Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly
Abstract
:1. Introduction
2. Pre-Clinical Evidence
2.1. Thyroid Hormones and Thyroid-Stimulating Hormone
2.2. Glucocorticoids and Adrenocorticotropin Hormone
2.3. Sex Hormones and Gonadotropins
2.4. Parathyroid Hormone and Vitamin D
2.5. Insulin-Like Growth Factor 1
3. Hormonal Changes in the Elderly
3.1. Thyroid Hormones and Thyroid-Stimulating Hormone
3.2. Glucocorticoids
3.3. Sex Hormones and Gonadotropins
3.4. Parathyroid Hormone and Vitamin D
3.5. Insulin-Like Growth Factor 1
4. Management of Osteoporosis: Novel Possible Targets
5. Conclusions
Funding
Conflicts of Interest
References
- Consensus, A. Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 1993, 94, 646–650. [Google Scholar]
- World Health Organization. Assessment of Fracture Risk and its Application to Screening for Postmenopausal Osteoporosis: Report of a WHO Study Group. Proceedings of World Health Organization Technical Report Series, Rome, Italy, 22–24 June 1992; pp. 1–129. [Google Scholar]
- Eriksen, E.F. Normal and pathological remodeling of human trabecular bone: Three dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocr. Rev. 1976, 7, 379–408. [Google Scholar] [CrossRef] [PubMed]
- Hattner, R.; Epker, B.N.; Frost, H.M. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 1965, 206, 489–490. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: The bone modeling problem. Anat. Rec. 1990, 226, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Takahashi, H.E.; Ito, A.; Saito, N.; Nawata, M.; Horiuchi, H.; Ohta, H.; Ito, A.; Iorio, R.; Yamamoto, N.; et al. Trabecular minimodeling in human iliac bone. Bone 2003, 32, 163–169. [Google Scholar] [CrossRef]
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef]
- Brunetti, G.; D’Amato, G.; Chiarito, M.; Tullo, A.; Colaianni, G.; Colucci, S.; Grano, M.; Faienza, M.F. An update on the role of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways in pediatric diseases. World J. Pediatr. 2019, 15, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Roggia, C.; Gao, Y.; Cenci, S.; Weitzmann, M.N.; Toraldo, G.; Isaia, G.; Pacifici, R. Up-regulation of TNF-producing T cells in the bone marrow: A key mechanism by which estrogen deficiency induces bone loss in vivo. Proc. Natl. Acad. Sci. USA 2001, 98, 13960–13965. [Google Scholar] [CrossRef]
- Cenci, S.; Toraldo, G.; Weitzmann, M.N.; Roggia, C.; Gao, Y.; Qian, W.P.; Sierra, O.; Pacifici, R. Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc. Natl. Acad. Sci. USA 2003, 100, 10405–10410. [Google Scholar] [CrossRef]
- Greenspan, S.L.; Greenspan, F.S. The effect of thyroid hormone on skeletal integrity. Ann. Intern. Med. 1999, 130, 750–758. [Google Scholar] [CrossRef]
- Bordier, P.; Miravet, L.; Matrajt, H.; Hioco, D.; Ryckewaert, A. Bone changes in adult patients with abnormal thyroid function (with special reference to 45Ca kinetics and quantitative histology). Proc. R. Soc. Med. 1967, 60, 1132–1134. [Google Scholar] [PubMed]
- Sato, K.; Han, D.C.; Fujii, Y.; Tsushima, T.; Shizume, K. Thyroid hormone stimulates alkaline phosphatase activity in cultured rat osteoblastic cells (ROS 17/2.8) through 3,5,3’-triiodo-L-thyronine nuclear receptors. Endocrinology 1987, 120, 1873–1881. [Google Scholar] [CrossRef] [PubMed]
