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Abstract: Objectives: This study examined the reliability of two objective measurement tools in
assessing children’s physical activity (PA) levels in an exergaming setting. Methods: A total of
377 children (190 girls, Mage = 8.39, SD = 1.55) attended the 30-min exergaming class every other
day for 18 weeks. Children’s PA levels were concurrently measured by NL-1000 pedometer and
ActiGraph GT3X accelerometer, while children’s steps per min and time engaged in sedentary,
light, and moderate-to-vigorous PA were estimated, respectively. Results: The results of intraclass
correlation coefficient (ICC) indicated a low degree of reliability (single measures ICC = 0.03) in
accelerometers. ANOVA did detect a possible learning effect for 27 classes (p < 0.01), and the single
measures ICC was 0.20 for pedometers. Moreover, there was no significant positive relationship
between steps per min and time spent in moderate-to-vigorous physical activity (MVPA). Finally,
only 1.3% variance was explained by pedometer as a predictor using Hierarchical Linear Modeling
to further explore the relationship between pedometer and accelerometer data. Conclusions:
The NL-1000 pedometers and ActiGraph GT3X accelerometers have low reliability in assessing
elementary school children’s PA levels during exergaming. More research is warranted in determining
the reliable and accurate measurement information regarding the use of modern devices in
exergaming setting.
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1. Introduction

Prevalence of insufficient physical activity (PA) among children and adolescents serves as
a major contributor to non-communicable diseases such as obesity, depression, Type II diabetes,
and cardiovascular diseases [1]. As such, a call has been made to gather effective methods of promoting
more PA among children in the hopes of maintaining PA participation into adolescence and adulthood.
One such method to promote PA levels among children is exergaming (also known as active video
games). Exergaming is an emerging technology that requires the players to be physically active
while providing performers with the opportunity for health enhancement, thereby thwarting the
perception of videogame playing is always sedentary [2]. Compared with traditional PA, exergaming
is often perceived as motivating and fun among children because it makes an attractive option in
the quest to promote an active and healthy lifestyle within the school settings [3]. Previous studies
have found exergaming is a feasible means for children to engage in higher amounts of PA [4,5],
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and thus exergaming has been integrated into school-based programs to promote children’s PA [6–10].
In addition, exergaming has been utilized for clinical purposes such as pediatric weight management,
and improvement on executive functions of children with autism spectrum disorder and with attention
deficit hyperactivity disorder (ADHD) [11–14]. Evidence has shown that exergaming has the potential
to serve as an important addition to therapies for children with such conditions. As exergaming is
becoming more popular in pediatric clinical setting, valid methods of assessing PA levels in children
are critical to understanding the relationship between PA intervention and health promotion.

Nowadays, numerous techniques exist for measuring PA. These techniques can be grouped as
observation, self-reported instruments, and motion sensors. Although direct observation is considered
a gold standard in measuring PA [15], this may not be feasible in many situations because of expectancy
bias, observation effect, and even privacy issues on participants [16]. In addition, self-reported
instruments such as questionnaire is recommended not to be used in children below the age of 10 or
11 years, because these children do not have the required cognitive skills which may lead them to
over-report their PA levels [17]. Consequently, objective assessment tools such as motion sensors are
increasingly being used to assess PA levels in children.

More recently, pedometers and accelerometers have been widely used in assessing children’s
PA levels in exergaming settings. For instance, Gao and colleagues [8] used NL-1000 pedometers to
monitor children’s step counts and moderate-to-vigorous PA (MVPA) in Dance Dance Revolution
(DDR). In addition, a number of studies measured children’s energy expenditure (EE) and time spent
in sedentary, light PA, and MVPA utilizing Actigraph GT1M and ActiGraph GT3X accelerometers
during exergaming [2,18,19]. These devices are more advantageous because they are not dependent
upon individual’s memory, whereas self-reported instruments rely heavily on personal memory to
judge the intensity, duration, and frequency of PA. More specifically, pedometers and accelerometers
are capable of providing explicit information on the total accumulated quantity of EE and pattern
of PA performed throughout the course of the day. As a result, pedometers and accelerometers are
perceived more accurate and less subjective as compared to traditional self-reported instruments such
as questionnaires and PA logs [20].

