Reliability of Using Motion Sensors to Measure Children’s Physical Activity Levels in Exergaming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Research Setting
2.2. Instruments
2.3. Procedures
2.4. Data Reduction and Analyses
3. Results
3.1. Descriptive Analysis
3.2. Intraclass Correlation Coefficient and Pearson Correlation
3.3. Hierarchical Linear Modeling
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Global Strategy on Diet, Physical Activity and Health. Available online: http://www.who.int/dietphysicalactivity/reducingsalt/en/ (accessed on 27 March 2016).
- Gao, Z.; Chen, S.; Stodden, D.F.A. Comparison of children’s physical activity levels in physical education, recess, and exergaming. J. Phys. Act. Health 2015, 12, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Sun, H. Exergaming impact on physical activity and interest in elementary school children. Res. Q. Exerc. Sport 2012, 83, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Graf, D.L.; Pratt, L.V.; Hester, C.N.; Short, K.R. Playing active video games increases energy expenditure in children. Pediatrics 2009, 124, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Lyons, E.J.; Tate, D.F.; Ward, D.S.; Bowling, J.M.; Ribisl, K.M.; Kalyararaman, S. Energy expenditure and enjoyment during video game play: Differences by game type. Med. Sci. Sports Exerc. 2011, 43, 1987–1993. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Chen, S. Are field-based exergames useful in preventing childhood obesity? A systematic review. Obes. Rev. 2014, 15, 676–691. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Chen, S.; Pasco, D.; Pope, Z. Effects of active video games on physiological and psychological outcomes among children and adolescents: A meta-analysis. Obes. Rev. 2015, 16, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhang, T.; Stodden, D. Children’s physical activity levels and their psychological correlated in interactive dance versus aerobic dance. J. Sport Health Sci. 2013, 2, 146–151. [Google Scholar] [CrossRef]
- Shayne, R.K.; Fogel, V.A.; Miltenberger, R.G.; Koehler, S. The effects of exergaming on physical activity in a third-grade physical education class. J. Appl. Behav. Anal. 2012, 45, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.; Stratton, G. A review of physical activity levels during elementary school physical education. J. Teach. Phys. Educ. 2006, 25, 240–258. [Google Scholar] [CrossRef]
- Christison, A.; Khan, H.A. Exergaming for health: A community based pediatric weight management program using active video gaming. Clin. Pediatr. 2012, 51, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.; Gao, Z. Exergaming and obesity in youth: Current perspectives. Int. J. Gen. Med. 2016, 9, 275. [Google Scholar] [PubMed]
- Hilton, C.L.; Cumpata, K.; Klohr, C.; Gaetke, S.; Artner, A.; Johnson, H.; Dobbs, S. Effects of exergaming on executive function and motor skills in children with autism spectrum disorder: A pilot study. Am. J. Occup. Ther. 2014, 68, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Benzing, V.; Schmidt, M. Cognitively and physically demanding exergaming to improve executive functions of children with attention deficit hyperactivity disorder: A randomised clinical trial. BMC Pediatr. 