- Britto, J.M.; Fenton, A.J.; Holloway, W.R.; Nicholson, G.C. Osteoblasts mediate thyroid hormone stimulation of osteoclastic bone resorption. Endocrinology 1994, 134, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Göthe, S.; Wang, Z.; Ng, L.; Kindblom, J.M.; Barros, A.C.; Ohlsson, C.; Vennström, B.; Forrest, D. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev. 1999, 13, 1329–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, E.; Marians, R.C.; Yu, W.; Wu, X.B.; Ando, T.; Li, Y.; Iqbal, J.; Eldeiry, L.; Rajendren, G.; Blair, H.C.; et al. TSH is a negative regulator of skeletal remodeling. Cell 2003, 115, 151–162. [Google Scholar] [CrossRef]
- Chen, Y.H.; Peng, S.Y.; Cheng, M.T.; Hsu, Y.P.; Huang, Z.X.; Cheng, W.T.; Wu, S.C. Different susceptibilities of osteoclasts and osteoblasts to glucocorticoid-induced oxidative stress and mitochondrial alterations. Chin. J. Physiol. 2019, 62, 70–79. [Google Scholar] [PubMed]
- Pan, J.M.; Wu, L.G.; Cai, J.W.; Wu, L.T.; Liang, M. Dexamethasone suppresses osteogenesis of osteoblast via the PI3K/Akt signaling pathway in vitro and in vivo. J. Recept. Signal Transduct. Res. 2019, 39, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Lane, N.E. Glucocorticoid-Induced Osteoporosis: New Insights into the Pathophysiology and Treatments. Curr. Osteoporos. Rep. 2019, 17, 1–7. [Google Scholar] [CrossRef]
- Nie, Z.; Chen, S.; Peng, H. Glucocorticoid induces osteonecrosis of the femoral head in rats through GSK3β-mediated osteoblast apoptosis. Biochem. Biophys. Res. Commun. 2019, 511, 693–699. [Google Scholar] [CrossRef]
- Zaidi, M.; Sun, L.; Robinson, L.J.; Tourkova, I.L.; Liu, L.; Wang, Y.; Zhu, L.L.; Liu, X.; Li, J.; Peng, Y.; et al. ACTH protects against glucocorticoid-induced osteonecrosis of bone. Proc. Natl. Acad. Sci. USA 2010, 107, 8782–8787. [Google Scholar] [CrossRef] [Green Version]
- Tourkova, I.L.; Liu, L.; Sutjarit, N.; Larrouture, Q.C.; Luo, J.; Robinson, L.J.; Blair, H.C. Adrenocorticotropic hormone and 1,25-dihydroxyvitamin D3 enhance human osteogenesis in vitro by synergistically accelerating the expression of bone-specific genes. Lab. Investig. 2017, 97, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Isales, C.M.; Zaidi, M.; Blair, H.C. ACTH is a novel regulator of bone mass. Ann. N. Y. Acad. Sci. 2010, 1192, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Shevde, N.K.; Bendixen, A.C.; Dienger, K.M.; Pike, J.W. Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc. Natl. Acad. Sci. USA 2000, 97, 7829–7834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Toraldo, G.; Weitzmann, M.N.; Cenci, S.; Ross, F.P.; Pacifici, R. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J. Biol. Chem. 2001, 276, 8836–8840. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Imai, Y.; Matsumoto, T.; Sato, S.; Takeuchi, K.; Igarashi, K.; Harada, Y.; Azuma, Y.; Krust, A.; Yamamoto, Y.; et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 2007, 130, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.; Iyer, S.; Martin-Millan, M.; Bartell, S.M.; Han, L.; Ambrogini, E.; Onal, M.; Xiong, J.; Weinstein, R.S.; Jilka, R.L.; et al. Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J. Clin. Investig. 2013, 123, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Streicher, C.; Heyny, A.; Andrukhova, O.; Haigl, B.; Slavic, S.; Schüler, C.; Kollmann, K.; Kantner, I.; Sexl, V.; Kleiter, M.; et al. Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells. Sci. Rep. 2017, 7, 6460. [Google Scholar] [CrossRef]