In fact, motion sensors have been proven to be reliable in some PA settings. For example, Steeves
and colleagues [21] indicated that Omron HJ-303 Pedometer was trustworthy during treadmill running
and walking, while the evidence of reliability on GT3X accelerometer was found in assessing activities
of daily living [22]. Although many studies have attempted to assess children’s PA levels utilizing
pedometers and accelerometers, comparatively little attention is paid to the reliability of using such
motion sensors in exergaming settings. To the best of our knowledge, there has been no work on
proving reliability of using these motion sensors to measure children’s PA levels during exergaming.
Without the evidence of fidelity on these measures, it is difficult to draw conclusions regarding the
effectiveness of exergames-based PA interventions. We believe objectively and accurately quantifying
the amount of PA in exergaming is important because it will help us better understand the effectiveness
of exergames on children’s behavior and health outcomes. Therefore, the purpose of this study was to
examine the reliability of using two popular PA monitors (NL-1000 pedometer and ActiGraph GT3X
accelerometer) in assessing healthy elementary school children’s PA levels during exergaming.

2. Materials and Methods

2.1. Participants and Research Setting

A total of 377 (190 girls, 187 boys) first through fourth grade children (aged 6–11 years, Mage = 8.39,
SD = 1.55) enrolled in a suburban Title I elementary school in West region of the United States.
Participants attended two structured PA programs for 150 min every week (30 min × 5 school days).
The two PA programs consisted of three 30-min physical education (PE) and two 30-min exergaming
classes in the first week (i.e., children went to PE classes on Monday, Wednesday, Friday, and attended
exergaming classes on Tuesday and Thursday). In the second week, students played 30-min exergames
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on Monday, Wednesday, and Friday, and participated in 30-min PE classes on Tuesday and Thursday.
The third and fourth week repeated the process of the first two weeks. That is, students were offered
equal numbers of PE and exergaming classes every month. This PA pattern was employed throughout
the duration of the 18 weeks at school. Children from 20 classes attended the programs with class as the
unit. The class size ranged from 17 to 22. The specific inclusion criteria for this study were (1) children
were first through fourth grade and aged 6–11 years, (2) without a diagnosed physical or mental
disability according to school records, and (3) with parental consent and child assent. Participants in
this population were selected because this age range is a critical period for children to develop and
maintain a physically active lifestyle.

In this study, children’s PA behaviors only during exergaming were included to determine the
reliability of motion sensors in assessing PA. Twelve exergaming stations were set up in a classroom,
each station was equipped with eight different Wii exergames including, but not limited to: Wii Fit,
Wii Cardio Workout, Just Dance, and Wii Sports. The children were instructed to learn how to
play these games prior to the testing (e.g., imitate the movement projected by on-screen avatars).
The selected exergames are school-age appropriate that require a variety of body movements such
as jumping, kicking, punching, and ducking. A trained teacher supervised the children during
exergaming. Each station accommodated up to two children to play, and children rotated from one
station to another station and every 8–10 min allowing for a short duration transition. As such,
all children in one class had the opportunity to play exergaming simultaneously, and were also able
to play different exergames during the program. Prior to initiating data collection, The University
Institutional Review Board approved the study protocol and informed consent forms were obtained
from guardians and children.

2.2. Instruments

The NL-1000 pedometer. The NL-1000 (New Lifestyles Inc., Lee’s Summit, MO, USA) is an
advanced waist-worn pedometer that uses a piezoelectric sensor to quantify daily step counts,
track the intensity of each step and displaying intensity as MVPA time accumulation [19]. The data of
steps and MVPA time can be read directly from the screen, meaning that no downloading or cleaning
of data is required. The NL-1000 has been shown to accurately detect steps taken in both laboratory
and free-living settings for children [23,24]. In this study, the pedometer data were captured during
monitoring period, and steps per min (step counts/30 min) were calculated as the outcome variable.

