Papillary Vessel Density Changes after Intravitreal Anti-VEGF Injections in Hypertensive Patients with Central Retinal Vein Occlusion: An Angio-OCT Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Imaging Protocol
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Conflicts of Interest
References
- Ip, M.; Hendrick, A. Retinal Vein Occlusion Review. Asia-Pac. J. Ophthalmol. 2017, 7, 40–45. [Google Scholar] [CrossRef]
- Battaglia Parodi, M.; Bandello, F. Branch Retinal Vein Occlusion: Classification and Treatment. Ophthalmologica 2009, 223, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Aydin Kaderli, A.; Kaderli, B.; Gullulu, S.; Avci, R. Impaired Aortic Stiffness and Pulse Wave Velocity in Patients with Branch Retinal Vein Occlusion. Graefe’s Arch. Clin. Exp. Ophthalmol. 2010, 248, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Gasparyan, A.Y.; Ayvazyan, L.; Mikhailidis, D.P.; Kitas, G.D. Mean Platelet Volume: A Link between Thrombosis and Inflammation? Curr. Pharm. Des. 2011, 17, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Bawankar, P.; Samant, P.; Lahane, T.; Parekh, R.; Lahane, S. Mean Platelet Volume and Central Retinal Vein Occlusion in Hypertensive Patients. Can. J. Ophthalmol. 2019, 54, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Dodson, P.M.; Westwick, J.; Marks, G.; Kakkar, V.V.; Galton, D.J. β-Thromboglobulin and Platelet Factor 4 Levels in Retinal Vein Occlusion. Br. J. Ophthalmol. 1983, 67, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Jaulim, A.; Ahmed, B.; Khanam, T.; Chatziralli, I.P. Branch Retinal Vein Occlusion: Epidemiology, Pathogenesis, Risk Factors, Clinical Features, Diagnosis, and Complications. An Update of the Literature. Retina 2013, 33, 901–910. [Google Scholar] [CrossRef]
- Cugati, S.; Jie, J.W.; Rochtchina, E.; Mitchell, P. Ten-Year Incidence of Retinal Vein Occlusion in an Older Population: The Blue Mountains Eye Study. Arch. Ophthalmol. 2006, 124726–124732. [Google Scholar] [CrossRef]
- Sakimoto, S.; Kamei, M.; Suzuki, M.; Yano, S.; Matsumura, N.; Sakaguchi, H.; Gomi, F.; Nishida, K. Relationship between Grades of Macular Perfusion and Foveal Thickness in Branch Retinal Vein Occlusion. Clin. Ophthalmol. 2012, 7, 39–45. [Google Scholar] [CrossRef]
- Suzuki, N.; Hirano, Y.; Yoshida, M.; Tomiyasu, T.; Uemura, A.; Yasukawa, T.; Ogura, Y. Microvascular Abnormalities on Optical Coherence Tomography Angiography in Macular Edema Associated with Branch Retinal Vein Occlusion. Am. J. Ophthalmol. 2016, 124726–124732. [Google Scholar] [CrossRef]
- Noma, H.; Funatsu, H.; Mimura, T.; Harino, S.; Hori, S. Vitreous Levels of Interleukin-6 and Vascular Endothelial Growth Factor in Macular Edema with Central Retinal Vein Occlusion. Ophthalmology 2009, 116, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.S.; Tan, G.S.; Denniston, A.K.; Keane, P.A.; Ang, M.; Milea, D.; Chakravarthy, U.; Cheung, C.M.G. An Overview of the Clinical Applications of Optical Coherence Tomography Angiography. Eye 2018, 32, 262–286. [Google Scholar] [CrossRef] [PubMed]
- Mastropasqua, R.; Toto, L.; Di Antonio, L.; Borrelli, E.; Senatore, A.; Di Nicola, M.; Di Martino, G.; Ciancaglini, M.; Carpineto, P. Optical Coherence Tomography Angiography Microvascular Findings in Macular Edema Due to Central and Branch Retinal Vein Occlusions. Sci. Rep. 2017, 7, 42570. [Google Scholar] [CrossRef] [PubMed]