- Wiren, K.M.; Zhang, X.W.; Olson, D.A.; Turner, R.T.; Iwaniec, U.T. Androgen prevents hypogonadal bone loss via inhibition of resorption mediated by mature osteoblasts/osteocytes. Bone 2012, 51, 835–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCauley, L.K.; Tözüm, T.F.; Rosol, T.J. Estrogen receptors in skeletal metabolism: Lessons from genetically modified models of receptor function. Crit. Rev. Eukaryot. Gene Expr. 2002, 12, 89–100. [Google Scholar] [CrossRef]
- Windahl, S.H.; Andersson, G.; Gustafsson, J.A. Elucidation of estrogen receptor function in bone with the use of mouse models. Trends Endocrinol. Metab. 2002, 13, 195–200. [Google Scholar] [CrossRef]
- Lindberg, M.K.; Alatalo, S.L.; Halleen, J.M.; Mohan, S.; Gustafsson, J.A.; Ohlsson, C. Estrogen receptor specificity in the regulation of the skeleton in female mice. J. Endocrinol. 2001, 171, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, J.K.; Chen, M.M.; Aloia, J.F. Ovariectomy-induced high turnover in cortical bone is dependent on pituitary hormone in rats. Bone 1996, 18, 443–450. [Google Scholar] [CrossRef]
- Yeh, J.K.; Chen, M.M.; Aloia, J.F. Effects of 17 beta-estradiol administration on cortical and cancellous bone of ovariectomized rats with and without hypophysectomy. Bone 1997, 20, 413–420. [Google Scholar] [CrossRef]
- Sun, L.; Peng, Y.; Sharrow, A.C.; Iqbal, J.; Zhang, Z.; Papachristou, D.J.; Zaidi, S.; Zhu, L.L.; Yaroslavskiy, B.B.; Zhou, H.; et al. FSH directly regulates bone mass. Cell 2006, 125, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.-L.; Blair, H.; Cao, J.; Yuen, T.; Latif, R.; Guo, L.; Tourkova, I.L.; Li, J.; Davies, T.F.; Sun, L.; et al. Blocking antibody to the β-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc. Natl. Acad. Sci. USA 2012, 109, 14574–14579. [Google Scholar] [CrossRef] [PubMed]
- Yarram, S.J.; Perry, M.J.; Christopher, T.J.; Westby, K.; Brown, N.L.; Lamminen, T.; Rulli, S.B.; Zhang, F.-P.; Huhtaniemi, I.; Sandy, J.R.; et al. Luteinizing hormone receptor knockout (LuRKO) mice and transgenic human chorionic gonadotropin (hCG) overexpressing mice (hCGαβ+) have bone phenotypes. Endocrinology 2003, 144, 3555–3564. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.C.; Bilezikian, J.P. Parathyroid hormone: Anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol. 2015, 22, 41–50. [Google Scholar] [CrossRef]
- Lips, P. Vitamin D physiology. Prog. Biophys. Mol. Biol. 2006, 92, 4–8. [Google Scholar] [CrossRef]
- Gardinier, J.D.; Daly-Seiler, C.; Rostami, N.; Kundal, S.; Zhang, C. Loss of the PTH/PTHrP receptor along the osteoblast lineage limits the anabolic response to exercise. PLoS ONE 2019, 14, e0211076. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Yoshizawa, T.; Fukuda, T.; Shirode-Fukuda, Y.; Yu, T.; Sekine, K.; Sato, T.; Kawano, H.; Aihara, K.; et al. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology 2013, 154, 1008–1020. [Google Scholar] [CrossRef]
- Nakamichi, Y.; Udagawa, N.; Horibe, K.; Mizoguchi, T.; Yamamoto, Y.; Nakamura, T.; Hosoya, A.; Kato, S.; Suda, T.; Takahashi, N. VDR in Osteoblast-Lineage Cells Primarily Mediates Vitamin D Treatment-Induced Increase in Bone Mass by Suppressing Bone Resorption. J. Bone Miner. Res. 2017, 32, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Yakar, S.; Werner, H.; Rosen, C.J. Insulin-like growth factors: Actions on the skeleton. J. Mol. Endocrinol. 2018, 61, 115–137. [Google Scholar] [CrossRef] [PubMed]
