Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Cell Culture
2.3. Plasmids and rAAV Vectors
2.4. rAAV-Mediated Gene Transfer
2.5. Detection of Transgene Expression
2.6. Biochemical Assays
2.7. Histological, Immunocytochemical, and Immunohistochemical Analyses
2.8. Histomorphometry
2.9. Real-Time RT-PCR Analysis
2.10. Statistical Analysis
3. Results
3.1. Sustained, Safe Dose-Dependent Overexpression of Reporter RFP and lacZ Transgenes via rAAV in 3D Aggregate Cultures of Human Normal and OA Articular Chondrocytes
3.2. Efficient, Prolonged rAAV-Mediated Therapeutic sox9 Overexpression in Aggregate Cultures of Human Normal and OA Articular Chondrocytes
3.3. Effects of sox9 Overexpression via rAAV upon the Metabolic Activities of Human Normal and OA Articular Chondrocytes in Aggregate Cultures
3.4. Effects of sox9 Overexpression via rAAV upon the Hypertrophic Activities of Human Normal and OA Articular Chondrocytes in Aggregate Cultures
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, A.R. Osteoarthritis as a whole joint disease. HSS J. 2012, 8, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Cucchiarini, M.; Girolamo, L.; Filardo, G.; Oliveira, J.M.; Orth, P.; Pape, D.; Reboul, P. Basic science of osteoarthritis. J. Exp. Orthop. 2016, 3, 22–39. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B.; Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Gomoll, A.H.; Filardo, G.; de Girolamo, L.; Espregueira-Mendes, J.; Marcacci, M.; Rodkey, W.G.; Steadman, J.R.; Zaffagnini, S.; Kon, E. Surgical treatment for early osteoarthritis. Part I: Cartilage repair procedures. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 450–466. [Google Scholar] [CrossRef] [PubMed]
- Filardo, G.; Kon, E.; Longo, U.G.; Madry, H.; Marchettini, P.; Marmotti, A.; Van Assche, D.; Zanon, G.; Peretti, G.M. Non-surgical treatments for the management of early osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1775–1785. [Google Scholar] [CrossRef] [PubMed]
- Bastos, R.; Mathias, M.; Andrade, R.; Bastos, R.; Balduino, A.; Schott, V.; Rodeo, S.; Espregueira-Mendes, J. Intra-articular injections of expanded mesenchymal stem cells with and without addition of platelet-rich plasma are safe and effective for knee osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3342–3350. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Enciso, I.; Paz-Garcia, J.; Valtierra-Alvarez, J.; Preciado-Ramirez, J.; Almeida-Trinidad, R.; Guzman-Esquivel, J.; Mendoza-Hernandez, M.A.; Garcia-Vega, A.; Soriano-Hernandez, A.D.; Cortes-Bazan, J.L.; et al. A phase I-II controlled randomized trial using a promising novel cell-free formulation for articular cartilage regeneration as treatment of severe osteoarthritis of the knee. Eur. J. Med. Res. 2018, 23, 52. [Google Scholar] [CrossRef] [PubMed]
- Lamo-Espinosa, J.M.; Mora, G.; Blanco, J.F.; Granero-Moltó, F.; Nuñez-Córdoba, J.M.; Sánchez-Echenique, C.; Bondía, J.M.; Aquerreta, J.D.; Andreu, E.J.; Ornilla, E.; et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Multicenter randomized controlled clinical trial (phase I/II). J. Transl. Med. 2016, 14, 246. [Google Scholar] [CrossRef] [PubMed]
- Pers, Y.-M.; Rackwitz, L.; Ferreira, R.; Pullig, O.; Delfour, C.; Barry, F.; Sensebé, L.; Casteilla, L.; Fleury, S.; Bourin, P.; et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: A phase I dose-escalation trial. Stem Cells Transl. Med. 2016, 5, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Soler, R.; Orozco, L.; Munar, A.; Huguet, M.; López, R.; Vives, J.; Coll, R.; Codinach, M.; Garcia-Lopez, J. Final results of a phase I–II trial using ex vivo expanded autologous mesenchymal stromal cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee 2016, 23, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Cucchiarini, M.; Madry, H. Use of tissue engineering strategies to repair joint tissues in osteoarthritis: Viral gene transfer approaches. Curr. Rheumatol. Rep. 2014, 16, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Im, G.