- Holló, G. Optical Coherence Tomography Angiography to Better Understand Glaucoma. J. Curr. Glaucoma Pract. 2017, 48, 196–201. [Google Scholar] [CrossRef]
- Or, C.; Sabrosa, A.S.; Sorour, O.; Arya, M.; Waheed, N. Use of OCTA, FA, and Ultra-Widefield Imaging in Quantifying Retinal Ischemia: A Review. Asia-Pac. J. Ophthalmol. 2018, 7, 46–51. [Google Scholar] [CrossRef]
- Parodi, M.B.; Visintin, F.; Rupe, P.D.; Ravalico, G. Foveal Avascular Zone in Macular Branch Retinal Vein Occlusion. Int. Ophthalmol. 1995, 19, 25–28. [Google Scholar] [CrossRef]
- Noma, H.; Funatsu, H.; Sakata, K.; Harino, S.; Nagaoka, T.; Mimura, T.; Sone, T.; Hori, S. Macular Microcirculation and Macular Oedema in Branch Retinal Vein Occlusion. Br. J. Ophthalmol. 2009, 93, 630–633. [Google Scholar] [CrossRef]
- Kang, J.W.; Yoo, R.; Jo, Y.H.; Kim, H.C. Correlation of Microvascular Structures on Optical Coherence Tomography Angiography with Visual Acuity in Retinal Vein Occlusion. Retina 2017, 37, 1700–1709. [Google Scholar] [CrossRef]
- Rispoli, M.; Savastano, M.C.; Lumbroso, B. Capillary Network Anomalies in Branch Retinal Vein Occlusion on Optical Coherence Tomography Angiography. Retina 2015, 35, 2332–2338. [Google Scholar] [CrossRef]
- Suzuki, N.; Hirano, Y.; Tomiyasu, T.; Esaki, Y.; Uemura, A.; Yasukawa, T.; Yoshida, M.; Ogura, Y. Retinal Hemodynamics Seen on Optical Coherence Tomography Angiography before and after Treatment of Retinal Vein Occlusion. Invest. Ophthalmol. Vis. Sci. 2016, 57, 5681–5687. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Bhisitkul, R.B.; Shapiro, H.; Rubio, R.G. Vascular Endothelial Growth Factor Promotes Progressive Retinal Nonperfusion in Patients with Retinal Vein Occlusion. Ophthalmology 2013, 120, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, C.; Kong, X.; Yu, X.; Sun, X. Peripapillary Retinal Vessel Density in Eyes with Acute Primary Angle Closure: An Optical Coherence Tomography Angiography Study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 1013–1018. [Google Scholar] [CrossRef]
- Kim, S.B.; Lee, E.J.; Han, J.C.; Kee, C. Comparison of Peripapillary Vessel Density between Preperimetric and Perimetric Glaucoma Evaluated by OCT-Angiography. PLoS ONE 2017, 12, e0184297. [Google Scholar] [CrossRef] [PubMed]
- Sellam, A.; Glacet-Bernard, A.; Coscas, F.; Miere, A.; Coscas, G.; Souied, E.H. Qualitative and Quantitative Follow-up Using Optical Coherence Tomography Angiography of Retinal Vein Occlusion Treated with Anti-Vegf. Retina 2017, 37, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Y.; Liu, H.X.; Gao, J. Peripapillary Region Perfusion and Retinal Nerve Fiber Layer Thickness Abnormalities in Diabetic Retinopathy Assessed by OCT Angiography. Transl. Vis. Sci. Technol. 2019, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, C.F. A Biomechanical Paradigm for Axonal Insult within the Optic Nerve Head in Aging and Glaucoma. Exp. Eye Res. 2011, 93, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Lommatzsch, C.; Rothaus, K.; Koch, J.M.; Heinz, C.; Grisanti, S. Retinal Perfusion 6 Months after Trabeculectomy as Measured by Optical Coherence Tomography Angiography. Int. Ophthalmol. 2019. [Google Scholar] [CrossRef]
- Coscas, F.; Glacet-Bernard, A.; Miere, A.; Caillaux, V.; Uzzan, J.; Lupidi, M.; Coscas, G.; Souied, E.H. Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa. Am. J. Ophthalmol. 2016, 161, 160–171. [Google Scholar] [CrossRef]