- Tunbridge, W.M.G.; Evered, D.C.; Hall, R.; Appleton, D.; Brewis, M.; Clark, F.; Evans, J.G.; Young, E.; Bird, T.; Smith, P.A. The spectrum of thyroid disease in a community: The Whickham survey. Clin. Endocrinol. 1977, 7, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Hollowell, J.G.; Staehling, N.W.; Flanders, W.D.; Hannon, W.H.; Gunter, E.W.; Spencer, C.A.; Braverman, L.E. Serum TSH, T (4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 2002, 87, 489–499. [Google Scholar] [CrossRef]
- Bremner, A.P.; Feddema, P.; Leedman, P.J.; Brown, S.J.; Beilby, J.P.; Lim, E.M.; Wilson, S.G.; O’Leary, P.C.; Walsh, J.P. Age-related changes in thyroid function: A longitudinal study of a community-based cohort. J. Clin. Endocrinol. Metab. 2012, 97, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- Waring, A.C.; Harrison, S.; Samuels, M.H.; Ensrud, K.E.; LeBLanc, E.S.; Hoffman, A.R.; Orwoll, E.; Fink, H.A.; Barrett-Connor, E.; Bauer, D.C.; et al. Osteoporotic Fractures in Men (MrOS) Study. Thyroid function and mortality in older men: A prospective study. J. Clin. Endocrinol. Metab. 2012, 97, 862–870. [Google Scholar] [CrossRef]
- Surks, M.I.; Hollowell, J.G. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: Implications for the prevalence of subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 2007, 92, 4575–4582. [Google Scholar] [CrossRef]
- Ingoe, L.; Phipps, N.; Armstrong, G.; Rajagopal, A.; Kamali, F.; Razvi, S. Prevalence of treated hypothyroidism in the community: Analysis from general practices in North-East England with implications for the United Kingdom. Clin. Endocrinol. 2017, 87, 860–864. [Google Scholar] [CrossRef]
- Laurberg, P.; Pedersen, K.M.; Vestergaard, H.; Sigurdsson, G. High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area vs. high incidence of Graves’ disease in the young in a high iodine intake area: Comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland. J. Intern. Med. 1991, 229, 415–420. [Google Scholar]
- Tabatabaie, V.; Surks, M.I. The aging thyroid. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 455–459. [Google Scholar] [CrossRef]
- Yiallouris, A.; Tsioutis, C.; Agapidaki, E.; Zafeiri, M.; Agouridis, A.P.; Ntourakis, D.; Johnson, E.O. Adrenal Aging and Its Implications on Stress Responsiveness in Humans. Front. Endocrinol. 2019, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Piazza, J.R.; Almeida, D.M.; Dmitrieva, N.O.; Klein, L.C. Frontiers in the Use of Biomarkers of Health in Research on Stress and Aging. J. Gerontol. B Psychol. Sci. Soc. Sci. 2010, 65, 513–525. [Google Scholar] [CrossRef]
- Nater, U.M.; Hoppmann, C.A.; Scott, S.B. Diurnal profiles of salivary cortisol and alpha-amylase change across the adult lifespan: Evidence from repeated daily life assessments. Psychoneuroendocrinology 2013, 38, 3167–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cauter, E.; Leproult, R.; Kupfer, D.J. Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J. Clin. Endocrinol. Metab. 1996, 81, 2468–2473. [Google Scholar] [PubMed]
- Van Coevorden, A.; Mockel, J.; Laurent, E.; Kerkhofs, M.; L’Hermite-Balériaux, M.; DeCoster, C.; Nève, P.; Van Cauter, E. Neuroendocrine rhythms and sleep in aging men. Am. J. Physiol. 1991, 260, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E.; Cravello, L.; Falvo, F.; Barili, L.; Solerte, S.; Fioravanti, M.; Magri, F. Neuroendocrine features in extreme longevity. Exp. Gerontol. 2008, 43, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Van den Beld, A.W.; Kaufman, J.-M.; Zillikens, M.C.; Lamberts, S.W.J.; Egan, J.M.; van der Lely, A.J. The physiology of endocrine systems with aging. Lancet Diabetes Endocrinol. 2018, 6, 647–658. [Google Scholar] [CrossRef]
