Immunotherapy in Non-Small Cell Lung Cancer: Shifting Prognostic Paradigms
Abstract
:1. Introduction
2. Immunotherapy Has Evolved Over Centuries
2.1. Therapeutic Infection and Cytokines
2.2. Monoclonal Antibodies
2.3. Adoptive Cell Therapy
2.4. Tumour Vaccines
3. Immunotherapy in Non-Small Cell Lung Cancer
3.1. Metastatic Disease—Second Line
3.2. Metastatic Disease—First Line
3.3. Adjuvant Treatment
3.4. Combination Therapy
3.5. Current Clinical Practice
4. Conclusions
Conflicts of Interest
References
- Coley, W.B., II. Contribution to the Knowledge of Sarcoma. Ann. Surg. 1891, 14, 199–220. [Google Scholar] [CrossRef] [PubMed]
- Whitrow, M. Wagner-Jauregg and fever therapy. Med. Hist. 1990, 34, 294–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Malley, W.E.; Achinstein, B.; Shear, M.J. Action of Bacterial Polysaccharide on Tumors. II. Damage of Sarcoma 37 by Serum of Mice Treated with Serratia Marcescens Polysaccharide, and Induced Tolerance. J. Natl. Cancer Inst. 1962, 29, 1169–1175. [Google Scholar] [CrossRef]
- Shear, M.J.; Perrault, A. Chemical Treatment of Tumors. IX. Reactions of Mice with Primary Subcutaneous Tumors to Injection of a Hemorrhage-Producing Bacterial Polysaccharide1. J. Natl. Cancer Inst. 1944, 4, 461–476. [Google Scholar]
- Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 1975, 72, 3666–3670. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 2009, 9, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Eidinger, D.; Bruce, A.W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 1976, 116, 180–183. [Google Scholar] [CrossRef]
- Kohler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. J. Immunol. 2005, 174, 2453–2455. [Google Scholar] [CrossRef] [PubMed]
- Riechmann, L.; Clark, M.; Waldmann, H.; Winter, G. Reshaping human antibodies for therapy. Nature 1988, 332, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; Mihm, M.C.; Soiffer, R.J.; Haluska, F.G.; Butler, M.; Seiden, M.V.; Davis, T.; Henry-Spires, R.; MacRae, S.; Willman, A.; et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl. Acad. Sci. USA 2003, 100, 4712–4717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 2010, 28, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Tran, E.; Longo, D.L.; Urba, W.J. A Milestone for CAR T Cells. N. Engl. J. Med. 2017, 377, 2593–2596. [Google Scholar] [CrossRef] [PubMed]
- Newick, K.; O’Brien, S.; Moon, E.; Albelda, S.M. CAR T Cell Therapy for Solid Tumors. Ann. Rev. Med. 2017, 68, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Manjili, M.H.; Subjeck, J.R.; Sarkar, D.; Fisher, P.B.; Wang, X.-Y. Therapeutic Cancer Vaccines: Past, Present and Future. Adv. Cancer Res. 2013, 119, 421–475. [Google Scholar] [PubMed]
- Cheever, M.A.; Higano, C.S. PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 2011, 17, 3520–3526. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.-L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017. [Google Scholar] [CrossRef] [PubMed]
- Dammeijer, F.; Lievense, L.A.; Veerman, G.D.M.; Hoogsteden, H.C.; Hegmans, J.P.; Arends, L.R.; Aerts, J.G. Efficacy of Tumor Vaccines and Cellular Immunotherapies in Non–Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. J. Clin. Oncol. 2016, 34, 3204–3212. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, Y.; Jiang, D.-Q.; Cui, L.-Z.; He, Z.; Wang, C.; Zhang, Z.-W.; Zhu, H.-L.; Ding, Y.-M.; Li, L.-F.; et al. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death Dis. 2018, 9, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, G.; Gasper, H.; Man, J.; Lord, S.; Marschner, I.; Friedlander, M.; Lee, C.K. Defining the Most Appropriate Primary End Point in Phase 2 Trials of Immune Checkpoint Inhibitors for Advanced Solid Cancers: A Systematic Review and Meta-analysis. JAMA Oncol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.-E.; Badin, F.; et al. First-Line Nivolumab in Stage IV or Recurrent Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Kowanetz, M.; Socinski, M.A.; Zou, W.; McCleland, M.; Yang, N.; Lopez Chavez, A.; Spira, A.; Mazières, J.; Braiteh, F.; Shames, D.; et al. IMpower150: Efficacy of atezolizumab (atezo) plus bevacizumab (bev) and chemotherapy (chemo) in 1L metastatic nonsquamous NSCLC (mNSCLC) across key subgroups. In Proceedings of the AACR, Chicago, IL, USA, 16 April 2018. [Google Scholar]
- Spigel, D.R.; Schrock, A.B.; Fabrizio, D.; Frampton, G.M.; Sun, J.; He, J.; Gowen, K.; Johnson, M.L.; Bauer, T.M.; Kalemkerian, G.P.; et al. Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD-L1 targeted therapies. J. Clin. Oncol. 2016, 34, 9017. [Google Scholar]