- Seknazi, D.; Coscas, F.; Sellam, A.; Rouimi, F.; Coscas, G.; Souied, E.H.; Glacet-Bernard, A. Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Correlations between Macular Vascular Density, Visual Acuity, and Peripheral Nonperfusion Area on Fluorescein Angiography. Retina 2018, 38, 1562–1570. [Google Scholar] [CrossRef]
- Mastropasqua, R.; Di Antonio, L.; Di Staso, S.; Agnifili, L.; Di Gregorio, A.; Ciancaglini, M.; Mastropasqua, L. Optical Coherence Tomography Angiography in Retinal Vascular Diseases and Choroidal Neovascularization. J. Ophthalmol. 2015, 2015. [Google Scholar] [CrossRef]
- Adhi, M.; Bonini Filho, M.A.; Louzada, R.N.; Kuehlewein, L.; De Carlo, T.E.; Baumal, C.R.; Witkin, A.J.; Sadda, S.R.; Sarraf, D.; Reichel, E.; et al. Retinal Capillary Network and Foveal Avascular Zone in Eyes with Vein Occlusion and Fellow Eyes Analyzed with Optical Coherence Tomography Angiography. Invest. Ophthalmol. Vis Sci. 2016, 59, OCT486–OCT494. [Google Scholar] [CrossRef] [PubMed]
- De Carlo, T.E.; Chin, A.T.; Joseph, T.; Baumal, C.R.; Witkin, A.J.; Duker, J.S.; Waheed, N.K. Distinguishing Diabetic Macular Edema from Capillary Nonperfusion Using Optical Coherence Tomography Angiography. Ophthalmic Surg. Lasers Imaging Retina. 2016, 47, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Mané, V.; Dupas, B.; Gaudric, A.; Bonnin, S.; Pedinielli, A.; Bousquet, E.; Erginay, A.; Tadayoni, R.; Couturier, A. Correlation between Cystoid Spaces in Chronic Diabetic Macular Edema and Capillary Nonperfusion Detected by Optical Coherence Tomography Angiography. In Retina 2016, 36 (Suppl. 1), S102–S110. [Google Scholar] [CrossRef]
- Winegarner, A.; Wakabayashi, T.; Fukushima, Y.; Sato, T.; Hara-Ueno, C.; Busch, C.; Nishiyama, I.; Shiraki, N.; Sayanagi, K.; Nishida, K.; et al. Changes in Retinal Microvasculature and Visual Acuity after Antivascular Endothelial Growth Factor Therapy in Retinal Vein Occlusion. Invest. Ophthalmol. Vis Sci. 2018, 59, 2708–2716. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, E.; Parravano, M.; Gilardi, M.; Cavalleri, M.; Sacconi, R.; Aragona, E.; Varano, M.; Bandello, F.; Querques, G. Microvascular Retinal and Choroidal Changes in Retinal Vein Occlusion Analyzed by Two Different Optical Coherence Tomography Angiography Devices. Ophthalmologica 2019, 242, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi Falavarjani, K.; Iafe, N.A.; Hubschman, J.P.; Tsui, I.; Sadda, S.R.; Sarraf, D. Optical Coherence Tomography Angiography Analysis of the Foveal Avascular Zone and Macular Vessel Density after Anti-VEGF Therapy in Eyes with Diabetic Macular Edema and Retinal Vein Occlusion. Invest. Ophthalmol. Vis Sci. 2017, 1, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Samara, W.A.; Shahlaee, A.; Sridhar, J.; Khan, M.A.; Ho, A.C.; Hsu, J. Quantitative Optical Coherence Tomography Angiography Features and Visual Function in Eyes with Branch Retinal Vein Occlusion. Am. J. Ophthalmol. 2016, 166, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Rayess, N.; Rahimy, E.; Ying, G.S.; Pefkianaki, M.; Franklin, J.; Regillo, C.D.; Ho, A.C.; Hsu, J. Baseline Choroidal Thickness as a Predictor for Treatment Outcomes in Central Retinal Vein Occlusion. Am. J. Ophthalmol. 2016, 171, 47–52. [Google Scholar] [CrossRef]
