Kim, T.; Ha, H.; Shim, K.S.; Cho, W.K.; Ma, J.Y. The anti-osteoporotic effect of Yijung-tang in an ovariectomized rat model mediated by inhibition of osteoclast differentiation. J. Ethnopharmacol. 2013, 146, 83–89. [Google Scholar] [CrossRef] [PubMed]
Gene of Interest | Primer Sequence (5′→3′) | |
---|---|---|
Sense | Anti-Sense | |
NFATc1 | GGGTCAGTGTGACCGAAGAT | GGAAGTCAGAAGTGGGTGGA |
c-Fos | CCAGTCAAGAGCATCAGCAA | AAGTAGTGCAGCCCGGAGTA |
cathepsin K | GGCCAACTCAAGAAGAAAAC | GTGCTTGCTTCCCTTCTGG |
DC-STAMP | CCAAGGAGTCGTCCATGATT | GGCTGCTTTGATCGTTTCTC |
TRAP | GATGACTTTGCCAGTCAGCA | ACATAGCCCACACCGTTCTC |
GAPDH | AACTTTGGCATTGTGGAAGG | ACACATTGGGGGTAGGAACA |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-J.; Lee, Y.-J.; Hwang, Y.-H.; Kang, K.-Y.; Yee, S.-T.; Son, Y.-J. In Vitro and In Vivo Effects of Gracilaria verrucosa Extracts on Osteoclast Differentiation. J. Clin. Med. 2017, 6, 32. https://doi.org/10.3390/jcm6030032
Kim K-J, Lee Y-J, Hwang Y-H, Kang K-Y, Yee S-T, Son Y-J. In Vitro and In Vivo Effects of Gracilaria verrucosa Extracts on Osteoclast Differentiation. Journal of Clinical Medicine. 2017; 6(3):32. https://doi.org/10.3390/jcm6030032
Chicago/Turabian StyleKim, Kwang-Jin, Yong-Jin Lee, Yun-Ho Hwang, Kyung-Yun Kang, Sung-Tae Yee, and Young-Jin Son. 2017. "In Vitro and In Vivo Effects of Gracilaria verrucosa Extracts on Osteoclast Differentiation" Journal of Clinical Medicine 6, no. 3: 32. https://doi.org/10.3390/jcm6030032
APA StyleKim, K. -J., Lee, Y. -J., Hwang, Y. -H., Kang, K. -Y., Yee, S. -T., & Son, Y. -J. (2017). In Vitro and In Vivo Effects of Gracilaria verrucosa Extracts on Osteoclast Differentiation. Journal of Clinical Medicine, 6(3), 32. https://doi.org/10.3390/jcm6030032