ActiGraph GT3X accelerometer. The ActiGraph GT3X (ActiGraph Co., Pensacola, FL, USA) is
a compact (3.8 × 3.7 × 1.8 cm), lightweight (27 g) and rechargeable accelerometer, which uses a
solid-state tri-axial accelerometer to collect motion data on three axes for the highest levels of analytic
capabilities available [25]. The ActiGraph GT3X measures and records time-varying accelerations
ranging in magnitude from 0.05 to 2.5 G’s. The output is digitized by a 12-bit analog to digital
convertor (ADC) at a rate of 30 Hz [25]. The signal passes through a digital filter that band-limits the
accelerometer to the frequency range of 0.25–2.5 Hz once digitized [21]. Most recently, researchers
have demonstrated acceptable validity and reliability of ActiGraph GT3X when using with children
in school and free-living conditions [26,27]. Given a short-duration PA (30 min) of each class and
the aims of this study, activity count was set at 1 s epoch length. That is, in-class PA levels were
quantified as average activity counts per second (30 Hertz) for the intensities of the activities. PA levels
were classified into sedentary, light, moderate, and vigorous categories according to the cut-points
set by Evenson and colleagues [28]. The following cut points were applied to define different PA
levels (sedentary: 0 to 100; light PA: 101 to 2295; and MVPA: 2296 and above). In the present study,
children’s time spent in sedentary, light PA, and MVPA were used as the outcome variables to classify
PA intensities.
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2.3. Procedures

Graduate research assistants were recruited from the University and were trained to assist the
program supervisor of the study. Prior to data collection, the research assistants explained the purpose
of the study to the participants, including activity sequence and instruction on how to appropriately
wear motion sensors. At the start of practice, all children were assigned an identification number
that matched up with the number on their pedometers and accelerometers. Each child then was
asked to equip a pedometer and an accelerometer that were tied around the waist by an elastic belt
and worn on the right side of hip. Although all children in this study had previous experience
wearing pedometers and accelerometers in the exergaming program, the research team still assisted
the students to make sure all the motion sensors were attached correctly. As such, the reactivity
effect was minimized. For each participant, the time was recorded for placement and removal of the
pedometers and accelerometers by the program supervisor. The pedometers and accelerometers were
collected at the end of the class. Specifically, upon completion of the exergaming session, children took
off the belts and reported their step counts pedometer data to the program supervisor and research
assistants. In the meantime, accelerometers were retrieved and data were downloaded into ActiLife
6.0 (Actigraph Corps., Pensacola, FL, USA) for data sorting and processing. Data from accelerometers
were truncated and matched to the initial time frames when PA occurred for each participant. Finally,
all the data were imported into a SPSS data file for descriptive statistical analyses.

2.4. Data Reduction and Analyses

A total of 377 participants took part in the 18-week exergaming program. Due to holidays and
other cancellations of class, children actually completed 27 days exergaming session. Among these
sessions, day 7, day 11, day 15, day 16, day 22, and day 23 were excluded since they had less than
300 trails. In addition, 188 trails were excluded due to default listwise deletion function of intraclass
correlation coefficient (ICC). As a consequence, each participant received 21 repeated assessments.
Data were analyzed as follows: First, descriptive statistics for the outcome variables (i.e., standard
deviations and means of steps/min, time spent in sedentary, light PA, and MVPA) were performed to
describe the data characteristics. Second, the test-retest reliability for outcome variable was estimated
using ICC with 95% confidence interval. A two-way mixed effects model was chosen for type
of model. Consistency type was selected for the type of index, and single measures were reported.
Reliability coefficients were categorized with values less than 0.4 considered poor; 0.41 to 0.6, moderate;
0.61 to 0.8, substantial; and greater than 0.8, excellent reliability [29]. Third, Pearson correlation was
computed to estimate the linear relationship between accelerometer (i.e., time engaged in MVPA) and
pedometer measurements (i.e., steps per min). Finally, given the present study involved a hierarchically
structured data set where the measurements were nested within individual, data were analyzed
using Hierarchical Linear Modeling (HLM) [30]. HLM is a flexible approach that can be applied
to evaluate inter-individual differences in intra-individual changes over time [31]. That is, HLM
separates inter-individual variance from intra-individual so that each participant has his/her own
curve. In addition, HLM accounts for the shared variance by multiple observations within the same
participant and extends multiple regression to nested or repeated-measures data [32]. Since there were
several observations of each person, waves of data were nested within a person. In this study,
measurements were nested within students and students were further nested within classes, so three
levels were applied to the final analysis. The Level 3 experimental unit was class; the level 2 was
student; and the Level 1 was measurement with time spent in MVPA and steps per min as the
outcome variables. The ICC and Pearson correlation analyses were performed via the SPSS 20.0
version, and the HLM was conducted using HLM 7.0 software (Scientific Software International Inc.,
Lincolnwood, IL, USA) for the statistical modeling of thee-level data structures. The alpha level for the
present study was set at 0.05.
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3. Results

