Follow-Up Recommendations after Curative Resection of Well-Differentiated Neuroendocrine Tumours: Review of Current Evidence and Clinical Practice
Abstract
:1. Introduction
2. How Large Is the “Resected” Population?
3. There Is a Need to Standardise Current Practice
4. Why? Rationale for Follow-Up
4.1. Resected PanNETs
4.2. Resected siNETs
4.3. Resected LungNETs
5. For Whom? Risk Stratification
5.1. Resected PanNETs
5.2. Resected siNETs
5.3. Resected LungNETs
6. How? Presurgical Staging and Follow-Up Tools
6.1. Currently-Available Biomarkers
6.2. The Evolving Role of Nuclear Medicine
7. Summary of Current Guidelines
8. Conclusions and Future Steps
Author Contributions
Funding
Conflicts of Interest
References
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Auernhammer, C.J.; Spitzweg, C.; Angele, M.K.; Boeck, S. Advanced neuroendocrine tumours of the small intestine and pancreas: Clinical developments, controversies, and future strategies. Lancet Diabetes Endocrinol. 2017, 6, 404–415. [Google Scholar] [CrossRef]
- Lloyd, R.V.; Osamura, R.Y.; Kloppel, G.; Rosai, J. WHO Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs; IARC: Lyon, France, 2017. [Google Scholar]
- Bosman, F.T.; Carneiro, F.; Hruban, R.H.; Theise, N.D. WHO Classification of Tumours of the Digestive System; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Rindi, G.; Klersy, C.; Inzani, F.; Fellegara, G. Grading the neuroendocrine tumors of the lung: An evidence-based proposal. Endocr. Relat. Cancer 2014, 21, 1–16. [Google Scholar] [CrossRef]
- Rindi, G.; Arnold, R.; Bosman, F.T.; Capella, C.; Klimstra, D.S.; Klöppel, G.; Komminoth, P.; Solcia, E. Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In WHO Classification of Tumours of the Digestive System, 4th ed.; Bosman, T.F., Carneiro, F., Hruban, R.H., Theise, N.D., Eds.; International Agency for Research on cancer (IARC): Lyon, France, 2010; p. 13. [Google Scholar]
- Klöppel, G.C.A.; Hruban, R.H. Neoplasms of the neuroendocrine pancreas. In WHO Classification of Tumours of the Endocrine Organs; IARC Press: Lyon, France, 2017; pp. 210–239. [Google Scholar]
- Travis WDBEM-HHKH. The concept of pulmonary neuroendocrine tumours. In Pathology & Genetics: Tumours of the Lung, Pleura, Thymus, and Heart; IARC Press: Lyon, France, 2004; p. 19. [Google Scholar]
- Pelosi, G.; Fabbri, A.; Cossa, M.; Sonzogni, A.; Valeri, B.; Righi, L.; Papotti, M. What clinicians are asking pathologists when dealing with lung neuroendocrine neoplasms? Semin. Diagn. Pathol. 2015, 32, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Clay, V.; Papaxoinis, G.; Sanderson, B.; Valle, J.W.; Howell, M.; Lamarca, A.; Krysiak, P.; Bishop, P.; Nonaka, D.; Mansoor, W. Evaluation of diagnostic and prognostic significance of Ki-67 index in pulmonary carcinoid tumours. Clin. Transl. Oncol. 2017, 19, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Caplin, M.E.; Baudin, E.; Ferolla, P.; Filosso, P.; Garcia-Yuste, M.; Lim, E.; Oberg, K.; Pelosi, G.; Perren, A.; Rossi, R.E.; et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann. Oncol. 2015, 26, 1604–1620. [Google Scholar] [CrossRef] [PubMed]
- Delle Fave, G.; O’Toole, D.; Sundin, A.; Taal, B.; Ferolla, P.; Ramage, J.K.; Ferone, D.; Ito, T.; Weber, W.; Zheng-Pei, Z.; et al. ENETS Consensus Guidelines Update for Gastroduodenal Neuroendocrine Neoplasms. Neuroendocrinology 2016, 103, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Carbonero, R.; Sorbye, H.; Baudin, E.; Raymond, E.; Wiedenmann, B.; Niederle, B.; Sedlackova, E.; Toumpanakis, C.; Anlauf, M.; Cwikla, J.B.; et al. ENETS Consensus Guidelines for High-Grade Gastroenteropancreatic Neuroendocrine Tumors and Neuroendocrine Carcinomas. Neuroendocrinology 2016, 103, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raman, V.; Jawitz, O.K.; Yang, C.J.; Tong, B.C.; D’Amico, T.A.; Berry, M.F.; Harpole, D.H., Jr. Adjuvant Therapy for Patients With Early Large Cell Lung Neuroendocrine Cancer: A National Analysis. Ann. Thorac. Surg. 2019, 108, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Arvold, N.D.; Willett, C.G.; Fernandez-del Castillo, C.; Ryan, D.P.; Ferrone, C.R.; Clark, J.W.; Blaszkowsky, L.S.; Deshpande, V.; Niemierko, A.; Allen, J.N.; et al. Pancreatic neuroendocrine tumors with involved surgical margins: Prognostic factors and the role of adjuvant radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e337–e343. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; Valle, J.W.; Eriksson, B.; Fazio, N.; Caplin, M.; Gorbounova, V.; OConnor, J.; Eriksson, B.; Sorbye, H.; Kulke, M.; et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Neoplasms: Systemic Therapy—Biotherapy and Novel Targeted Agents. Neuroendocrinology 2017, 105, 266–280. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.L.; Moody, L.; Segelov, E.; Metz, D.C.; Strosberg, J.R.; Pavlakis, N.; Singh, S. Follow-Up for Resected Gastroenteropancreatic Neuroendocrine Tumours: A Practice Survey of the Commonwealth Neuroendocrine Tumour Collaboration (CommNETS) and the North American Neuroendocrine Tumor Society (NANETS). Neuroendocrinology 2018, 107, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Sha, G. NCCN Guidelines Insights: Neuroendocrine and Adrenal Tumors, Version 2. J. Natl. Compr. Canc. Netw. 2018. Available online: http://oncolife.com.ua/doc/nccn/Neuroendocrine_Tumors.pdf (accessed on 27 September 2019). [CrossRef]
- Falconi, M.; Eriksson, B.; Kaltsas, G.; Bartsch, D.K.; Capdevila, J.; Caplin, M.; Kos-Kudla, B.; Kwekkeboom, D.; Rindi, G.; Klöppel, G.; et al. ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2016, 103, 153–171. [Google Scholar] [CrossRef] [PubMed]
- Partelli, S.; Bartsch, D.K.; Capdevila, J.; Chen, J.; Knigge, U.; Niederle, B.; Nieveen van Dijkum, E.J.M.; Pape, U.F.; Pascher, A.; Ramage, J.; et al. ENETS Consensus Guidelines for Standard of Care in Neuroendocrine Tumours: Surgery for Small Intestinal and Pancreatic Neuroendocrine Tumours. Neuroendocrinology 2017, 105, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Niederle, B.; Pape, U.F.; Costa, F.; Gross, D.; Kelestimur, F.; Knigge, U.; Öberg, K.; Pavel, M.; Perren, A.; Toumpanakis, C.; et al. ENETS Consensus Guidelines Update for Neuroendocrine Neoplasms of the Jejunum and Ileum. Neuroendocrinology 2016, 103, 125–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Moody, L.; Chan, D.L.; Metz, D.C.; Strosberg, J.; Asmis, T.; Bailey, D.L.; Bergsland, E.; Brendtro, K.; Carroll, R.; et al. Follow-up Recommendations for Completely Resected Gastroenteropancreatic Neuroendocrine Tumors. JAMA Oncol. 2018, 4, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Knigge, U.; Capdevila, J.; Bartsch, D.K.; Baudin, E.; Falkerby, J.; Kianmanesh, R.; Kos-Kudla, B.; Niederle, B.; Nieveen van Dijkum, E.; O’Toole, D.; et al. ENETS Consensus Recommendations for the Standards of Care in Neuroendocrine Neoplasms: Follow-Up and Documentation. Neuroendocrinology 2017, 105, 310–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatcheressian, J.L.; Hurley, P.; Bantug, E.; Esserman, L.J.; Grunfeld, E.; Halberg, F.; Hantel, A.; Henry, N.L.; Muss, H.B.; Smith, T.J.; et al. Breast cancer follow-up and management after primary treatment: American Society of Clinical Oncology clinical practice guideline update. J. Clin. Oncol. 2013, 31, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Aslam, R.; Biswas, A.; Blaxill, P. P74 Follow-up Of Lung Cancer Patients Post Surgery. Thorax 2014, 69, A108. [Google Scholar] [CrossRef]
- Godhi, S.; Godhi, A.; Bhat, R.; Saluja, S. Colorectal Cancer: Postoperative Follow-up and Surveillance. Indian J. Surg. 2017, 79, 234–237. [Google Scholar] [CrossRef]