- Ferrari, E.; Cravello, L.; Muzzoni, B.; Casarotti, D.; Paltro, M.; Solerte, S.; Fioravanti, M.; Cuzzoni, G.; Pontiggia, B.; Magri, F. Age-related changes of the hypothalamic-pituitary-adrenal axis: Pathophysiological correlates. Eur. J. Endocrinol. 2001, 144, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Feldman, H.A.; Longcope, C.; Derby, C.A.; Johannes, C.B.; Araujo, A.B.; Coviello, A.D.; Bremner, W.J.; McKinlay, J.B. Age trends in the level of serum testosterone and other hormones in middle-aged men: Longitudinal results from the Massachusetts male aging study. J. Clin. Endocrinol. Metab. 2002, 87, 589–598. [Google Scholar] [CrossRef]
- O’Donnell, A.B.; Araujo, A.B.; McKinlay, J.B. The health of normally aging men: The Massachusetts Male Aging Study (1987–2004). Exp. Gerontol. 2004, 39, 975–984. [Google Scholar] [CrossRef]
- Belchetz, P.E.; Barth, J.H.; Kaufman, J.M. Biochemical endocrinology of the hypogonadal male. Ann. Clin. Biochem. 2010, 47, 503–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, A.; Feldman, H.A.; McKinlay, J.B.; Longcope, C. Age, disease, and changing sex hormone levels in middle-aged men: Results of the Massachusetts Male Aging Study. J. Clin. Endocrinol. Metab. 1991, 73, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Travison, T.G.; Araujo, A.B.; Kupelian, V.; O’Donnell, A.B.; McKinlay, J.B. The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J. Clin. Endocrinol. Metab. 2007, 92, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Nieschlag, E.; Swerdloff, R.S.; Behre, H.; Hellstrom, W.J.; Gooren, L.J.; Kaufman, J.M.; Legros, J.-J.; Lunenfeld, B.; Morales, A.; et al. ISA, ISSAM, EAU, EAA and ASA recommendations: Investigation, treatment and monitoring of late-onset hypogonadism in males. Int. J. Impot. Res. 2009, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.C.; Tajar, A.; Beynon, J.M.; Pye, S.R.; Silman, A.J.; Finn, J.D.; O’Neill, T.W.; Bartfai, G.; Casanueva, F.F.; Forti, G.; et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N. Engl. J. Med. 2010, 363, 123–135. [Google Scholar] [CrossRef]
- Tajar, A.; Huhtaniemi, I.T.; O’Neill, T.W.; Finn, J.D.; Pye, S.R.; Lee, D.M.; Bartfai, G.; Boonen, S.; Casanueva, F.F.F.; Forti, G.; et al. Characteristics of androgen deficiency in late-onset hypogonadism: Results from the European Male Aging Study (EMAS). J. Clin. Endocrinol. Metab. 2012, 97, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Zane, R.S.; Petty, C.S.; Neaves, W.B. Quantification of the human Sertoli cell population: Its distribution, relation to germ cell numbers, and age-related decline. Biol. Reprod. 1984, 31, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Neaves, W.B.; Johnson, L.; Porter, J.C.; Parker, C.R., Jr.; Petty, C.S. Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J. Clin. Endocrinol. Metab. 1984, 59, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Huhtaniemi, I. Late-onset hypogonadism: Current concepts and controversies of pathogenesis, diagnosis and treatment. Asian J. Androl. 2014, 16, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Fraser, W.D. Hyperparathyroidism. Lancet 2009, 374, 145–158. [Google Scholar] [CrossRef]