3.1. Descriptive Analysis

Descriptive results are presented in Table 1. In general, children displayed roughly similar levels
of steps per min across all testing days. Additionally, children’s time spent in sedentary, Light PA
and MVPA were also quite similar and relatively stable for each repeated measure. Approximately
15 to 20 min valid wearing time were captured by the accelerometers during each 30-min exergaming
session. More specifically, the mean steps per min ranged from 23 to 49. Children spent around 9 to
11 min in sedentary, 3 to 6 min in light PA and only accumulated 3 to 4 min of MVPA. In particular,
although the last three days had the highest scores of steps per min, students did not show a higher
level of time engaged in MVPA.

Table 1. Descriptive statistics for all outcome variables.

Variable
Steps per Min Sedentary (Min) Light PA (Min) MVPA (Min)

Mean SD Mean SD Mean SD Mean SD

Day 1 23.22 15.32 9.69 3.61 3.35 1.72 2.39 2.09
Day 2 36.65 26.25 9.01 3.92 3.73 2.20 3.37 3.21
Day 3 38.40 25.21 10.39 4.3 4.26 2.45 3.31 2.90
Day 4 38.40 27.04 9.61 4.23 4.64 2.59 3.38 2.67
Day 5 42.26 25.24 8.95 3.70 4.70 2.55 3.73 2.94
Day 6 42.24 26.22 9.59 4.45 5.18 2.26 3.95 2.71
Day 7 38.64 23.13 9.61 4.53 5.23 2.36 3.70 2.67
Day 8 40.28 25.74 10.08 4.69 5.44 2.37 3.71 2.53
Day 9 37.57 24.88 9.98 4.56 5.22 2.56 3.69 2.46

Day 10 39.41 27.13 10.77 4.12 5.33 2.66 3.44 2.54
Day 11 40.85 25.28 10.56 4.46 5.46 2.45 3.25 2.49
Day 12 39.19 24.37 10.47 4.37 5.23 2.67 3.32 2.53
Day 13 38.75 23.35 10.73 4.33 5.28 2.60 3.39 2.81
Day 14 37.85 23.01 10.40 3.56 5.40 2.26 3.20 2.16
Day 15 40.29 24.17 10.89 3.95 5.46 2.50 3.19 2.41
Day 16 40.34 25.48 10.93 4.02 5.95 2.66 3.46 2.51
Day 17 36.12 20.82 11.34 4.313 5.41 2.58 3.15 2.14
Day 18 41.60 24.58 9.94 4.17 5.68 2.81 3.48 2.59
Day 19 49.06 29.94 9.64 4.42 6.10 3.04 3.87 2.78
Day 20 47.52 27.80 9.26 3.90 5.60 1.94 3.50 2.13
Day 21 47.50 30.26 9.10 3.96 5.64 2.96 3.69 2.67

SD = standard deviation; Sedentary = time spent in sedentary; Light PA = time spent in light physical activity;
MVPA = time spent in moderate to vigorous physical activity.