- Giaccone, G.; Bazhenova, L.A.; Nemunaitis, J.; Tan, M.; Juhász, E.; Ramlau, R.; van den Heuvel, M.M.; Lal, R.; Kloecker, G.H.; Eaton, K.D.; et al. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur. J. Cancer 2015, 51, 2321–2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfonso, S.; Valdes-Zayas, A.; Santiesteban, E.R.; Flores, Y.I.; Areces, F.; Hernandez, M.; Viada, C.E.; Mendoza, I.C.; Guerra, P.P.; Garcia, E.; et al. A randomized, multicenter, placebo-controlled clinical trial of racotumomab-alum vaccine as switch maintenance therapy in advanced non-small cell lung cancer patients. Clin. Cancer Res. 2014, 20, 3660–3671. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, H.; Zeng, X.; Ma, Y.; Zhao, X.; Huang, M. Single-agent maintenance therapy for advanced non-small cell lung cancer (NSCLC): A systematic review and Bayesian network meta-analysis of 26 randomized controlled trials. PeerJ 2016, 4, e2550. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab vs Platinum-Based Chemotherapy for Advanced NSCLC with PD-L1 TPS ≥50%. In Proceedings of the World Conference on Lung Cancer, Yokohama, Japan, 15–18 October 2017. [Google Scholar]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. Off. Publ. Int. Assoc. Stud. Lung Cancer 2016, 11, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Adjuvant Lung Cancer Trial Collaborative Group. Cisplatin-Based Adjuvant Chemotherapy in Patients with Completely Resected Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2004, 350, 351–360. [Google Scholar] [Green Version]
- Vansteenkiste, J.F.; Cho, B.C.; Vanakesa, T.; De Pas, T.; Zielinski, M.; Kim, M.S.; Jassem, J.; Yoshimura, M.; Dahabreh, J.; Nakayama, H.; et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016, 17, 822–835. [Google Scholar] [CrossRef]
- Butts, C.; Socinski, M.A.; Mitchell, P.L.; Thatcher, N.; Havel, L.; Krzakowski, M.; Nawrocki, S.; Ciuleanu, T.E.; Bosquee, L.; Trigo, J.M.; et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): A randomised, double-blind, phase 3 trial. Lancet Oncol 2014, 15, 59–68. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Apetoh, L.; Ladoire, S.; Coukos, G.; Ghiringhelli, F. Combining immunotherapy and anticancer agents: The right path to achieve cancer cure? Ann. Oncol. 2015, 26, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Allen, E.; Jabouille, A.; Rivera, L.B.; Lodewijckx, I.; Missiaen, R.; Steri, V.; Feyen, K.; Tawney, J.; Hanahan, D.; Michael, I.P.; et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 2017, 9, eaak9679. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yuan, J.; Righi, E.; Kamoun, W.S.; Ancukiewicz, M.; Nezivar, J.; Santosuosso, M.; Martin, J.D.; Martin, M.R.; Vianello, F.; et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. USA 2012, 109, 17561–17566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellmann, M.D.; Rizvi, N.A.; Goldman, J.W.; Gettinger, S.N.; Borghaei, H.; Brahmer, J.R.; Ready, N.E.; Gerber, D.E.; Chow, L.Q.; Juergens, R.A.; et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): Results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017, 18, 31–41. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Ciuleanu, T.-E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N. Engl. J. Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N. Engl. J. Med. 2015, 372, 2006–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Chai, Y.; Qi, J.; Zhang, C.W.H.; Tong, Z.; Shi, Y.; Yan, J.; Tan, S.; Gao, G.F. Remarkably similar CTLA-4 binding properties of therapeutic ipilimumab and tremelimumab antibodies. Oncotarget 2017, 8, 67129–67139. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; Angelis, F.D.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Merck. First-Line Lung Cancer Data and Other New Research from Merck’s Broad Oncology Program to be Presented at AACR Annual Meeting; Merck: Kenilworth, NJ, USA, 2018. [Google Scholar]
- Reck, M. First Line Combination Therapy Improves Progression-Free Survival in Advanced Lung Cancer. In Proceedings of the ESMO Immuno Oncology Congress, Geneva, Switzerland, 7–10 December 2017. [Google Scholar]
- Lowe, D. IDO Appears to Have Wiped Out. In In the Pipeline; Medicine, S.T., Ed.; Science: Dubai, United Arab Emirates, 2018; Volume 2018. [Google Scholar]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. In Non-Small Cell Lung Cancer; NCCN: Fort Washington, PA, USA, 2018; Volume 3. [Google Scholar]
- Chemotherapy in non-small cell lung cancer: A meta-analysis using updated data on individual patients from 52 randomised clinical trials. Non-small Cell Lung Cancer Collaborative Group. BMJ 1995, 311, 899–909.