- Bullamore, J.R.; Wilkinson, R.; Gallagher, J.C.; Nordin, B.E.; Marshall, D.H. Effect of age on calcium absorption. Lancet 1970, 2, 535–537. [Google Scholar] [CrossRef]
- MacLaughlin, J.; Holick, M.F. Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Investig. 1985, 76, 1536–1538. [Google Scholar] [CrossRef]
- Zhou, C.; Assem, M.; Tay, J.C.; Watkins, P.B.; Blumberg, B.; Schuetz, E.G.; Thummel, K.E. Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug induced osteomalacia. J. Clin. Investig. 2006, 116, 1703–1712. [Google Scholar] [CrossRef]
- Francis, R.M.; Peacock, M.; Barkworth, S.A. Renal impairment and its effects on calcium metabolism in elderly women. Age Ageing 1984, 13, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Rosen, C.J.; Black, D.M.; Cheung, A.M.; Murad, M.H.; Shoback, D. Pharmacological Management of Osteoporosis in Postmenopausal Women: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2019, 104, 1595–1622. [Google Scholar] [CrossRef]
- Epstein, S.; Bryce, G.; Hinman, J.; Miller, O.; Riggs, B.; Hui, S.; Johnston, C. The influence of age on bone mineral regulating hormones. Bone 1986, 7, 421–425. [Google Scholar] [CrossRef]
- Van Abel, M.; Huybers, S.; Hoenderop, J.G.; van der Kemp, A.W.; van Leeuwen, J.P.; Bindels, R.J. Age-dependent alterations in Ca2+ homeostasis: Role of TRPV5 and TRPV6. Am. J. Physiol. Renal. Physiol. 2006, 291, 1177–1183. [Google Scholar] [CrossRef]
- Sonntag, W.E.; Lynch, C.D.; Cefalu, W.T.; Ingram, R.L.; Bennett, S.A.; Thornton, P.L.; Khan, A.S. Pleiotropic effects of growth hormone and insulin-like growth factor (IGF)-1 on biological aging: Inferences from moderate caloric-restricted animals. J. Gerontol. A Biol. Sci. Med. Sci. 1999, 54, 521–538. [Google Scholar] [CrossRef]
- Chigogora, S.; Zaninotto, P.; Kivimaki, M.; Steptoe, A.; Batty, G.D. Insulin-like growth factor 1 and risk of depression in older people: The English Longitudinal Study of Ageing. Transl. Psychiatry 2016, 6, e898. [Google Scholar] [CrossRef]
- La Vignera, S.; Condorelli, R.A.; Vicari, E.; Nicoletti, C.; Calogero, A.E. Bone demineralization in postmenopausal women: Role of anamnestic risk factors. Int. J. Endocrinol. 2012, 2012, 837187. [Google Scholar] [CrossRef]
- La Vignera, S.; Vicari, E.; Tumino, S.; Ciotta, L.; Condorelli, R.; O Vicari, L.; E Calogero, A. L-thyroxin treatment and post-menopausal osteoporosis: Relevance of the risk profile present in clinical history. Minerva Ginecol. 2008, 60, 475–484. [Google Scholar] [PubMed]
- Weinstein, R.S.; Manolagas, S.C. Apoptosis and osteoporosis. Am. J. Med. 2000, 108, 153–164. [Google Scholar] [CrossRef]
- Watts, N.B.; Adler, R.A.; Bilezikian, J.P.; Drake, M.T.; Eastell, R.; Orwoll, E.S.; Finkelstein, J.S. Endocrine Society. Osteoporosis in men: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2012, 97, 1802–1822. [Google Scholar] [CrossRef] [PubMed]
- Langlois, J.A.; Rosen, C.J.; Visser, M.; Hannan, M.T.; Harris, T.; Wilson, P.W.; Kiel, D.P. Association between insulin-like growth factor I and bone mineral density in older women and men: The Framingham Heart Study. J. Clin. Endocrinol. Metab. 1998, 83, 4257–4262. [Google Scholar] [CrossRef] [PubMed]
- Garnero, P.; Sornay-Rendu, E.; Claustrat, B.; Delmas, P.D. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: The OFELY study. J. Bone Miner. Res. 2000, 15, 1526–1536. [Google Scholar] [CrossRef]