-I. Tissue engineering in osteoarthritis: Current status and prospect of mesenchymal stem cell therapy. BioDrugs 2018, 32, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Ha, C.-W.; Park, Y.-B.; Kim, S.H.; Lee, H.-J. Intra-articular mesenchymal stem cells in osteoarthritis of the knee: A systematic review of clinical outcomes and evidence of cartilage repair. Arthroscopy 2019, 35, 277–288.e2. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Ha, C.-W.; Park, Y.-B.; Nam, E.; Lee, J.-E.; Lee, H.-J. Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: A meta-analysis of randomized controlled trials. Arch. Orthop. Trauma Surg. 2019, 139, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.H.; Huard, J. Gene therapy approaches to regenerating the musculoskeletal system. Nat. Rev. Rheumatol. 2014, 11, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Madry, H.; Cucchiarini, M. Gene therapy for human osteoarthritis: Principles and clinical translation. Expert Opin. Biol. Ther. 2016, 16, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Kubo, T.; Fushiki, S.; Mazda, O.; Nakai, H.; Iwaki, Y.; Imanishi, J.; Hirasawa, Y. Gene delivery to human chondrocytes by an adeno associated virus vector. J. Rheumatol. 2000, 27, 979–982. [Google Scholar]
- Madry, H.; Cucchiarini, M.; Terwilliger, E.F.; Trippel, S.B. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum. Gene Ther. 2003, 14, 393–402. [Google Scholar] [CrossRef]
- Santangelo, K.S.; Nuovo, G.J.; Bertone, A.L. In vivo reduction or blockade of interleukin-1β in primary osteoarthritis influences expression of mediators implicated in pathogenesis. Osteoarthr. Cartil. 2012, 20, 1610–1618. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; O’Malley, M.J.; Friel, N.A.; Payne, K.A.; Qiao, C.; Xiao, X.; Chu, C.R. Persistence, localization, and external control of transgene expression after single injection of adeno-associated virus into injured joints. Hum. Gene Ther. 2013, 24, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Evans, C.H.; Benson, J.M.; A Hutt, J.; Seagrave, J.; A Wilder, J.; Grieger, J.C.; Samulski, R.J.; Terse, P.S. Safety and biodistribution assessment of sc-rAAV2.5IL-1Ra administered via intra-articular injection in a mono-iodoacetate-induced osteoarthritis rat model. Mol. Ther. Methods Clin. Dev. 2016, 3, 15052. [Google Scholar] [CrossRef]
- Levings, R.S.W.; Smith, A.D.A.D.; Broome, T.T.A.; Rice, B.L.B.L.; Gibbs, E.P.E.P.; Myara, D.A.; Hyddmark, E.V.; Nasri, E.; Zarezadeh, A.; Levings, P.P.P.P.; et al. Self-complementary adeno-associated virus-mediated interleukin-1 receptor antagonist gene delivery for the treatment of osteoarthritis: Test of efficacy in an equine model. Hum. Gene Ther. Clin. Dev. 2018, 29, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Xu, X.; Kang, L.; Xu, Y.; Xiao, J.; Goodman, S.B.; Zhu, X.; Li, W.; Liu, J.; Gao, X.; et al. Hematopoietic PBX-interacting protein mediates cartilage degeneration during the pathogenesis of osteoarthritis. Nat. Commun. 2019, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, J.; Fan, Y.; Li, J.; You, T.; He, S.; Xiao, G.; Chen, D. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis. Ann. Rheum. Dis. 2019, 78, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.S.; Broome, T.A.; Levings, P.P.; Rice, B.L.; Kay, J.D.; Smith, A.D.; Gouze, E.; Gouze, J.N.; Dacanay, E.A.; Hauswirth, W.W.; et al. scAAV-mediated gene transfer of interleukin-1-receptor antagonist to synovium and articular cartilage in large mammalian joints. Gene Ther. 2013, 20, 670–677. [Google Scholar] [PubMed]
- Santangelo, K.S.; Bertone, A.L.; Santangeloyz, K.; Bertoneyz, A. Effective reduction of the interleukin-1β transcript in osteoarthritis-prone guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences gene expression of mediators implicated in disease pathogenesis. Osteoarthr. Cartil. 2011, 19, 1449–1457. [Google Scholar] [CrossRef]