- Frilling, A.; Modlin, I.M.; Kidd, M.; Russell, C.; Breitenstein, S.; Salem, R.; Kwekkeboom, D.; Lau, W.Y.; Klersy, C.; Vilgrain, V.; et al. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol. 2014, 15, e8–e21. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lim, S.H.; Lee, M.Y.; Kim, H.; Kim, M.; Kim, S.; Jung, H.A.; Sohn, I.; Gil, W.H.; Lee, J.E.; et al. Impact on Survival of Regular Postoperative Surveillance for Patients with Early Breast Cancer. Cancer Res. Treat. 2015, 47, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Primrose, J.N.; Perera, R.; Gray, A.; Rose, P.; Fuller, A.; Corkhill, A.; George, S.; Mant, D.; FACS Trial Investigators. Effect of 3 to 5 years of scheduled CEA and CT follow-up to detect recurrence of colorectal cancer: The FACS randomized clinical trial. JAMA 2014, 311, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Liu, L.; Wang, W.Q.; Xu, H.M.; Jin, K.Z.; Wu, C.T.; Qi, Z.H.; Zhang, S.R.; Liu, C.; Xu, J.Z.; et al. Novel recurrence risk stratification of resected pancreatic neuroendocrine tumor. Cancer Lett. 2018, 412, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Sho, S.; Court, C.M.; Winograd, P.; Toste, P.A.; Pisegna, J.R.; Lewis, M.; Donahue, T.R.; Hines, O.J.; Reber, H.A.; Dawson, D.W.; et al. A Prognostic Scoring System for the Prediction of Metastatic Recurrence Following Curative Resection of Pancreatic Neuroendocrine Tumors. J. Gastrointest. Surg. 2018, 23, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Genc, C.G.; Jilesen, A.P.; Partelli, S.; Falconi, M.; Muffatti, F.; van Kemenade, F.J.; van Eeden, S.; Verheij, J.; van Dieren, S.; van Eijck, C.H.J.; et al. A New Scoring System to Predict Recurrent Disease in Grade 1 and 2 Nonfunctional Pancreatic Neuroendocrine Tumors. Ann. Surg. 2018, 267, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Ausania, F.; Senra Del Rio, P.; Gomez-Bravo, M.A.; Martin-Perez, E.; Pérez-Daga, J.A.; Dorcaratto, D.; González-Nicolás, T.; Sanchez-Cabus, S.; Tardio-Baiges, A.; et al. Can we predict recurrence in WHO G1-G2 pancreatic neuroendocrine neoplasms? Results from a multi-institutional Spanish study. Pancreatology 2019, 19, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Marchegiani, G.; Landoni, L.; Andrianello, S.; Masini, G.; Cingarlini, S.; D’Onofrio, M.; De Robertis, R.; Davì, M.; Capelli, P.; Manfrin, E.; et al. Patterns of Recurrence after Resection for Pancreatic Neuroendocrine Tumors: Who, When, and Where? Neuroendocrinology 2019, 108, 161–171. [Google Scholar] [CrossRef]
- Singh, S.; Chan, D.L.; Moody, L.; Liu, N.; Fischer, H.D.; Austin, P.C.; Segelov, E. Recurrence in Resected Gastroenteropancreatic Neuroendocrine Tumors. JAMA Oncol. 2018, 4, 583–585. [Google Scholar] [CrossRef]
- Ter-Minassian, M.; Chan, J.A.; Hooshmand, S.M.; Brais, L.K.; Daskalova, A.; Heafield, R.; Buchanan, L.; Qian, Z.R.; Fuchs, C.S.; Lin, X.; et al. Clinical presentation, recurrence, and survival in patients with neuroendocrine tumors: Results from a prospective institutional database. Endocr. Relat. Cancer 2013, 20, 187–196. [Google Scholar] [CrossRef]
- Kim, H.; Song, K.B.; Hwang, D.W.; Lee, J.H.; Shadi, A.; Kim, S.C. Time-trend and recurrence analysis of pancreatic neuroendocrine tumors. Endocr. Connect. 2019, 8, 1052–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, D.H.; Zhang, X.F.; Lopez-Aguiar, A.G.; Poultsides, G.; Makris, E.; Rocha, F.; Kanji, Z.; Weber, S.; Fisher, A.; Fields, R.; et al. Resection of pancreatic neuroendocrine tumors: Defining patterns and time course of recurrence. HPB (Oxford) 2019. [Google Scholar] [CrossRef] [PubMed]
- Lou, F.; Sarkaria, I.; Pietanza, C.; Travis, W.; Roh, M.S.; Sica, G.; Healy, D.; Rusch, V.; Huang, J. Recurrence of pulmonary carcinoid tumors after resection: Implications for postoperative surveillance. Ann. Thorac. Surg. 2013, 96, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Ciment, A.; Gil, J.; Teirstein, A. Late recurrent pulmonary typical carcinoid tumor: Case report and review of the literature. Mt. Sinai J. Med. 2006, 73, 884–886. [Google Scholar] [PubMed]
