An Update on Predictive Biomarkers for Treatment Selection in Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Biomarkers Used in NSCLC
2.1. Predictive Factors for Chemotherapy in NSCLC
2.2. Predictive Biomarkers for Targeted Therapies in NSCLC
2.3. Epidermal Growth Factor Receptor Mutations in NSCLC
2.4. Anaplastic Lymphoma Kinase Rearrangements in NSCLC
2.5. ROS1 Rearrangements in NSCLC
2.6. BRAF Mutations in NSCLC
2.7. Other Candidate Predictive Biomarkers
3. Multigene Panels for Molecular Biomarker Testing
4. Biomarkers for Immunotherapy
4.1. PD-L1 Expression as a Biomarker
4.2. Other Biomarkers for Immunotherapy
5. Challenges of Biomarker Assessment in NSCLC
6. Summary and Conclusions
Author Contributions
Conflicts of Interest
References
- Torre, L.A.; Siegel, R.L.; Jemal, A. Lung cancer statistics. Adv. Exp. Med. Biol. 2016, 893, 1–19. [Google Scholar] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.; et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 2017, 3, 524–548. [Google Scholar] [PubMed]
- Goss, G.D.; Spaans, J.N. Epidermal growth factor receptor inhibition in the management of squamous cell carcinoma of the lung. Oncologist 2016, 21, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzada, T.; Reid, G.; Kao, S. Biomarkers in malignant pleural mesothelioma: Current status and future directions. J. Thorac. Dis. 2018, 10 (Suppl. S9), S1003–S1007. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.K.; Gadgeel, S.M. Predictive and prognostic biomarkers in non-small cell lung cancer. Semin. Respir. Crit. Care Med. 2016, 37, 760–770. [Google Scholar] [PubMed]
- Perez-Gracia, J.L.; Sanmamed, M.F.; Bosch, A.; Patiño-Garcia, A.; Schalper, K.A.; Segura, V.; Bellmunt, J.; Tabernero, J.; Sweeney, C.J.; Choueiri, T.K.; et al. Strategies to design clinical studies to identify predictive biomarkers in cancer research. Cancer Treat. Rev. 2017, 53, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Gridelli, C.; Ardizzoni, A.; Barberis, M.; Cappuzzo, F.; Casaluce, F.; Danesi, R.; Troncone, G.; De Marinis, F. Predictive biomarkers of immunotherapy for non-small cell lung cancer: Results from an Experts Panel Meeting of the Italian Association of Thoracic Oncology. Transl. Lung Cancer Res. 2017, 6, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Bernicker, E.H.; Miller, R.A.; Cagle, P.T. Biomarkers for selection of therapy for adenocarcinoma of the lung. J. Oncol. Pract. 2017, 13, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Olaussen, K.A.; Postel-Vinay, S. Predictors of chemotherapy efficacy in non-small-cell lung cancer: A challenging landscape. Ann. Oncol. 2016, 27, 2004–2016. [Google Scholar] [CrossRef] [PubMed]
- Ang, Y.; Tan, H.; Soo, R. Best practice in the treatment of advanced squamous cell lung cancer. Ther. Adv. Respir. Dis. 2015, 9, 224–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standfield, L.; Weston, A.R.; Barraclough, H.; Van Kooten, M.; Pavlakis, N. Histology as a treatment effect modifier in advanced non-small cell lung cancer: A systematic review of the evidence. Respirology 2011, 16, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.; Pennell, N. Best practices in treatment selection for patients with advanced NSCLC. Cancer Control 2016, 23 (Suppl. 4), 2–14. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, D.; Wood, D.; Aisner, D.; Akerley, W.; Bauman, J.; Chirieac, L.R.; D’Amico, T.A.; DeCamp, M.M.; Dilling, T.J.; Dobelbower, M.; et al. Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2017, 15, 504–535. [Google Scholar] [CrossRef]
- Shroff, G.S.; de Groot, P.M.; Papadimitrakopoulou, V.A.; Truong, M.T.; Carter, B.W. Targeted therapy and immunotherapy in the treatment of non-small cell lung cancer. Radiol. Clin. North Am. 2018, 56, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Pirker, R. Molecular biomarkers in advanced non-small-cell lung cancer: A rapidly changing field. J. Oncol. Pract. 2017, 13, 231–232. [Google Scholar] [CrossRef] [PubMed]
- Cooper, W.A.; Lam, D.C.; O’Toole, S.A.; Minna, J.D. Molecular biology of lung cancer. J. Thorac. Dis. 2013, 5 (Suppl. 5), S479. [Google Scholar]