2nd/3rd Line Metastatic NSCLC | ||||
---|---|---|---|---|
Population | Arms | Results | Reference | |
KEYNOTE-010 NCT01905657 | All histologies PDL1 ≥ 1% |
| mOS (PDL1 ≥ 1%): 10.4 (2 mg/kg) v 12.7 (10 mg/kg) v 8.5 m mOS (PDL1 ≥ 50%): 14.9 v 17.3 v 8.2m mPFS 3.9 v 4.0 v 4.0 m | Herbst et al. Lancet 2016; 387: 1540–1550 |
CheckMate-017 NCT01642004 | Squamous All PD-L1 |
| mOS: 9.2 v 6.0 m 1Y OS: 42 vs 24% | Brahmer et al. New Engl J Med 2015; 373: 123–135 |
CheckMate-057 NCT01673867 | Non-squamous All PD-L1 |
| mOS: 12.2 v 9.4 m 1Y OS: 51 v 39% | Borghaei et al. New Engl J Med 2015; 373: 1623–1639 |
STOP NCT00676507 | All histologies No PD on 1L platinum |
| mOS 20.3 v 17.8 m, HR 0.94, p = 0.54 PFS 4.3 v 4.0 m | Giaccone et al., Eur J Cancer, 2015; 51(16): 2321–2329 |
OAK NCT02008227 | All histologies All PD-L1 |
| 1Y OS: 55 v 41% 18m OS: 40 v 27% | Rittmeyer et al. Lancet 2017; 389:255–265 |
1st line metastatic NSCLC | ||||
Population | Arms | Results | Reference | |
KEYNOTE-024 NCT02142738 | All histologies PD-L1 ≥ 50% |
| mOS: 30 v 14.2 m mPFS: 10.3 v 6.0 m | Reck et al. New Engl J Med 2016; 375: 1823–1833 Brahmer et al. WCLC 2017 abstract OA17.06 |
CheckMate-026 NCT02041533 | All histologies PD-L1≥ 1%Endpoints analysed on PD-L1 ≥ 5% |
| mPFS: 4.2 v 5.9 m mOS: 14.4 v 13.2 m (HR 1.02, CI 0.8–1.3) | Carbone et al. New Engl J Med 2017; 376: 2415–2426 |
KEYNOTE-189 NCT02578680 | Non-squamous or NOS All PD-L1 |
| OS@1Y 69.2% v 49.4% mPFS 8.8 v 4.9 m | Gandhi et al., New Engl J Med 2018: Presented at AACR 2018. |
CheckMate 227 NCT02477826 | Non-squamous All PD-L1 All TMB—**endpoint assessed in HI TMB only |
| mOS 23 v 16.4 m mPFS 7.2 v 5.5 m OS@1Y: 67 v 58% PFS@1Y: 42.6% v 13.2% | Hellman et al, New Engl J Med 2018: Presented at AACR 2018 |
IMpower-150 NCT02366143 | Non-squamous All PD-L1 Included EGFR/ALK patients |
| B v C: mPFS: 6.8 v 8.3 m prelim mOS (immature): 19.2 v 14.4 m | Reck et al., ESMO IO 2017 Kowanetz et al., AACR 2018 |
Adjuvant NSCLC | ||||
Population | Arms | Results | Reference | |
PACIFIC NCT02125461 | Stage III unresectable NSCLC Post chemoradiation All PD-L1 |
| 12 m PFS: 55.9 v 35.3% 18 m PFS: 44.2 v 27.0% | Antonia et al, New Engl J Med 2017; 377: 1919–1929 |
START NCT00409188 | Unresectable stage III NSCLC Post chemoradiation |
| mOS 25.6 v 22.3 m | Butts et al., Lancet Oncology 2014; 15(1): 59–68 |
MAGRIT NCT00480025 | Completely resected stage I-IIIA NSCLC |
| Median DFS 60.5 v 57.9 m | Vansteenkiste et al, Lancet Oncology 2016; 17(6): 822–835 |
Metastatic Trials | ||
---|---|---|
Nivolumab | CheckMate-9LA NCT03215706 | 1L NSCLC Nivo + ipi + chemotherapy v chemotherapy |
Pembrolizumab | KEYNOTE-598 NCT03302234 | 1L NSCLC, PD-L1 ≥ 50% Pembro + ipi v pembro |