2017, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Sirard, J.R.; Pate, R.R. Physical activity assessment in children and adolescents. Sports Med. 2001, 31, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Liggett, L.; Gray, A.; Parnell, W.; McGee, R.; McKenzie, Y. Validation and reliability of the New Lifestyles NL-1000 accelerometer in New Zealand preschoolers. J. Phys. Act. Health 2012, 9, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F. Measuring physical activity: Practical approaches for program evaluation in Native American communities. J. Public Health Manag. Pract. 2010, 16, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Hannon, J.C.; Newton, M.; Huang, C. The effects of curricular activity on students’ situational motivation and physical activity levels. Res. Q. Exerc. Sport 2011, 82, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Pope, Z.; Lee, J.E.; Stodden, D.; Roncesvalles, N.; Pasco, D.; Huang, C.; Feng, D. Impact of exergaming on young children’s school day energy expenditure and moderate-to-vigorous physical activity levels. J. Sport Health Sci. 2017, 6, 11–16. [Google Scholar] [CrossRef]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Gorber, S.C. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56–80. [Google Scholar] [CrossRef] [PubMed]
- Steeves, J.A.; Tyo, B.M.; Connolly, C.P.; Gregory, D.A.; Stark, N.A.; Bassett, D.R. Validity and reliability of the Omron HJ-303 tri-axial accelerometer-based pedometer. J. Phys. Act. Health 2011, 8, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Ozemek, C.; Kirschner, M.M.; Wilkerson, B.S.; Byun, W.; Kaminsky, L.A. Intermonitor reliability of the GT3X+ accelerometer at hip, wrist and ankle sites during activities of daily living. Physiol. Meas. 2014, 35, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.J.; Schofield, G.; Duncan, E.K.; Hinckson, E.A. Effects of age, walking speed, and body composition on pedometer accuracy in children. Res. Q. Exerc. Sport 2007, 78, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.L.; Crouter, S.E.; Lukajic, O.; Bassett, J.D. Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Med. Sci. Sports Exerc. 2003, 35, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- ActiLife 6 Manual. Available online: http://actigraphcorp.com/support/manuals/actilife-6-manual/ (accessed on 30 March 2016).
- Lee, K.Y.; Macfarlane, D.J.; Cerin, E. Do three different generations of the actigraph accelerometer provide the same output? In Proceedings of the 57th American College of Sports Medicine Annual Meeting, Baltimore, MD, USA, 2–5 June 2010. [Google Scholar]
- Flynn, J.I.; Coe, D.P.; Larsen, C.A.; Rider, B.C.; Conger, S.A.; Bassett, J.D. Detecting indoor and outdoor environments using the ActiGraph GT3X light sensor in children. Med. Sci. Sports Exerc. 2014, 46, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Bryk, A.S.; Raudenbush, S.W. Hierarchical Linear Models; Sage: Newbury Park, CA, USA, 1992; pp. 347–396. [Google Scholar]
- Cheval, B.; Sarrazin, P.; Pelletier, L. Impulsive approach tendencies towards physical activity and sedentary behaviors, but not reflective intentions, prospectively predict non-exercise activity thermogenesis. PLoS ONE 2014, 9, e115238. [Google Scholar] [CrossRef] [PubMed]
- Nezlek, J.B. Multilevel random coefficient analyses of event and interval contingent data in social and personality psychology research. Pers. Soc. Psychol. Bull. 2001, 27, 771–785. [Google Scholar] [CrossRef]