- Szulc, P.; Joly-Pharaboz, M.O.; Marchand, F.; Delmas, P.D. Insulin-like growth factor I is a determinant of hip bone mineral density in men less than 60 years of age: MINOS study. Calcif. Tiss. Int. 2004, 74, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, W.; Yu, C.; Zhang, X.; Zhang, H.; Guan, Q.; Zhao, J.; Xu, J. Follicle-Stimulating Hormone Increases the Risk of Postmenopausal Osteoporosis by Stimulating Osteoclast Differentiation. PLoS ONE 2015, 10, e0134986. [Google Scholar] [CrossRef]
- Recker, R.; Lappe, J.; Davies, K.M.; Heaney, R. Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J. Bone Miner. Res. 2004, 19, 1628–1633. [Google Scholar] [CrossRef]
- Rendina, D.; Gianfrancesco, F.; De Filippo, G.; Merlotti, D.; Esposito, T.; Mingione, A.; Nuti, R.; Strazzullo, P.; Mossetti, G.; Gennari, L. FSHR gene polymorphisms influence bone mineral density and bone turnover in postmenopausal women. Eur. J. Endocrinol. 2010, 163, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Karim, N.; MacDonald, D.; Dolan, A.L.; Fogelman, I.; Wierzbicki, A.S.; Hampson, G. The relationship between gonadotrophins, gonadal hormones and bone mass in men. Clin. Endocrinol. 2008, 68, 94–101. [Google Scholar] [CrossRef]
- Hsu, B.; Naganathan, V.; Bleicher, K.; Dave, A.; Cumming, R.G.; Seibel, M.J.; Blyth, F.M.; Le Couteur, D.G.; Waite, L.M.; Handelsman, D.J. Reproductive Hormones and Longitudinal Change in Bone Mineral Density and Incident Fracture Risk in Older Men: The Concord Health and Aging in Men Project. J. Bone Miner. Res. 2015, 30, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Bonomi, M.; Rochira, V.; Pasquali, D.; Balercia, G.; Jannini, E.A.; Ferlin, A.; on behalf of the Klinefelter ItaliaN Group (KING). Klinefelter syndrome (KS): Genetics, clinical phenotype and hypogonadism. J. Endocrinol. Investig. 2016, 40, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Ciccarelli, F.; De Martinis, M.; Ginaldi, L. Glucocorticoids in Patients with Rheumatic Diseases: Friends or Enemies of Bone? Curr. Med. Chem. 2015, 22, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Ginaldi, L.; De Martinis, M.; Ciccarelli, F.; Saitta, S.; Imbesi, S.; Mannucci, C.; Gangemi, S. Increased levels of interleukin 31 (IL-31) in osteoporosis. BMC Immunol. 2015, 16, 60. [Google Scholar] [CrossRef] [PubMed]
Hormones | Molecular Action | Role |
---|---|---|
TSH | ↑osteoblast differentiation ↓osteoclast formation and survival | + |
Cortisol | ↓maturation, lifespan, and function of osteoblast | − |
Estradiol | ↑osteoblast proliferation and differentiation ↓osteoclast differentiation | + |
Testosterone | ↑osteoblast proliferation and differentiation | + |
FSH | ↑osteoblast proliferation | − |
LH | Unclear | Unclear |
Parathyroid hormone | ↑osteoclast proliferation ↑osteoblast proliferation | − |
Vitamin D | ↑osteoblast differentiation | + |
IGF1 | ↑osteoblast proliferation and differentiation ↑osteoblast proliferation | + |
Hormones | Changes during Aging |
---|---|
TSH | ↑ |
Cortisol | ↑ |
17ß-Estradiol | ↓ |
Testosterone | ↓ |
FSH | ↑ |
LH | ↑ |
Vitamin D | ↓ |
Parathyroid hormone | ↑ |
IGF1 | ↓ |
Drug | Dose | Route of Administration | Side Effects | Indications |
---|---|---|---|---|
Alendronate | 10 mg/day or 70 mg/week | Oral | Atypical femoral fracture, osteonecrosis of the jaw, gastrointestinal symptoms, muscle and joint pain | Treatment of osteoporosis in men and women |