- Baek, S.U.; Kim, Y.K.; Ha, A.; Kim, Y.W.; Lee, J.; Kim, J.S.; Jeoung, J.W.; Park, K.H. Diurnal Change of Retinal Vessel Density and Mean Ocular Perfusion Pressure in Patients with Open-Angle Glaucoma. PLoS ONE 2019, 14, e0215684. [Google Scholar] [CrossRef]
- Fernández-Vigo, J.I.; Kudsieh, B.; Macarro-Merino, A.; Arriola-Villalobos, P.; Martínez-de-la-Casa, J.M.; Feijóo, J.G.; Fernández-Vigo, J.Á. Reproducibility of Macular and Optic Nerve Head Vessel Density Measurements by Swept-Source Optical Coherence Tomography Angiography. Eur. J. Ophthalmol. 2019, 12. [Google Scholar] [CrossRef]
- Manalastas, P.I.C.; Zangwill, L.M.; Saunders, L.J.; Mansouri, K.; Belghith, A.; Suh, M.H.; Yarmohammadi, A.; Penteado, R.C.; Akagi, T.; Shoji, T.; et al. Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J. Glaucoma 2017, 26, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, S.; Hou, H.; Rao, H.L.; Weinreb, R.N. Optical Coherence Tomography Angiography and Glaucoma: A Brief Review. Asia-Pac. J. Ophthalmol. 2019, 8, 115–125. [Google Scholar] [CrossRef]
Parameters Observed | Baseline | 1-Month Post-Operative | 4-Months Post-Operative | p-Value (Baseline and 1-Month Post-Operative) | p-Value (Baseline - and 4-Months Post-Operative) |
---|---|---|---|---|---|
Age (years) | 56.09 (16.47) | ||||
Gender (male) | 11 (61.11) | ||||
Study Eye | |||||
BCVA (logMAR) | 0.70 (0.26) | 0.34 (0.17) | 0.25 (0.18) | <0.001 | <0.001 |
RPC Vessel density (%) | |||||
Whole image | 44.64 (2.70) | 45.34 (2.63) | 45.75 (4.56) | 0.09 | 0.08 |
Inside disc | 45.16 (2.33) | 45.71 (2.03) | 47.08 (2.58) | 0.23 | <0.001 |
Peripapillary | 43.84 (1.74) | 44.78 (2.11) | 45.58 (2.86) | 0.04 | 0.01 |
RNFL thickness | 182.06 (70.89) | 172.11 (44.12) | 151.83 (32.69) | 0.3 | 0.05 |
Macular thickness | 772.61 (199.54) | 435.56 (105.42) | 421.28 (111.66) | <0.001 | <0.001 |
Control Eye | |||||
RPC Vessel density (%) | |||||
Whole image | 50.16 (1.53) | 50.04 (1.44) | 50.09 (1.35) | 0.41 | 0.74 |
Inside disc | 50.33 (1.56) | 50.38 (1.49) | 50.44 (1.40) | 0.61 | 0.41 |
Peripapillary | 51.12 (1.85) | 51.02 (1.61) | 51.27 (2.82) | 0.49 | 0.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolai, M.; Franceschi, A.; De Turris, S.; Rosati, A.; Pirani, V.; Mariotti, C. Papillary Vessel Density Changes after Intravitreal Anti-VEGF Injections in Hypertensive Patients with Central Retinal Vein Occlusion: An Angio-OCT Study. J. Clin. Med. 2019, 8, 1636. https://doi.org/10.3390/jcm8101636
Nicolai M, Franceschi A, De Turris S, Rosati A, Pirani V, Mariotti C. Papillary Vessel Density Changes after Intravitreal Anti-VEGF Injections in Hypertensive Patients with Central Retinal Vein Occlusion: An Angio-OCT Study. Journal of Clinical Medicine. 2019; 8(10):1636. https://doi.org/10.3390/jcm8101636
Chicago/Turabian StyleNicolai, Michele, Alessandro Franceschi, Serena De Turris, Alessandro Rosati, Vittorio Pirani, and Cesare Mariotti. 2019. "Papillary Vessel Density Changes after Intravitreal Anti-VEGF Injections in Hypertensive Patients with Central Retinal Vein Occlusion: An Angio-OCT Study" Journal of Clinical Medicine 8, no. 10: 1636. https://doi.org/10.3390/jcm8101636
APA StyleNicolai, M., Franceschi, A., De Turris, S., Rosati, A., Pirani, V., & Mariotti, C. (2019). Papillary Vessel Density Changes after Intravitreal Anti-VEGF Injections in Hypertensive Patients with Central Retinal Vein Occlusion: An Angio-OCT Study. Journal of Clinical Medicine, 8(10), 1636. https://doi.org/10.3390/jcm8101636