- Hamad, A.M.; Rizzardi, G.; Marulli, G.; Rea, F. Nodal recurrence of pulmonary carcinoid 30 years after primary resection. J. Thorac. Oncol. 2008, 3, 680–681. [Google Scholar] [CrossRef] [PubMed]
- Pulvirenti, A.; Javed, A.A.; Landoni, L.; Jamieson, N.B.; Chou, J.F.; Miotto, M.; He, J.; Gonen, M.; Pea, A.; Tang, L.H.; et al. Multi-institutional Development and External Validation of a Nomogram to Predict Recurrence After Curative Resection of Pancreatic Neuroendocrine Tumors. Ann. Surg. 2019. [Google Scholar] [CrossRef]
- Slagter, A.E.; Ryder, D.; Chakrabarty, B.; Lamarca, A.; Hubner, R.A.; Mansoor, W.; O’Reilly, D.A.; Fulford, P.E.; Klümpen, H.J.; Valle, J.W.; et al. Prognostic factors for disease relapse in patients with neuroendocrine tumours who underwent curative surgery. Surg. Oncol. 2016, 25, 223–228. [Google Scholar] [CrossRef]
- Zaidi, M.Y.; Lopez-Aguiar, A.G.; Switchenko, J.M.; Lipscomb, J.; Andreasi, V.; Partelli, S.; Gamboa, A.C.; Lee, R.M.; Poultsides, G.A.; Dillhoff, M.; et al. A Novel Validated Recurrence Risk Score to Guide a Pragmatic Surveillance Strategy After Resection of Pancreatic Neuroendocrine Tumors: An International Study of 1006 Patients. Ann. Surg. 2019, 270, 422–433. [Google Scholar] [CrossRef]
- Cejas, P.; Drier, Y.; Dreijerink, K.M.A.; Brosens, L.A.A.; Deshpande, V.; Epstein, C.B.; Conemans, E.B.; Morsink, F.H.M.; Graham, M.K.; Valk, G.D.; et al. Enhancer signatures stratify and predict outcomes of non-functional pancreatic neuroendocrine tumors. Nat. Med. 2019, 25, 1260–1265. [Google Scholar] [CrossRef]
- Ausania, F. Retrospective studies and pancreatic adenocarcinoma: How far can we backdate? Ann. Surg. 2015, 261, e84. [Google Scholar] [CrossRef]
- Partelli, S.; Javed, A.A.; Andreasi, V.; He, J.; Muffatti, F.; Weiss, M.J.; Sessa, F.; La Rosa, S.; Doglioni, C.; Zamboni, G.; et al. The number of positive nodes accurately predicts recurrence after pancreaticoduodenectomy for nonfunctioning neuroendocrine neoplasms. Eur. J. Surg. Oncol. 2018, 44, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, M.Y.; Lopez-Aguiar, A.G.; Dillhoff, M.; Beal, E.; Poultsides, G.; Makris, E.; Rocha, F.; Crown, A.; Idrees, K.; Marincola Smith, P.; et al. Prognostic Role of Lymph Node Positivity and Number of Lymph Nodes Needed for Accurately Staging Small Bowel Neuroendocrine Tumors. JAMA Surg. 2019, 154, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Cusumano, G.; Fournel, L.; Strano, S.; Damotte, D.; Charpentier, M.C.; Galia, A.; Terminella, A.; Nicolosi, M.; Regnard, J.F.; Alifano, M. Surgical Resection for Pulmonary Carcinoid: Long-Term Results of Multicentric Study-The Importance of Pathological N Status, More Than We Thought. Lung 2017, 195, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.D.; Einstein, A.J. New approaches to reduce radiation exposure. Trends Cardiovasc. Med. 2016, 26, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Ramage, J.K.; Davies, A.H.; Ardill, J.; Bax, N.; Caplin, M.; Grossman, A.; Hawkins, R.; Mcnicol, A.M.; Reed, N.; Sutton, R.; et al. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours. Gut 2005, 54 (Suppl. 4), iv1–iv16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Carbonero, R.; Vilardell, F.; Jimenez-Fonseca, P.; González-Campora, R.; González, E.; Cuatrecasas, M.; Capdevila, J.; Aranda, I.; Barriuso, J.; Matías-Guiu, X.; et al. Guidelines for biomarker testing in gastroenteropancreatic neuroendocrine neoplasms: A national consensus of the Spanish Society of Pathology and the Spanish Society of Medical Oncology. Clin. Transl. Oncol. 2014, 16, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Adaway, J.E.; Dobson, R.; Walsh, J.; Cuthbertson, D.J.; Monaghan, P.J.; Trainer, P.J.; Valle, J.W.; Keevil, B.G. Serum and plasma 5-hydroxyindoleacetic acid as an alternative to 24-h urine 5-hydroxyindoleacetic acid measurement. Ann. Clin. Biochem. 2016, 53, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Isgro, M.A.; Bottoni, P.; Scatena, R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015, 867, 125–143. [Google Scholar] [PubMed]