- Cooper, W.A.; O’Toole, S.; Boyer, M.; Horvath, L.; Mahar, A. What’s new in non-small cell lung cancer for pathologists: The importance of accurate subtyping, EGFR mutations and ALK rearrangements. Pathology 2011, 43, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Baik, C.S.; Myall, N.J.; Wakelee, H.A. Targeting BRAF-mutant non-small cell lung cancer: From molecular profiling to rationally designed therapy. Oncologist 2017, 22, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Bruckl, W.; Tufman, A.; Huber, R.M. Advanced non-small cell lung cancer (NSCLC) with activating EGFR mutations: First-line treatment with afatinib and other EGFR TKIs. Expert Rev. Anticancer Ther. 2017, 17, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Jackman, D.M.; Miller, V.A.; Cioffredi, L.A.; Yeap, B.Y.; Janne, P.A.; Riely, G.J.; Ruiz, M.G.; Giaccone, G.; Sequist, L.V.; Johnson, B.E. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: Results of an online tumor registry of clinical trials. Clin. Cancer Res. 2009, 15, 5267–5273. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, M.; Wu, Y.L.; Thongprasert, S.; Sunpaweravong, P.; Leong, S.S.; Sriuranpong, V.; Chao, T.Y.; Nakagawa, K.; Chu, D.T.; Saijo, N.; et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, firstline study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J. Clin. Oncol. 2011, 29, 2866–2874. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.H.; Sequist, L.V.; Geater, S.L.; Tsai, C.-M.; Mok, T.S.K.; Schuler, M.; Yamamoto, N.; Yu, C.-J.; Ou, S.-H.I.; Zhou, C.; et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: A combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015, 16, 830–838. [Google Scholar] [CrossRef]
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: Guideline from the College of American Pathologists, the International Association for the study of lung cancer, and the Association for Molecular Pathology. J. Mol. Diagn. 2018, 20, 129–159. [Google Scholar] [PubMed]
- Myers, M.B.; McKim, K.L.; Meng, F.; Parsons, B.L. Low-frequency KRAS mutations are prevalent in lung adenocarcinomas. Pers. Med. 2015, 12, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Itchins, M.; Chia, P.; Hayes, S.; Howell, V.; Gill, A.; Cooper, W.; John, T.; Mitchell, P.; Millward, M.; Clarke, S.; et al. Treatment of ALK-rearranged non-small cell lung cancer: A review of the landscape and approach to emerging patterns of treatment resistance in the Australian context. Asia Pac. J. Clin. Oncol. 2017, 13 (Suppl. 3), 3–13. [Google Scholar] [CrossRef] [PubMed]
- Casaluce, F.; Sgambato, A.; Maione, P.; Rossi, A.; Ferrara, C.; Napolitano, A.; Palazzolo, G.; Ciardiello, F.; Gridelli, C. ALK inhibitors: A new targeted therapy in the treatment of advanced NSCLC. Target Oncol. 2013, 8, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Selinger, C.I.; Rogers, T.M.; Russell, P.A.; O’Toole, S.; Yip, P.; Wright, G.M.; Wainer, Z.; Horvath, L.G.; Boyer, M.; McCaughan, B.; et al. Testing for ALK rearrangement in lung adenocarcinoma: A multicenter comparison of immunohistochemistry and fluorescent in situ hybridization. Mod. Pathol. 2013, 26, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Selinger, C.; Cooper, W.; Lum, T.; McNeil, C.; Morey, A.; Waring, P.; Amanuel, B.; Millward, M.; Peverall, J.; Van Vliet, C.; et al. Equivocal ALK fluorescence in-situ hybridization (FISH) cases may benefit from ancillary ALK FISH probe testing. Histopathology 2015, 67, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 2014, 371, 2167–2177. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Fujimoto, H.; D’Alessandro-Gabazza, C.; Gabazza, E.C.; Hataji, O. Recent studies move closer to answering questions about sequential therapy for anaplastic lymphoma kinase-rearranged non-small cell lung cancer. J. Thorac. Dis. 2017, 9, 2847–2851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Tiseo, M.; Ahn, M.; Reckamp, K.; Hansen, K.; Kim, S.; Huber, R.; West, H.; Groen, H.; Hochmair, M.; et al. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: A randomized, multicenter phase II trial. J. Clin. Oncol. 2017, 35, 2490–2498. [Google Scholar] [CrossRef] [PubMed]