- Beets, M.W.; Morgan, C.F.; Banda, J.A.; Bornstein, D.; Byun, W.; Mitchell, J.; Munselle, L.; Rooney, L.; Beighle, A.; Erwin, H. Convergent validity of pedometer and accelerometer estimates of moderate-to-vigorous physical activity of youth. J. Phys. Act. Health 2011, 8, 295–305. [Google Scholar] [CrossRef] [PubMed]
- McClain, J.J.; Sisson, S.B.; Washington, T.L.; Craig, C.L.; Tudor-Locke, C. Comparison of Kenz Lifecorder EX and ActiGraph accelerometers in 10-yr-old children. Med. Sci. Sports Exerc. 2007, 39, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Colley, R.C.; Harvey, A.; Grattan, K.P.; Adamo, K.B. Impact of accelerometer epoch length on physical activity and sedentary behavior outcomes for preschool-aged children. Health Rep. 2014, 25, 3–9. [Google Scholar] [PubMed]
- Appukutty, M.; Tanaka, C.; Tanaka, S. Physical activity measurements by 10 sec and 60 sec epoch length using triaxial accelerometer among elementary school children in Japan. Obes. Rev. 2014, 15, 244–248. [Google Scholar]
- Bailey, R.C.; Olson, J.O.D.I.; Pepper, S.L.; Porszasz, J.A.N.O.S.; Barstow, T.J.; Cooper, D.M. The level and tempo of children’s physical activities: An observational study. Med. Sci. Sports Exerc. 1995, 27, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.; Takken, T.; Esliger, D.W.; Pullenayegum, E.; Beyene, J.; Tremblay, M.; Schneiderman, J.; Biggar, D.; Longmuir, P.; McCrindle, B.; et al. Validation of accelerometer prediction equations in children with chronic disease. Pediatr. Exerc. Sci. 2016, 28, 117–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, C.; Kenyon, A.; McEvoy, M.; Sprod, J. The reliability and validity of a research-grade pedometer for children and adolescents with cerebral palsy. Dev. Med. Child Neurol. 2013, 55, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, A.; McEvoy, M.; Sprod, J.; Maher, C. Validity of pedometers in people with physical disabilities: A systematic review. Arch. Phys. Med. Rehabil. 2013, 94, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Mcclain, J.J.; Abraham, T.L.; Brusseau, J.T.; Tudor-Locke, C. Epoch length and accelerometer outputs in children: Comparison to direct observation. Med. Sci. Sports Exerc. 2008, 40, 2080–2087. [Google Scholar] [CrossRef] [PubMed]
- Clemes, S.A.; O’Connell, S.; Rogan, L.M.; Griffiths, P.L. Evaluation of a commercially available pedometer used to promote physical activity as part of a national programme. Br. J. Sports Med. 2009, 44, 1178–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClain, J.J.; Hart, T.L.; Getz, R.S.; Tudor-Locke, C. Convergent validity of 3 low cost motion sensors with the ActiGraph accelerometer. J. Phys. Act. Health 2010, 7, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, T.I.; Tennant, P.W.; McParlin, C.; Poston, L.; Robson, S.C.; Bell, R. Agreement between pedometer and accelerometer in measuring physical activity in overweight and obese pregnant women. BMC Public Health 2011, 11, 501–510. [Google Scholar] [CrossRef] [PubMed]
Variable | Steps per Min | Sedentary (Min) | Light PA (Min) | MVPA (Min) | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Day 1 | 23.22 | 15.32 | 9.69 | 3.61 | 3.35 | 1.72 | 2.39 | 2.09 |
Day 2 | 36.65 | 26.25 | 9.01 | 3.92 | 3.73 | 2.20 | 3.37 | 3.21 |
Day 3 | 38.40 | 25.21 | 10.39 | 4.3 | 4.26 | 2.45 | 3.31 | 2.90 |