- Bonato, M.; Cerati, M.; Pagani, A.; Papotti, M.; Bosi, F.; Bussolati, G.; Capella, C. Differential diagnostic patterns of lung neuroendocrine tumours. A clinico-pathological and immunohistochemical study of 122 cases. Virchows Arch. A Pathol. Anat. Histopathol 1992, 420, 201–211. [Google Scholar] [CrossRef]
- Gut, P.; Czarnywojtek, A.; Fischbach, J.; Bączyk, M.; Ziemnicka, K.; Wrotkowska, E.; Gryczyńska, M.; Ruchała, M. Chromogranin A—unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls. Arch. Med. Sci. 2016, 12, 1–9. [Google Scholar] [CrossRef]
- Malczewska, A.; Witkowska, M.; Makulik, K.; Bocian, A.; Walter, A.; Pilch-Kowalczyk, J.; Zajęcki, W.; Bodei, L.; Oberg, K.E.; Kos-Kudła, B. NETest liquid biopsy is diagnostic of small intestine and pancreatic neuroendocrine tumors and correlates with imaging. Endocr. Connect. 2019, 8, 442–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malczewska, A.; Oberg, K.; Bodei, L.; Aslanian, H.; Lewczuk, A.; Filosso, P.L.; Wójcik-Giertuga, M.; Rydel, M.; Zielińska-Leś, I.; Walter, A.; et al. NETest Liquid Biopsy Is Diagnostic of Lung Neuroendocrine Tumors and Identifies Progressive Disease. Neuroendocrinology 2019, 108, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Oberg, K.; Krenning, E.; Sundin, A.; Aslanian, H.; Lewczuk, A.; Filosso, P.L.; Wójcik-Giertuga, M.; Rydel, M.; Zielińska-Leś, I.; Walter, A.; et al. A Delphic consensus assessment: Imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management. Endocr. Connect. 2016, 5, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Hemminki, K.; Li, X. Incidence trends and risk factors of carcinoid tumors: A nationwide epidemiologic study from Sweden. Cancer 2001, 92, 2204–2210. [Google Scholar] [CrossRef]
- Basu, S.; Adnan, A. Well-differentiated grade 3 neuroendocrine tumours and poorly differentiated grade 3 neuroendocrine carcinomas: Will dual tracer PET-computed tomography (68Ga-DOTATATE and FDG) play a pivotal role in differentiation and guiding management strategies? Nucl. Med. Commun. 2019, 40, 1086–1087. [Google Scholar] [CrossRef]
- Abgral, R.; Leboulleux, S.; Deandreis, D.; Aupérin, A.; Lumbroso, J.; Dromain, C.; Duvillard, P.; Elias, D.; de Baere, T.; Guigay, J.; et al. Performance of (18)fluorodeoxyglucose-positron emission tomography and somatostatin receptor scintigraphy for high Ki67 (>/=10%) well-differentiated endocrine carcinoma staging. J. Clin. Endocrinol. Metab. 2011, 96, 665–671. [Google Scholar] [CrossRef]
- Park, C.M.; Goo, J.M.; Lee, H.J.; Kim, M.A.; Lee, C.H.; Kang, M.J. Tumors in the tracheobronchial tree: CT and FDG PET features. Radiographics 2009, 29, 55–71. [Google Scholar] [CrossRef]
- Daniels, C.E.; Lowe, V.J.; Aubry, M.C.; Allen, M.S.; Jett, J.R. The utility of fluorodeoxyglucose positron emission tomography in the evaluation of carcinoid tumors presenting as pulmonary nodules. Chest 2007, 131, 255–260. [Google Scholar] [CrossRef]
- Pattenden, H.A.; Leung, M.; Beddow, E.; Dusmet, M.; Nicholson, A.G.; Shackcloth, M.; Mohamed, S.; Darr, A.; Naidu, B.; Iyer, S.; et al. Test performance of PET-CT for mediastinal lymph node staging of pulmonary carcinoid tumours. Thorax 2015, 70, 379–381. [Google Scholar] [CrossRef]
- Brabander, T.; Kwekkeboom, D.J.; Feelders, R.A.; Brouwers, A.H.; Teunissen, J.J. Nuclear Medicine Imaging of Neuroendocrine Tumors. Front. Horm. Res. 2015, 44, 73–87. [Google Scholar] [CrossRef]