- Sgambato, A.; Casaluce, F.; Maione, P.; Gridelli, C. Targeted therapies in non-small cell lung cancer: A focus on ALK/ROS1 tyrosine kinase inhibitors. Expert Rev. Anticancer Ther. 2018, 18, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Selinger, C.I.; Li, B.T.; Pavlakis, N.; Links, M.; Gill, A.J.; Lee, A.; Clarke, S.; Tran, T.N.; Lum, T.; Yip, P.Y.; et al. Screening for ROS1 gene rearrangements in non-small-cell lung cancers using immunohistochemistry with FISH confirmation is an effective method to identify this rare target. Histopathology 2017, 70, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.H.; Tan, J.; Yen, Y.; Soo, R.A. ROS1 as a ‘druggable’ receptor tyrosine kinase: Lessons learned from inhibiting the ALK pathway. Expert Rev. Anticancer Ther. 2012, 12, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Cappuzzo, F.; Ou, S.I.; Camidge, D.R. Targeting MET in lung cancer: Will expectations finally be MET? J. Thorac. Oncol. 2017, 12, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.R.; Bahcall, M.; Capelletti, M.; Kosaka, T.; Ercan, D.; Sim, T.; Sholl, L.M.; Nishino, M.; Johnson, B.E.; Gray, N.S.; et al. Identification of existing drugs that effectively target NTRK1 and ROS1 rearrangements in lung cancer. Clin. Cancer Res. 2017, 23, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Katayama, R.; Kobayashi, Y.; Friboulet, L.; Lockerman, E.L.; Koike, S.; Shaw, A.T.; Engelman, J.A.; Fujita, N. Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin. Cancer Res. 2015, 21, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Hong, D.S.; Meric-Bernstam, F. Clinical activity of ceritinib in ROS1-rearranged non-small cell lung cancer: Bench to bedside report. Proc. Natl. Acad. Sci. USA 2016, 113, E1419–E1420. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Kim, H.; Lee, J.; Lee, K.; Lee, Y.; Min, Y.; Cho, E.; Lee, S.; Kim, B.; Choi, M.; et al. Open-label, multicenter, phase II study of ceritinib in patients with non-small-cell lung cancer harboring ROS1 rearrangement. J. Clin. Oncol. 2017, 35, 2613–2618. [Google Scholar] [CrossRef] [PubMed]
- Luk, P.P.; Yu, B.; Ng, C.C.; Mercorella, B.; Selinger, C.; Lum, T.; Kao, S.; O’Toole, S.A.; Cooper, W.A. BRAF mutations in non-small cell lung cancer. Transl. Lung Cancer Res. 2015, 4, 142–148. [Google Scholar] [PubMed]
- Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D’Amelio, A.M.; Zhang, P.; Mookerjee, B.; et al. Dabrafenib plus trametinib in patients with previously untreated BRAF V600E -mutant metastatic non-small-cell lung cancer: An open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef]
- Odogwu, L.; Mathieu, L.; Blumenthal, G.; Larkins, E.; Goldberg, K.B.; Griffin, N.; Bijwaard, K.; Lee, E.Y.; Philip, R.; Jiang, X.; et al. FDA Approval summary: Dabrafenib and trametinib for the treatment of metastatic non-small cell lung cancers harboring BRAF V600E mutations. Oncologist 2018. [Google Scholar] [CrossRef] [PubMed]
- Yip, P.Y.; Yu, B.; Cooper, W.A.; Selinger, C.I.; Ng, C.C.; Kennedy, C.W.; Kohonen-Corish, M.R.; McCaughan, B.C.; Trent, R.J.; Boyer, M.J.; et al. Patterns of DNA mutations and ALK rearrangement in resected node negative lung adenocarcinoma. J. Thorac. Oncol. 2013, 8, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.; Selinger, C.I.; Kohonen-Corish, M.R.; McCaughan, B.; Kennedy, C.; O’Toole, S.A.; Cooper, W.A. Alterations of MET gene copy number and protein expression in primary non-small-cell lung cancer and corresponding nodal metastases. Clin. Lung Cancer 2016, 17, 30–38.e1. [Google Scholar] [CrossRef] [PubMed]