Day 4 | 38.40 | 27.04 | 9.61 | 4.23 | 4.64 | 2.59 | 3.38 | 2.67 |
Day 5 | 42.26 | 25.24 | 8.95 | 3.70 | 4.70 | 2.55 | 3.73 | 2.94 |
Day 6 | 42.24 | 26.22 | 9.59 | 4.45 | 5.18 | 2.26 | 3.95 | 2.71 |
Day 7 | 38.64 | 23.13 | 9.61 | 4.53 | 5.23 | 2.36 | 3.70 | 2.67 |
Day 8 | 40.28 | 25.74 | 10.08 | 4.69 | 5.44 | 2.37 | 3.71 | 2.53 |
Day 9 | 37.57 | 24.88 | 9.98 | 4.56 | 5.22 | 2.56 | 3.69 | 2.46 |
Day 10 | 39.41 | 27.13 | 10.77 | 4.12 | 5.33 | 2.66 | 3.44 | 2.54 |
Day 11 | 40.85 | 25.28 | 10.56 | 4.46 | 5.46 | 2.45 | 3.25 | 2.49 |
Day 12 | 39.19 | 24.37 | 10.47 | 4.37 | 5.23 | 2.67 | 3.32 | 2.53 |
Day 13 | 38.75 | 23.35 | 10.73 | 4.33 | 5.28 | 2.60 | 3.39 | 2.81 |
Day 14 | 37.85 | 23.01 | 10.40 | 3.56 | 5.40 | 2.26 | 3.20 | 2.16 |
Day 15 | 40.29 | 24.17 | 10.89 | 3.95 | 5.46 | 2.50 | 3.19 | 2.41 |
Day 16 | 40.34 | 25.48 | 10.93 | 4.02 | 5.95 | 2.66 | 3.46 | 2.51 |
Day 17 | 36.12 | 20.82 | 11.34 | 4.313 | 5.41 | 2.58 | 3.15 | 2.14 |
Day 18 | 41.60 | 24.58 | 9.94 | 4.17 | 5.68 | 2.81 | 3.48 | 2.59 |
Day 19 | 49.06 | 29.94 | 9.64 | 4.42 | 6.10 | 3.04 | 3.87 | 2.78 |
Day 20 | 47.52 | 27.80 | 9.26 | 3.90 | 5.60 | 1.94 | 3.50 | 2.13 |
Day 21 | 47.50 | 30.26 | 9.10 | 3.96 | 5.64 | 2.96 | 3.69 | 2.67 |
IC | 95% CI | F Test with True Value 0 | ||||||
---|---|---|---|---|---|---|---|---|
LB | UB | Value | df1 | df2 | Sig. | |||
GT3X | Single | 0.033 a | 0.014 | 0.059 | 1.450 | 185 | 2220 | 0.000 |
Average | 0.310 c | 0.155 | 0.448 | 1.450 | 185 | 2220 | 0.000 | |
NL-1000 | Single | 0.199 a | 0.153 | 0.260 | 7.692 | 97 | 2522 | 0.000 |
Average | 0.870 c | 0.830 | 0.904 | 7.692 | 97 | 2522 | 0.000 |
Fixed Effect | Coefficient | Standard Error | t-Ratio | Approx. d.f. | p Value |
---|---|---|---|---|---|
For INTRCPT1, ψ0 For INTRCPT2, π00 | - | - | - | - | - |
- | - | - | - | - | |
INTRCPT3, β000 For SEX, π01 | 0.072128 | 0.030573 | 2.359 | 19 | 0.029 |
INTRCPT3, β010 For AGE, π02 | −0.000908 | 0.011431 | −0.079 | 343 | 0.937 |
INTRCPT3, β020 For RACE1, π03 | −0.006521 | 0.003386 | −1.926 | 343 | 0.055 |
INTRCPT3, β030 For DAY slope, ψ1 For INTRCPT2, π10 | 0.032761 | 0.008744 | 3.747 | 343 | <0.001 |
INTRCPT3, β100 For TIME slope, ψ2 For INTRCPT2, π20 | −0.002019 | 0.000476 | −4.24 | 5625 | <0.001 |
INTRCPT3, β200 For SPM slope, ψ3 For INTRCPT2, π30 | 0.004824 | 0.001595 | 3.024 | 5625 | 0.003 |
INTRCPT3, β300 | 0.001793 | 0.000145 | 12.38 | 5625 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, N.; Gao, X.; Liu, Y.; Lee, J.E.; Gao, Z. Reliability of Using Motion Sensors to Measure Children’s Physical Activity Levels in Exergaming. J. Clin. Med. 2018, 7, 100. https://doi.org/10.3390/jcm7050100
Zeng N, Gao X, Liu Y, Lee JE, Gao Z. Reliability of Using Motion Sensors to Measure Children’s Physical Activity Levels in Exergaming. Journal of Clinical Medicine. 2018; 7(5):100. https://doi.org/10.3390/jcm7050100
Chicago/Turabian StyleZeng, Nan, Xingyuan Gao, Yuanlong Liu, Jung Eun Lee, and Zan Gao. 2018. "Reliability of Using Motion Sensors to Measure Children’s Physical Activity Levels in Exergaming" Journal of Clinical Medicine 7, no. 5: 100. https://doi.org/10.3390/jcm7050100
APA StyleZeng, N., Gao, X., Liu, Y., Lee, J. E., & Gao, Z. (2018). Reliability of Using Motion Sensors to Measure Children’s Physical Activity Levels in Exergaming. Journal of Clinical Medicine, 7(5), 100. https://doi.org/10.3390/jcm7050100