- Mojtahedi, A.; Thamake, S.; Tworowska, I.; Ranganathan, D.; Delpassand, E.S. The value of (68)Ga-DOTATATE PET/CT in diagnosis and management of neuroendocrine tumors compared to current FDA approved imaging modalities: A review of literature. Am. J. Nucl. Med. Mol. Imaging 2014, 4, 426–434. [Google Scholar] [PubMed]
- Al-Nahhas, A.; Win, Z.; Szyszko, T.; Singh, A.; Nanni, C.; Fanti, S.; Rubello, D. Gallium-68 PET: A new frontier in receptor cancer imaging. Anticancer Res. 2007, 27, 4087–4094. [Google Scholar] [PubMed]
- Breeman, W.A.; de, B.E.; Sze, C.H.; Konijnenberg, M.; Kwekkeboom, D.J.; Krenning, E.P. (68)Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: Current status of research, clinical applications, and future perspectives. Semin. Nucl. Med. 2011, 41, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Waser, B.; Liu, Q.; Laissue, J.A.; Schonbrunn, A. Subcellular distribution of somatostatin sst2A receptors in human tumors of the nervous and neuroendocrine systems: Membranous versus intracellular location. J. Clin. Endocrinol. Metab. 2000, 85, 3882–3891. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, P.N.S.; Lamarca, A.; Calero, J.; Chan, P.S.; Lopera Sierra, M.; Caplin, M.; Valle, J.W. Safety and Tolerability of ”Ready-to-Use” (SOMAKIT TOC®) 68Ga-DOTA0-Tyr3-Octreotide (68Ga-DOTATOC) for Injection in Patients with Proven Gastro-Entero-Pancreatic Neuroendocrine Tumours (GEP-NETs). In Proceedings of the 14th Annual ENETS, Barcelona, Spain, 8–10 March 2017. Abstract Number 1759. [Google Scholar]
- Hofmann, M.; Maecke, H.; Borner, R.; Weckesser, E.; Schöffski, P.; Oei, L.; Schumacher, J.; Henze, M.; Heppeler, A.; Meyer, J.; et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: Preliminary data. Eur. J. Nucl. Med. 2001, 28, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, J.; Henze, M.; Schuhmacher, J.; Mäcke, H.R.; Hofmann, M.; Haberkorn, U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol. Imaging Biol. 2003, 5, 42–48. [Google Scholar] [CrossRef]
- Gabriel, M.; Decristoforo, C.; Kendler, D.; Dobrozemsky, G.; Heute, D.; Uprimny, C.; Kovacs, P.; Von Guggenberg, E.; Bale, R.; Virgolini, I.J. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: Comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med. 2007, 48, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, I.; Henze, M.; Engelbrecht, S.; Eisenhut, M.; Runz, A.; Schäfer, M.; Schilling, T.; Haufe, S.; Herrmann, T.; Haberkorn, U. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1617–1626. [Google Scholar] [CrossRef] [PubMed]
- Putzer, D.; Gabriel, M.; Henninger, B.; Kendler, D.; Uprimny, C.; Dobrozemsky, G.; Decristoforo, C.; Bale, R.J.; Jaschke, W.; Virgolini, I.J. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J. Nucl. Med. 2009, 50, 1214–1221. [Google Scholar] [CrossRef]
- Srirajaskanthan, R.; Kayani, I.; Quigley, A.M.; Soh, J.; Caplin, M.E.; Bomanji, J. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. J. Nucl. Med. 2010, 51, 875–882. [Google Scholar] [CrossRef]
- Lamarca, A.; Pritchard, D.M.; Westwood, T.; Papaxoinis, G.; Nonaka, D.; Vinjamuri, S.; Valle, J.W.; Manoharan, P.; Mansoor, W. 68Gallium DOTANOC-PET Imaging in Lung Carcinoids: Impact on Patients’ Management. Neuroendocrinology 2018, 106, 128–138. [Google Scholar] [CrossRef]
- Geijer, H.; Breimer, L.H. Somatostatin receptor PET/CT in neuroendocrine tumours: Update on systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Arora, S.; Karunanithi, S.; Khadgawat, R.; Durgapal, P.; Sharma, R.; Kandasamy, D.; Bal, C.; Kumar, R. Somatostatin receptor based PET/CT imaging with 68Ga-DOTA-Nal3-octreotide for localization of clinically and biochemically suspected insulinoma. Q. J. Nucl. Med. Mol. Imaging 2016, 60, 69–76. [Google Scholar]
- Wild, D.; Bomanji, J.B.; Benkert, P.; Maecke, H.; Ell, P.J.; Reubi, J.C.; Caplin, M.E. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J. Nucl. Med. 2013, 54, 364–372. [Google Scholar] [CrossRef]