3.2. Intraclass Correlation Coefficient and Pearson Correlation

The result of ANOVA from ICC demonstrated that there were no differences among trials for
accelerometer measurements, F (12, 185) = 0.916, p = 0.53, indicating that no learning or fatigue effect
was detected (Table 2). In addition, ICC for accelerometer assessments showed single measures
was 0.033 with a 95% confidence interval from 0.014–0.059, which was considered a low degree of
reliability. Furthermore, ANOVA analysis for pedometer assessments did detect a possible learning
effect during the 21 classes, F (26, 97) = 3.315, p < 0.01, but a low degree of reliability was also found
between pedometer measurements from ICC, the single measures was 0.199 with a 95% confidence
interval from 0.153–0.260. The result of Pearson correlation indicated that there was no significant
relationship between time spent in MVPA determined by accelerometers and steps per min determined
by pedometers (r = 0.027, p = 0.597).
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Table 2. Intraclass correlation coefficient (ICC) for accelerometer and pedometer assessments.

IC
95% CI F Test with True Value 0

LB UB Value df1 df2 Sig.

GT3X
Single 0.033 a 0.014 0.059 1.450 185 2220 0.000

Average 0.310 c 0.155 0.448 1.450 185 2220 0.000

NL-1000
Single 0.199 a 0.153 0.260 7.692 97 2522 0.000

Average 0.870 c 0.830 0.904 7.692 97 2522 0.000

GT3X = ActiGraph GT3X accelerometer; NL-1000 = NL-1000 pedometer; Single = single measures; Average =
average measures; IC = Intraclass correlation; 95% CI = 95% confidence interval; LB = lower bound; UB = upper
bound. a The estimator is the same here, whether the interaction effect is present or not; c This estimate is computed
assuming the interaction effect is absent, because it is not estimable otherwise.

3.3. Hierarchical Linear Modeling

In order to further explore the relationship between pedometer and accelerometer assessments by
controlling the student background and aforementioned possible learning effect, HLM was employed.
We developed the (1) null model, which did not use any predictors to gauge to what extent that
a second and third level model could contribute to explain the variance of the outcome variable;
(2) control model, which added background variables of students to the null model; and (3) full model,
which added the major predictor to the control model. The full model is developed as following:

Level-1 Model:

MVPAmti = ψ0ti + ψ1ti*(DAYmti) + ψ2ti*(TIMEmti) + ψ3ti*(SPMmti) + εmti (1)

At level 1 (measurement level), outcome variable was the total MVPA divided by time, control
variable “day” represents the “learning effect”, “time” refers to “how long the measurement process
took”. The predictor variable, steps per min (SPM), is the pedometer steps divided by time. ψ0ti and
εmti represented the initial status of student t in class i and a random effect, respectively.

Level-2 Model:

ψ0ti = π00i + π01i*(SEXti) + π02i*(AGEti) + π03i*(RACE1ti) + e0ti (2)

Level-3 Model:
π00i = β000 + r00i (3)

Level 3 (classroom level) was added to account for the possible variability among classes, where
β000 was the grand mean score of all classes, and r00i was the random effect of classes. As a result,
steps per min were found to have a significant, positive relationship with MVPA (Table 3). However,
only 1.3% more variance at level 1 was explained by adding the steps per min into the full model,
which means that the significant association was weak as demonstrated by small proportions of
variance explained. Therefore, the results of the HLM implicitly took nesting into account and
included more controls in the models, which did not contradict the ICCs results. In other words,
the measurement provided by pedometer was not reliable when we assessed students’ MVPA, as a
low degree of reliability was also seen in pedometer outputs.
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Table 3. Hierarchical linear modeling (HLM) for moderate to vigorous physical activity with
three-level modeling.

Fixed Effect Coefficient Standard Error t-Ratio Approx. d.f. p Value

For INTRCPT1, ψ0
For INTRCPT2, π00

- - - - -
- - - - -

INTRCPT3, β000
For SEX, π01

0.072128 0.030573 2.359 19 0.029

INTRCPT3, β010
For AGE, π02

−0.000908 0.011431 −0.079 343 0.937

INTRCPT3, β020
For RACE1, π03

−0.006521 0.003386 −1.926 343 0.055

INTRCPT3, β030
For DAY slope, ψ1

For INTRCPT2, π10

0.032761 0.008744 3.747 343 <0.001

INTRCPT3, β100
For TIME slope, ψ2
For INTRCPT2, π20

−0.002019 0.000476 −4.24 5625 <0.001

INTRCPT3, β200
For SPM slope, ψ3

For INTRCPT2, π30

0.004824 0.001595 3.024 5625 0.003

INTRCPT3, β300 0.001793 0.000145 12.38 5625 <0.001

SPM = steps per min.