- Saffroy, R.; Fallet, V.; Girard, N.; Mazieres, J.; Sibilot, D.; Lantuejoul, S.; Rouquette, I.; Thivolet-Bejui, F.; Vieira, T.; Antoine, M.; et al. MET exon 14 mutations as targets in routine molecular analysis of primary sarcomatoid carcinoma of the lung. Oncotarget 2017, 8, 42428–42437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thunnissen, E.; van der Oord, K.; den Bakker, M. Prognostic and predictive biomarkers in lung cancer. A review. Virchows Arch. 2014, 464, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Roach, C.; Zhang, N.; Corigliano, E.; Jansson, M.; Toland, G.; Ponto, G.; Dolled-Filhart, M.; Emancipator, K.; Stanforth, D.; Kulangara, K. Development of a companion diagnostic PD-L1 immunohistochemistry assay for pembrolizumab therapy in non-small-cell lung cancer. Appl. Immunohistochem. Mol. Morphol. 2016, 24, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, V. Next-generation covalent irreversible kinase inhibitors in NSCLC: Focus on afatinib. BioDrugs 2015, 29, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Rimm, D.L.; Han, G.; Taube, J.M.; Yi, E.S.; Bridge, J.A.; Flieder, D.B.; Homer, R.; West, W.W.; Wu, H.; Roden, A.C.; et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 2017, 3, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Hendry, S.; Byrne, D.; Wright, G.; Young, R.; Sturrock, S.; Cooper, W.; Fox, S. Comparison of four PD-L1 immunohistochemical assays in lung cancer. J. Thorac. Oncol. 2018, 13, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Cooper, W.A.; Russell, P.A.; Cherian, M.; Duhig, E.E.; Godbolt, D.; Jessup, P.J.; Khoo, C.; Leslie, C.; Mahar, A.; Moffat, D.F.; et al. Intra- and interobserver reproducibility assessment of PD-L1 biomarker in non-small cell lung cancer. Clin. Cancer Res. 2017, 23, 4569–4577. [Google Scholar] [CrossRef] [PubMed]
- Kazandjian, D.; Suzman, D.L.; Blumenthal, G.; Mushti, S.; He, K.; Libeg, M.; Keegan, P.; Pazdur, R. FDA approval summary: Nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist 2016, 21, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. Cancer immunotherapy, part 3: Challenges and future trends. Pharm. Ther. 2017, 42, 514–521. [Google Scholar]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Higgs, B.W.; Morehouse, C.; Streicher, K.L.; Brohawn, P.; Pilataxi, F.; Gupta, A.; Ranade, K. Interferon gamma messenger RNA signature in tumor biopsies predicts outcomes in patients with non-small-cell lung carcinoma or urothelial cancer treated with durvalumab. Clin. Cancer Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Ciuleanu, T.E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 2018. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Alteration of Interest | Assay | Frequency in NSCLC | FDA-Approved Targeted Therapies for NSCLC * |
---|---|---|---|---|
EGFR | Exon 19 deletion L858R point mutation in exon 21 L861Q point mutation in exon 21 G719X in exon 18 Other rarer activating mutations | PCR based mutation testing | ~15% in Western populations ~35–50% in Asian populations | Erlotinib Afatinib Gefitinib Necitumumab |
EGFR | T790M mutation in exon 20 | PCR based mutation testing | 60% in patients with disease progression following EGFR TKI | Osimertinib |
ALK | ALK rearrangement | IHC ± FISH | 3–7% | Crizotinib Ceritinib Alectinib Brigatinib |
ROS1 | ROS1 rearrangement | IHC screening and FISH confirmation | 1–2% | Crizotinib |
BRAF | V600E mutation | PCR based mutation testing | 1–3% | Dabrafenib Trametinib |
PD-L1 | High protein expression | IHC | ~30% ** | Pembrolizumab |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadzada, T.; Kao, S.; Reid, G.; Boyer, M.; Mahar, A.; Cooper, W.A. An Update on Predictive Biomarkers for Treatment Selection in Non-Small Cell Lung Cancer. J. Clin. Med. 2018, 7, 153. https://doi.org/10.3390/jcm7060153
Ahmadzada T, Kao S, Reid G, Boyer M, Mahar A, Cooper WA. An Update on Predictive Biomarkers for Treatment Selection in Non-Small Cell Lung Cancer. Journal of Clinical Medicine. 2018; 7(6):153. https://doi.org/10.3390/jcm7060153
Chicago/Turabian StyleAhmadzada, Tamkin, Steven Kao, Glen Reid, Michael Boyer, Annabelle Mahar, and Wendy A. Cooper. 2018. "An Update on Predictive Biomarkers for Treatment Selection in Non-Small Cell Lung Cancer" Journal of Clinical Medicine 7, no. 6: 153. https://doi.org/10.3390/jcm7060153
APA StyleAhmadzada, T., Kao, S., Reid, G., Boyer, M., Mahar, A., & Cooper, W. A. (2018). An Update on Predictive Biomarkers for Treatment Selection in Non-Small Cell Lung Cancer. Journal of Clinical Medicine, 7(6), 153. https://doi.org/10.3390/jcm7060153