- Ambrosini, V.; Campana, D.; Bodei, L.; Nanni, C.; Castellucci, P.; Allegri, V.; Montini, G.C.; Tomassetti, P.; Paganelli, G.; Fanti, S. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J. Nucl. Med. 2010, 51, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Naswa, N.; Sharma, P.; Soundararajan, R.; Karunanithi, S.; Nazar, A.H.; Kumar, R.; Malhotra, A.; Bal, C. Diagnostic performance of somatostatin receptor PET/CT using 68Ga-DOTANOC in gastrinoma patients with negative or equivocal CT findings. Abdom. Imaging 2013, 38, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, H.; Fendler, W.P.; Cyran, C.C.; Spitzweg, C.; Auernhammer, C.J.; Gildehaus, F.J.; Bartenstein, P.; Angele, M.K.; Haug, A.R. Impact of (68)Ga-DOTATATE PET/CT on the surgical management of primary neuroendocrine tumors of the pancreas or ileum. Ann. Surg. Oncol. 2015, 22, 164–171. [Google Scholar] [CrossRef]
- Kayani, I.; Conry, B.G.; Groves, A.M.; Win, T.; Dickson, J.; Caplin, M.; Bomanji, J.B. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J. Nucl. Med. 2009, 50, 1927–1932. [Google Scholar] [CrossRef]
- Bodei, L.; Ambrosini, V.; Herrmann, K.; Modlin, I. Current Concepts in (68)Ga-DOTATATE Imaging of Neuroendocrine Neoplasms: Interpretation, Biodistribution, Dosimetry, and Molecular Strategies. J. Nucl. Med. 2017, 58, 1718–1726. [Google Scholar] [CrossRef]
- Haug, A.R.; Cindea-Drimus, R.; Auernhammer, C.J.; Reincke, M.; Beuschlein, F.; Wängler, B.; Uebleis, C.; Schmidt, G.P.; Spitzweg, C.; Bartenstein, P.; et al. Neuroendocrine tumor recurrence: Diagnosis with 68Ga-DOTATATE PET/CT. Radiology 2014, 270, 517–525. [Google Scholar] [CrossRef]
Author; Year | Relapse Rate | Risk Factors | Site of Recurrence |
---|---|---|---|
Gao et al. 2018 [30] | Relapse rate 129/505 (25.5%). Median disease-free survival of 19 months (range 6–96 months). | T3, T4, N+, Ki-67 >2%, functional | Not reported |
Sho et al. 2018 [31] | Relapse rate 23/140 (16.3%). 5 and 10 year relapse-free survival was 84.6% and 67.1%, respectively. | Size >5 cm, N+, Ki-67 >20% | All recurrence was distant (liver, peritoneal, and bone) |
Genç et al. 2018 [32] | Relapse rate 35/211 (17%). The 5 and 10 year disease-specific/overall survival was 98%/91% and 84%/68%, respectively. Median time to recurrence was 43 months (IQR 23–62). | Grade 2, N+, perineural invasion | Pancreatic remnant (69%), distant (14%), 1 patients had lymph node metastasis |
Ausania et al. 2019 [33] | Relapse rate 19/137 (13.9%). Median DFS was 55 months. | Tumour size >2 cm, N+, Ki-67>5% or mitotic index >2 | Not reported |
Marchegiani et al. 2018 [34] | Relapse rate (12.3%) Recurrence occurred either during the first year of follow-up (n = 9), or after ten years (n = 4). | >21 mm size, G3, N+, vascular infiltration | Liver (11.1%), local recurrence (2.3%), lymph node (2.1%), other organs (1.6%) |
Singh et al. 2018 [35] | Cumulative incidence of recurrence was 26.5%, 39.6%, 57.0%, and 69.4% at 3, 5, 10 and 15 years post-resection, respectively. | Not reported | Not reported |
Biochemistry | Cross-Sectional Imaging (CT/MRI) | SSTR Imaging (68Ga-DOTA-PET) | 18F-FDG -PET | |||||
---|---|---|---|---|---|---|---|---|
CgA (Serum) | 5-HIAA (Serum/Urine) | Pancreatic Peptides (Serum) | NSE | |||||
PanNETs | First assessment | ✓ | × | If functional | × | ✓ | ✓ | × |
Follow-up | ✓ | × | If functional | × | ✓ | ** | × | |
siNETs | First-assessment | ✓ | ✓ | × | × | ✓ | ✓ | × |
Follow-up | ✓ | If elevated at diagnosis | × | × | ✓ | ** | × | |
LungNETs | First assessment | ✓ | ✓ | × | If atypical | ✓ | ✓ | If atypical |
Follow-up | ✓ | If elevated at diagnosis | × | If elevated at diagnosis | ✓ | ** | # |
Relapse Rate | Late Relapse | Site of Recurrence / Metastases | Risk Factors for Relapse | Staging | Follow-up Recommendations (ENETS, NCCN, CommNETs/NANETS | |||
---|---|---|---|---|---|---|---|---|
Pre-Surgery | 3–12 Month Post-Resection | After 1st Year and Until 10 Years Post-Resection | After 10 Years | |||||