- Weimer, A.; Madry, H.; Venkatesan, J.K.; Schmitt, G.; Frisch, J.; Wezel, A.; Jung, J.; Kohn, D.; Terwilliger, E.F.; Trippel, S.B.; et al. Benefits of recombinant adeno-associated virus (rAAV)-mediated insulin-like growth factor I (IGF-I) overexpression for the long-term reconstruction of human osteoarthritic cartilage by modulation of the IGF-I axis. Mol. Med. 2012, 18, 346–358. [Google Scholar]
- Cucchiarini, M.; Thurn, T.; Weimer, A.; Kohn, D.; Terwilliger, E.F. Madry, Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9. Arthritis Rheum. 2007, 56, 158–167. [Google Scholar] [CrossRef]
- Cucchiarini, M.; Terwilliger, E.F.; Kohn, D.; Madry, H. Remodelling of human osteoarthritic cartilage by FGF-2, alone or combined with Sox9 via rAAV gene transfer. J. Cell Mol. Med. 2009, 13, 2476–2488. [Google Scholar] [PubMed]
- Ulrich-Vinther, M.; Stengaard, C.; Schwarz, E.M.; Goldring, M.B.; Soballe, K. Adeno-associated vector mediated gene transfer of transforming growth factor-beta1 to normal and osteoarthritic human chondrocytes stimulates cartilage anabolism. Eur. Cell. Mater. 2005, 10, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, J.K.; Rey-Rico, A.; Schmitt, G.; Wezel, A.; Madry, H.; Cucchiarini, M. rAAV-mediated overexpression of TGF-β stably restructures human osteoarthritic articular cartilage in situ. J. Transl. Med. 2013, 11, 211. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Frisch, J.; Venkatesan, J.K.; Schmitt, G.; Madry, H.; Lin, J.; Cucchiarini, M.; Rey-Rico, A. rAAV-mediated combined gene transfer and overexpression of TGF-β and SOX9 remodels human osteoarthritic articular cartilage. J. Orthop. Res. 2016, 34, 2181–2190. [Google Scholar] [CrossRef] [PubMed]
- Frisch, J.; Rey-Rico, A.; Venkatesan, J.K.; Schmitt, G.; Madry, H.; Cucchiarini, M. rAAV-mediated overexpression of sox9, TGF-β and IGF-I in minipig bone marrow aspirates to enhance the chondrogenic processes for cartilage repair. Gene Ther. 2016, 23, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; Deng, J.M.; Zhang, Z.; Behringer, R.R.; De Crombrugghe, B. Sox9 is required for cartilage formation. Nat. Genet. 1999, 22, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Mankin, H.J.; Dorfman, H.; Lippiello, L.; Zarins, A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J. Bone Jt. Surg. Am. 1971, 53, 523–537. [Google Scholar] [CrossRef]
- Madry, H.; Trippel, S.B. Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther. 2000, 7, 286–291. [Google Scholar] [CrossRef]
- Venkatesan, J.K.; Ekici, M.; Madry, H.; Schmitt, G.; Kohn, D.; Cucchiarini, M. SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell. Res. Ther. 2012, 3, 22. [Google Scholar] [CrossRef]
- Samulski, R.J.; Chang, L.S.; Shenk, T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 1987, 61, 3096–3101. [Google Scholar] [Green Version]
- Samulski, R.J.; Chang, L.S.; Shenk, T. Helper-free stocks of recombinant adeno-associated viruses: Normal integration does not require viral gene expression. J. Virol. 1989, 63, 3822–3828. [Google Scholar] [PubMed]
- Cucchiarini, M.; Ekici, M.; Schetting, S.; Kohn, D.; Madry, H. Metabolic activities and chondrogenic differentiation of human mesenchymal stem cells following recombinant adeno-associated virus-mediated gene transfer and overexpression of fibroblast frowth factor 2. Tissue Eng. Part A 2011, 17, 1921–1933. [Google Scholar] [CrossRef] [PubMed]
- Rey-Rico, A.; Frisch, J.; Venkatesan, J.K.; Schmitt, G.; Madry, H.; Cucchiarini, M. Determination of effective rAAV-mediated gene transfer conditions to support chondrogenic differentiation processes in human primary bone marrow aspirates. Gene Ther. 2015, 22, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Rey-Rico, A.; Venkatesan, J.K.; Sohier, J.; Moroni, L.; Cucchiarini, M.; Madry, H. Adapted chondrogenic differentiation of human mesenchymal stem cells via controlled release of TGF-β1 from poly(ethylene oxide)-terephtalate/poly(butylene terepthalate) multiblock scaffolds. J. Biomed. Mater. Res. A 2015, 103, 371–383. [Google Scholar] [PubMed]