KEYNOTE-042 NCT02220894 | 1L NSCLC, PD-L1 ≥ 1% Pembrolizumab v SoC in Strong (PD-L1 ≥ 50%) v weak (PD-L1 1–49%) staining tumours | |
KEYNOTE-715 NCT03322566 | 1L NSCLC, all PD-L1 IDOi + pembro + chemo v IDOi + pembro v placebo + pembro + chemo | |
KEYNOTE-407 NCT02775435 | 1L squamous NSCLC, all PD-L1 Pembro + carbo-paclitaxel/nab paclitaxel v carbo-paclitaxel/nab paclitaxel | |
Durvalumab | POSEIDON NCT03164616 | 1L NSCLC Durva + tremelimumab (treme) + chemotherapy v chemotherapy |
MYSTIC NCT02453282 | 1L NSCLC Durva + treme v durva v chemotherapy | |
NEPTUNE NCT02542293 | 1L NSCLC Durva + treme v chemotherapy | |
ARCTIC NCT02352948 | 3L NSCLC A: PD-L1+ tumours durva vs SoC B: PD-L1—tumours durva v durva + treme v treme v SoC | |
Atezolizumab | IMpower-130 NCT02367781 | 1L non-squamous NSCLC Atezolizumab + Abraxane v Abraxane |
IMpower-131 NCT02367794 | 1L squamous NSCLC Atezolizumab + carbo/taxol v atezo + carbo/Abraxane | |
IMpower-132 NCT02657434 | 1L non-squamous NSCLC Atezolizumab + platinum/pemetrexed v platinum/pemetrexed | |
IMpower-110 NCT02409342 | 1L NSCLC, PD-L1 ≥ 1% Atezolizumab v platinum-doublet | |
IMpower-111 NCT02409355 | 1L squamous NSCLC, PD-L1 ≥ 1% Atezolizumab v platinum-doublet | |
Avelumab | Javelin-100 NCT02576574 | 1L NSCLC, PD-L1+ Avelumab v platinum-doublet |
Javelin-200 NCT02395172 | 2L NSCLC, PD-L1+ Avelumab v docetaxel | |
Racotumomab | NCT01460472 | Maintenance following 1L treatment Open label v best supportive care |
Adjuvant trials | ||
Nivolumab | ANVIL NCT02595944 | Nivo (1y) v no treatment |
Pembrolizumab | KEYNOTE-091 NCT02504372 | Pembro (1y) v placebo |
Durvalumab | NCIC BR31 NCT02273375 | Durva (1y) v placebo |
Atezolizumab | IMpower-010 NCT02486718 | Atezo (48 weeks) v no treatment All patients receive chemo |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnet, M.B.; Cooper, W.A.; Boyer, M.J.; Kao, S. Immunotherapy in Non-Small Cell Lung Cancer: Shifting Prognostic Paradigms. J. Clin. Med. 2018, 7, 151. https://doi.org/10.3390/jcm7060151
Barnet MB, Cooper WA, Boyer MJ, Kao S. Immunotherapy in Non-Small Cell Lung Cancer: Shifting Prognostic Paradigms. Journal of Clinical Medicine. 2018; 7(6):151. https://doi.org/10.3390/jcm7060151
Chicago/Turabian StyleBarnet, Megan B., Wendy A. Cooper, Michael J. Boyer, and Steven Kao. 2018. "Immunotherapy in Non-Small Cell Lung Cancer: Shifting Prognostic Paradigms" Journal of Clinical Medicine 7, no. 6: 151. https://doi.org/10.3390/jcm7060151
APA StyleBarnet, M. B., Cooper, W. A., Boyer, M. J., & Kao, S. (2018). Immunotherapy in Non-Small Cell Lung Cancer: Shifting Prognostic Paradigms. Journal of Clinical Medicine, 7(6), 151. https://doi.org/10.3390/jcm7060151