Risedronate | 5 mg/day or 35 mg/weekly or 75 mg on 2 consecutive days once a month | Oral | Atypical femoral fracture, osteonecrosis of the jaw, gastrointestinal symptoms, muscle and joint pain | Treatment of osteoporosis in men and women |
Zoledronic acid | 5 mg every 12 months | IV (intravenous) | Atypical femoral fracture, osteonecrosis of the jaw, gastrointestinal symptoms, influenza-like symptoms, hypocalcemia | Treatment of osteoporosis in men at increased risk of fracture and women |
Denosumab | 60 mg every 6 months | SC (subcutaneous) | Atypical femoral fracture, osteonecrosis of the jaw, hypocalcemia, hypersensivity reactions | Treatment of osteoporosis in men and women. It might be the first option in the case of renal failure and high risk of fractures, and after failure or adverse events of other treatments |
Teriparatide | 20 or 40 µg/day | SC | Gastrointestinal symptoms, headache, dizziness, muscle pain, hypercalcemia, hypercalciuria, renal side effects | Severe osteoporosis at increased risk of fracture in patients who experience a new spine or hip fracture after 1 year of treatment with other anti-resorptive drugs |
Strontium Ranelate | 2 g/day | Oral | Increased risk for tromboembolic events and myocardial infarction, allergic reactions | Adult patients at high risk of fracture, for whom treatment with other drugs approved for the osteoporosis is not possible |
Testosterone | Minimal necessary dose to maintain T serum concentrations in the middle tertile of the normal physiological range | Various formulations | Male hypogonadism | |
SERMs (raloxifene) | 60 mg/day | Oral | Hot flushes, leg cramps, increased risk for thromboembolic events | Women with a low risk of deep vein thrombosis and for whom bisphosphonates or denosumab are not appropriate, or with a high risk of breast cancer |
Tibolone | 1.25 mg/day | Oral | Stroke, vaginal discharge, and bleeding | Women under 60 years of age or 10 years after menopause at high risk of fractures with climacteric symptoms |
Estrogen with or without progestogen | Oral conjugated equine estrogen: 0.625 mg/day; estradiol: 100 mg patch or 2 mg/day orally | Oral or transdermal | Venous thromboembolism, stroke, myocardial infarction, cancer (breast, endometrial, ovary), dementia, gallbladder disease, and urinary incontinence | Postmenopausal women (under 60 years of age or 10 years past menopause) at high risk of fracture (estrogens are suggested only in women with hysterectomy) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannarella, R.; Barbagallo, F.; Condorelli, R.A.; Aversa, A.; La Vignera, S.; Calogero, A.E. Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly. J. Clin. Med. 2019, 8, 1564. https://doi.org/10.3390/jcm8101564
Cannarella R, Barbagallo F, Condorelli RA, Aversa A, La Vignera S, Calogero AE. Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly. Journal of Clinical Medicine. 2019; 8(10):1564. https://doi.org/10.3390/jcm8101564
Chicago/Turabian StyleCannarella, Rossella, Federica Barbagallo, Rosita A. Condorelli, Antonio Aversa, Sandro La Vignera, and Aldo E. Calogero. 2019. "Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly" Journal of Clinical Medicine 8, no. 10: 1564. https://doi.org/10.3390/jcm8101564
APA StyleCannarella, R., Barbagallo, F., Condorelli, R. A., Aversa, A., La Vignera, S., & Calogero, A. E. (2019). Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly. Journal of Clinical Medicine, 8(10), 1564. https://doi.org/10.3390/jcm8101564