- Battistelli, M.; Borzì, R.M.; Olivotto, E.; Vitellozzi, R.; Burattini, S.; Facchini, A.; Falcieri, E. Cell and matrix morpho-functional analysis in chondrocyte micromasses. Microsc. Res. Tech. 2005, 67, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Derfoul, A.; Miyoshi, A.; Freeman, D.; Tuan, R. Glucosamine promotes chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits MMP-13 expression and matrix degradation. Osteoarthr. Cartil. 2007, 15, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefebvre, V.; Huang, W.; Harley, V.R.; Goodfellow, P.N.; De Crombrugghe, B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol. Cell. Boil. 1997, 17, 2336–2346. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, H.; Lyons, J.P.; Mori-Akiyama, Y.; Yang, X.; Zhang, R.; Zhang, Z.; Deng, J.M.; Taketo, M.M.; Nakamura, T.; Behringer, R.R.; et al. Interactions between Sox9 and β-catenin control chondrocyte differentiation. Genome Res. 2004, 18, 1072–1087. [Google Scholar] [CrossRef]
- Akiyama, H.; Chaboissier, M.-C.; Martin, J.F.; Schedl, A.; De Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genome Res. 2002, 16, 2813–2828. [Google Scholar] [CrossRef]
- Goldring, M.B.; Tsuchimochi, K.; Ijiri, K. The control of chondrogenesis. J. Cell. Biochem. 2006, 97, 33–44. [Google Scholar] [CrossRef]
- Kyprioutou, M.; Fossard-Demoor, M.; Chadjichristos, C.; Ghayor, C.; de Crombrugghe, B.; Pujol, J.P.; Galéra, P. SOX9 exerts a bifunctional effect on type II collagen (COL2A1) expression in chondrocytes depending on the differentiation state. DNA Cell Biol. 2003, 22, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Cucchiarini, M.; Madry, H.; Terwilliger, E.F. Enhanced expression of the central survival of motor neuron (SMN) protein during the pathogenesis of osteoarthritis. J. Cell. Mol. Med. 2014, 18, 115–124. [Google Scholar] [CrossRef] [PubMed]
Assay | Human Normal Cell Aggregates | Human OA Cell Aggregates | ||||
---|---|---|---|---|---|---|
- | lacZ | sox9 | - | lacZ | sox9 | |
SOX9 | 5.5 (1.3) | 6.8 (2.2) | 72.5 (1.7)*,+ | 4.3 (1.0) | 8.0 (2.9) | 81.8 (1.7)*,+ |
Cell densities | 3,733 (533) | 3,797 (352) | 3,907 (469) | 4,133 (399) | 3,847 (68) | 4,072 (565) |
Safranin O | 1.3 (0.3) | 1.6 (0.3) | 3.3 (0.3)*,+ | 1.4 (0.4) | 1.6 (0.4) | 3.1 (0.5)*,+ |
Type-II collagen | 2.1 (0.3) | 1.6 (0.2) | 3.6 (0.5)*,+ | 1.9 (0.4) | 1.7 (0.3) | 3.6 (0.4)*,+ |
Type-X collagen | 30.8 (2.2) | 31.8 (2.6) | 18.3 (2.5)*,+ | 28.5 (3.5) | 24.8 (0.5) | 17.3 (3.5)*,+ |
Assay | Human Normal Cell Aggregates | Human OA Cell Aggregates | ||||
---|---|---|---|---|---|---|
- | lacZ | sox9 | - | lacZ | sox9 | |
DNA | 0.39 (0.04) | 0.42 (0.16) | 0.53 (0.19) | 0.46 (0.13) | 0.51 (0.04) | 0.55 (0.08) |
Type-II collagen | 1.4 (0.4) | 1.5 (0.6) | 2.2 (0.6)*,+ | 1.2 (0.4) | 1.7 (0.6) | 2.3 (0.8)*,+ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniels, O.; Frisch, J.; Venkatesan, J.K.; Rey-Rico, A.; Schmitt, G.; Cucchiarini, M. Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment. J. Clin. Med. 2019, 8, 1637. https://doi.org/10.3390/jcm8101637
Daniels O, Frisch J, Venkatesan JK, Rey-Rico A, Schmitt G, Cucchiarini M. Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment. Journal of Clinical Medicine. 2019; 8(10):1637. https://doi.org/10.3390/jcm8101637
Chicago/Turabian StyleDaniels, Oliver, Janina Frisch, Jagadeesh K. Venkatesan, Ana Rey-Rico, Gertrud Schmitt, and Magali Cucchiarini. 2019. "Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment" Journal of Clinical Medicine 8, no. 10: 1637. https://doi.org/10.3390/jcm8101637
APA StyleDaniels, O., Frisch, J., Venkatesan, J. K., Rey-Rico, A., Schmitt, G., & Cucchiarini, M. (2019). Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment. Journal of Clinical Medicine, 8(10), 1637. https://doi.org/10.3390/jcm8101637