4. Discussion

The manufacturer of the motion sensors now offers various instruments for analyzing movement
data, but their trustworthiness in exergaming settings has not been documented in the literature.
Therefore, this study was designed to provide reliability evidence for two popular motion sensors
(NL-1000 pedometer and ActiGraph GT3X accelerometer) that are used as practical and objective PA
measurement tools in exergaming settings. Based upon the descriptive analysis, children actually spent
most time in sedentary behavior as compared to LPA and MVPA while playing exergames. Although
each exergaming session had 30 min, only half to two-third PA time were captured by accelerometers.
The results of ICCs showed the estimates of PA levels were inconsistent among children as the ICCs
were far from ideal, indicating low reliability of two monitors in measuring elementary school children’
regular PA levels during exergaming play.

While the findings are unexpected and not accordance with most previous studies indicating
these motion-sensors are reliable instruments in assessing children’s PA behaviors in other setting,
we identified plausible reason for such discrepancies. In the present study, participants were elementary
school children and they were equipped with two motion sensors simultaneously while playing
exergames. That is, the inconsistency of instruments placement may lead to data loss (about one-third
of PA time missed) and unreliability of motion sensors in capturing movement data in exergaming.

Unlike traditional physical education class where contents are consistently delivered by the
instructors, the exergaming activities were carried out by multiple random games. Within a single
game console, different games with respective difficult levels can provide varying EE. In our study,
students were offered with eight different Nintendo Wii exergames and every student played different
types of exergames, thus variability of EE across types of games tended to be large. For example,
the “Just Dance” allowed players to perform more than 20 songs consecutively with several difficulty
levels depending on how well the player was dancing. Such arrangement resulted in students being
exposed to various conditions. Therefore, different types of exergames and game sequence effects
might be potential confounding factors on reliability of measurements in exergaming. In addition,
children rotated from stations to stations in the present study. That is, when a participant arrived at
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next station, he or she had to set up a different game to meet his or her interests and needs. In that
case, the exergaming was not implemented in a continuous way and children were not really being
physically active during these transitions. To this sense, the transition time may lead to inaccurate data
because each child would have unequal PA intensities and time of game playing.

The correlation analysis suggested no significant positive relationship between accelerometers
and pedometers measures. Furthermore, the HLM analysis further confirmed low reliability of two
monitors, which was not contradictory with the ICCs results as very little shared variance could be
explained by pedometers and accelerometers. Previous studies using similar activity monitors have
shown agreement in measuring PA levels among children and youth [33,34]. These empirical studies
utilized different epoch lengths (5 s and 30 s) and cut points to determine sedentary, light PA and
MVPA thresholds in either school-based physical education or free-living settings. Although several
validated MVPA epoch lengths have been proposed for use in children, the impact of accelerometer
epoch length on PA measures remains a contentious issue, particularly with regard to application in
school children. For example, researchers suggested that the 15 s epoch length for accelerometers
captured more MVPA and sedentary time yet fewer steps and less light PA and total PA were tracked
compared to 60 s epoch length [35]. Appukutty and colleagues [36] indicated that the MVPA time
were significantly higher with 10 s epoch than 60 s epoch in children. In general, children’s PA patterns
tend to be varied and intermittent for differing activities and intensities. The use of shorter epochs
would produce higher and more accurate estimates of MVPA time compared to longer epochs [37].
McClain and colleagues [34] further demonstrated that 5 s epoch length in ActiGraph accelerometer
yielded the lowest root mean squared error in assessing MVPA, indicating shorter epochs would
yield more PA amount. Because of this, children’s PA may be better captured with shorter epochs.
In this study, we used 1s epoch length to make sure we accurately captured children’s PA as much as
possible. Nevertheless, we still believe that different epoch length thresholds would explain part of the
differences between our findings and previous studies.