PanNETs | 12%–25% up to 70% at 15 years of follow-up | >5–10 years | Liver > local | Size/T, N, Ki-67/grade | Cross-sectional imaging (CT/MRI) + SSTR imaging + CgA (+ pancreatic peptides if functioning) | History and physical examination + biochemistry * + cross-sectional imaging (CT/MRI) | Frequency: 3–6 monthly for nonfunctional PanNETs and 6–12 monthly for functional PanNETs (ENETS) / 6–12 monthly (NCCN) / every year for 3 years, every 1–2 years thereafter (CommNETs/NANETS). As per ENETS guidelines insulinomas may not require any radiological follow-up Examinations: History and physical examination + biochemistry * + cross-sectional imaging (CT/MRI) ENETS guidelines suggest 1–2 yearly SSTR imaging if positive at diagnosis | Individualised decision to continue; recommended life-long (ENETS) |
siNETs | 20%–50%; up to 62% at 15 years of follow-up | 10–15 years | Liver | Resected number of lymph nodes (>8) and positivity of those lymph nodes (>4) | Cross-sectional imaging (CT/MRI) + SSTR imaging + CgA (+ 5-HIAA) | History and physical examination + biochemistry * + cross-sectional imaging (CT/MRI) | Frequency: 6–12 monthly (ENETS) / every 1–2 years (CommNETs/NANETS/NCCN). Examinations: History and physical examination + biochemistry * + cross-sectional imaging (CT/MRI) ENETS guidelines suggest 2 yearly SSTR imaging if positive at diagnosis | Individualised decision to continue; recommended life-long (ENETS) |
LungNETs | 3%–26% depending on subtype | >7 years; atypical developed earlier relapse | Liver and bone | Mitotic index, Ki-67, necrosis, atypical, N | Cross-sectional imaging (CT/MRI) + SSTR imaging [18F-FDG-PET could be considered if atypical] + CgA (+ 5-HIAA + NSE [if atypical]) | Frequency: 6–12 monthly (ENETS/NCCN); 3–6 monthly if atypical (ENETS). Examinations: History and physical examination + biochemistry * + cross-sectional imaging (CT/MRI) ENETS guidelines suggest 1–3 yearly SSTR imaging if positive at diagnosis (1–2 yearly for atypical); 18F-FDG PET could be considered for atypical tumour if positive at diagnosis; ENETs guidelines also support the use of 5–10 yearly bronchoscopy for follow-up if positive at diagnosis (every 1–3 years for atypical LungNETs) | Individualised decision to continue; recommended life-long (ENETS) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamarca, A.; Clouston, H.; Barriuso, J.; McNamara, M.G.; Frizziero, M.; Mansoor, W.; Hubner, R.A.; Manoharan, P.; O’Dwyer, S.; Valle, J.W. Follow-Up Recommendations after Curative Resection of Well-Differentiated Neuroendocrine Tumours: Review of Current Evidence and Clinical Practice. J. Clin. Med. 2019, 8, 1630. https://doi.org/10.3390/jcm8101630
Lamarca A, Clouston H, Barriuso J, McNamara MG, Frizziero M, Mansoor W, Hubner RA, Manoharan P, O’Dwyer S, Valle JW. Follow-Up Recommendations after Curative Resection of Well-Differentiated Neuroendocrine Tumours: Review of Current Evidence and Clinical Practice. Journal of Clinical Medicine. 2019; 8(10):1630. https://doi.org/10.3390/jcm8101630
Chicago/Turabian StyleLamarca, Angela, Hamish Clouston, Jorge Barriuso, Mairéad G McNamara, Melissa Frizziero, Was Mansoor, Richard A Hubner, Prakash Manoharan, Sarah O’Dwyer, and Juan W Valle. 2019. "Follow-Up Recommendations after Curative Resection of Well-Differentiated Neuroendocrine Tumours: Review of Current Evidence and Clinical Practice" Journal of Clinical Medicine 8, no. 10: 1630. https://doi.org/10.3390/jcm8101630
APA StyleLamarca, A., Clouston, H., Barriuso, J., McNamara, M. G., Frizziero, M., Mansoor, W., Hubner, R. A., Manoharan, P., O’Dwyer, S., & Valle, J. W. (2019). Follow-Up Recommendations after Curative Resection of Well-Differentiated Neuroendocrine Tumours: Review of Current Evidence and Clinical Practice. Journal of Clinical Medicine, 8(10), 1630. https://doi.org/10.3390/jcm8101630