Furthermore, it has been noted that different equation should be used when using accelerometers
to children with chronic diseases such as congenital heart disease (CHD), cystic fibrosis (CF),
dermatomyositis (JDM), juvenile arthritis (JA), inherited muscle disease (IMD), and hemophilia
(HE) [38]. For example, Stephen et al. [38] found that agreement between predicted and measured
energy expenditure (EE) varied across disease group and ranged from (ICC) 0.13–0.46. With the
prediction equation specific to the disease group was presented, an improved range of results
(ICC 0.62–0.88) (SE 0.45–0.78) was shown. The researchers concluded that current prediction should be
replaced with disease-specific equation in children with chronic conditions as the current equation
demonstrate poor agreement. In terms of testing reliability and validity of pedometers in clinical
population, it has been reported that pedometers (Yamax SW digi-walker, New Lifestyles NL-2000)
are useful for tracking ambulatory movement in the population [39]. For example, in their study with
youth with cerebral palsy, NL-1000 pedometer demonstrated an excellent reliability (ICC 0.88–0.99)
and validity (ICC 0.78–0.95) with no significant difference between the video step counts and
pedometer step counts in walking and running in controlled setting. When using pedometers, however,
in population with disabilities, the 3% error cutoff for accuracy may not be realistic for population
with disabilities [40].

Finally, it is known that both waist-mounted accelerometers and pedometers have lower accuracy
when one’s PA level is at slow speeds [41,42]. For instance, McClain et al. [43] found agreement
between NL-1000 and ActiGraph accelerometers estimates of free-living MVPA in 10-year old children,
but large differences were also found at other settings, especially when children experienced a low PA
intensity. Similarly, although Kinnunen et al. [44] found statistically significant correlations, the overall
agreement between pedometer and accelerometer step counts was poor and varied with PA levels.

The strength of this study lies in that it is the first of its kind to assess the reliability of two
motion sensors in measuring children’s PA levels in exergaming settings. However, there are several
limitations that should be noted. While multiple sessions of two objective motion sensors were
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used to explore their reliability, they were not compared to the gold standard measures of energy
expenditure. Therefore, a rigorous design and better statistical analyses will be necessary in the future
research. In fact, exergaming has several limitations when being considered a PA option. One such
limitation is the limited time children spent in being moderately or even vigorously active. Exergaming
oftentimes requires the players short bursts of exertion followed by considerable breaks between
activities, which may lead to children not very active to the MVPA level. Although there were various
difficulty levels available for children in exergames such as beginner, intermediate, and advanced
levels, it is implausible to let each child play the advanced level games for every time, because games
were selected randomly and varied according to how well the child performed. If children played the
same games, they would lose interest in exergaming and the enjoyment of exercise would decrease
over time. Therefore, the low speed and random nature of exergaming may result in accelerometers
and pedometers having lower reliability in measuring children’s PA levels.

5. Conclusions

In summary, the primary finding of the study was that the NL-1000 pedometers and ActiGraph
GT3X accelerometers have low reliability in assessing elementary school children’s PA levels during
exergaming. More research is warranted in determining the reliable and accurate measurement
information regarding the use of modern devices during exergaming. Although the current study does
not provide promising reliability evidence for the use of NL-1000 pedometers and ActiGraph GT3X
accelerometers in assessing PA in exergaming settings, the findings may render some implications
for future exergaming research. First, the same exergaming activities should be employed when
motion sensors are used to eliminate the variability caused by different games. Second, researchers
should minimize the transition time by increasing the time of game playing to make sure children
stay physically active pattern most of the time. Third, placing the monitor on ankles or using heart
rate monitors may be more appropriate in assessing children’s PA during exergames play. Finally,
researchers should ensure the consistency of the device placement during measurement. When using
these motion sensors in clinical population whom might be using exergaming as a therapeutic means,
more factors need to be taken into considerations such as type of disease, presence of disabilities,
and utilizing disease-specific prediction equation.
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