Osteoarthritis Severely Decreases the Elasticity and Hardness of Knee Joint Cartilage: A Nanoindentation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Nanoindentation Measurements
2.3. Histological Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aigner, T.; Stöve, J. Collagens—Major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv. Drug Deliv. Rev. 2003, 55, 1569–1593. [Google Scholar] [CrossRef] [PubMed]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Trzeciak, T.; Rybka, J.D.; Suchorska, W.; Augustyniak, E.; Lach, M.; Kaczmarek, M.; Kaczmarczyk, J. Correlations between serum adipocytokine concentrations, disease stage, radiologic status and total body fat content in the patients with primary knee osteoarthritis. Int. Orthop. 2017, 41, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Buckwalter, J.A.; Mow, V.C.; Ratcliffe, A. Restoration of Injured or Degenerated Articular Cartilage. J. Am. Acad. Orthop. Surg. 1994, 2, 192–201. [Google Scholar] [CrossRef]
- Buckwalter, J.A. Articular Cartilage: Injuries and Potential for Healing. J. Orthop. Sport Phys. Ther. 1998, 28, 192–202. [Google Scholar] [CrossRef]
- Buckwalter, J.A.; Saltzman, C.; Brown, T. The impact of osteoarthritis: Implications for research. Clin. Orthop. Relat. Res. 2004, 427, S6–S15. [Google Scholar] [CrossRef]
- Kean, W.F.; Kean, R.; Buchanan, W.W. Osteoarthritis: Symptoms, signs and source of pain. Inflammopharmacology 2004, 12, 3–31. [Google Scholar] [CrossRef]
- Goldring, M.B.; Marcu, K.B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res. Ther. 2009, 11, 224. [Google Scholar] [CrossRef]
- Grimmer, C.; Balbus, N.; Lang, U.; Aigner, T.; Cramer, T.; Müller, L.; Swoboda, B.; Pfander, D. Regulation of type II collagen synthesis during osteoarthritis by prolyl-4-hydroxylases: Possible influence of low oxygen levels. Am. J. Pathol. 2006, 169, 491–502. [Google Scholar] [CrossRef]
- Buckwalter, J.A.; Mankin, H.J. Articular cartilage: Tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 1998, 47, 477–486. [Google Scholar]
- Stolz, M.; Raiteri, R.; Daniels, A.U.; VanLandingham, M.R.; Baschong, W.; Aebi, U. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys. J. 2004, 86, 3269–3283. [Google Scholar] [CrossRef]
- Stolz, M.; Gottardi, R.; Raiteri, R.; Miot, S.; Martin, I.; Imer, R.; Staufer, U.; Raducanu, A.; Düggelin, M.; Baschong, W.; et al. Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nat. Nanotechnol. 2009, 4, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Youn, I.; Guilak, F.; Setton, L.A. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. J. Biomech. Eng. 2006, 128, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Chandran, P.L.; Dimitriadis, E.K.; Mertz, E.L.; Horkay, F. Microscale mapping of extracellular matrix elasticity of mouse joint cartilage: An approach to extracting bulk elasticity of soft matter with surface roughness. Soft Matter 2018, 14, 2879–2892. [Google Scholar] [CrossRef]
- Wahlquist, J.A.; DelRio, F.W.; Randolph, M.A.; Aziz, A.H.; Heveran, C.M.; Bryant, S.J.; Neu, C.P.; Ferguson, V.L. Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage. Acta Biomater. 2017, 64, 41–49. [Google Scholar] [CrossRef]
- Antons, J.; Marascio, M.G.M.; Nohava, J.; Martin, R.; Applegate, L.A.; Bourban, P.E.; Pioletti, D.P. Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J. Mater. Sci. Mater. Med. 2018, 29, 57. [Google Scholar] [CrossRef]
- Nia, H.T.; Gauci, S.J.; Azadi, M.; Hung, H.H.; Frank, E.; Fosang, A.J.; Ortiz, C.; Grodzinsky, A.J. High-bandwidth AFM-based rheology is a sensitive indicator of early cartilage aggrecan degradation relevant to mouse models of osteoarthritis. J. Biomech. 2015, 48, 162–165. [Google Scholar] [CrossRef]
- Robinson, D.L.; Kersh, M.E.; Walsh, N.C.; Ackland, D.C.; de Steiger, R.N.; Pandy, M.G. Mechanical properties of normal and osteoarthritic human articular cartilage. J. Mech. Behav. Biomed. Mater. 2016, 61, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Arabshahi, Z.; Afara, I.O.; Moody, H.R.; Schrobback, K.; Kashani, J.; Fischer, N.; Oloyede, A.; Klein, T.J. A new mechanical indentation framework for functional assessment of articular cartilage. J. Mech. Behav. Biomed. Mater. 2018, 81, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.E.; Akhtar, R.; Comerford, E.J.; Bates, K.T. The effect of ageing and osteoarthritis on the mechanical properties of cartilage and bone in the human knee joint. Sci. Rep. 2018, 8, 5931. [Google Scholar] [CrossRef]
- Marchi, G.; Foehr, P.; Consalvo, S.; Javadzadeh-Kalarhodi, A.; Lang, J.; Hartmann, B.; Alberton, P.; Aszodi, A.; Burgkart, R.; Roths, J. Fiberoptic microindentation technique for early osteoarthritis diagnosis: An in vitro study on human cartilage. Biomed. Microdevices 2019, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- Doyran, B.; Tong, W.; Li, Q.; Jia, H.; Zhang, X.; Chen, C.; Enomoto-Iwamoto, M.; Lu, X.L.; Qin, L.; Han, L. Nanoindentation modulus of murine cartilage: A sensitive indicator of the initiation and progression of post-traumatic osteoarthritis. Osteoarthr. Cartil. 2017, 25, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Coles, J.M.; Zhang, L.; Blum, J.J.; Warman, M.L.; Jay, G.D.; Guilak, F.; Zauscher, S. Loss of cartilage structure, stiffness, and frictional properties in mice lacking PRG4. Arthritis Rheum. 2010, 62, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Candela, M.E.; Wang, C.; Gunawardena, A.T.; Zhang, K.; Cantley, L.; Yasuhara, R.; Usami, Y.; Francois, N.; Iwamoto, M.; van der Flier, A.; et al. Alpha 5 integrin mediates osteoarthritic changes in mouse knee joints. PLoS ONE 2016, 11, e0156783. [Google Scholar] [CrossRef] [PubMed]
- Fischer-Cripps, A.C. Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol. 2006, 200, 4153–4165. [Google Scholar] [CrossRef]
- Li, X.; Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 2002, 48, 11–36. [Google Scholar] [CrossRef]
- Moshtagh, P.R.; Pouran, B.; Korthagen, N.M.; Zadpoor, A.A.; Weinans, H. Guidelines for an optimized indentation protocol for measurement of cartilage stiffness: The effects of spatial variation and indentation parameters. J. Biomech. 2016, 49, 3602–3607. [Google Scholar] [CrossRef]
- Sergerie, K.; Lacoursière, M.O.; Lévesque, M.; Villemure, I. Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. J. Biomech. 2009, 42, 510–516. [Google Scholar] [CrossRef]
- Park, S.; Hung, C.T.; Ateshian, G.A. Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthr. Cartil. 2004, 12, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Jurvelin, J.S.; Arokoski, J.P.A.; Hunziker, E.B.; Helminen, H.J. Topographical variation of the elastic properties of articular cartilage in the canine knee. J. Biomech. 2000, 33, 669–675. [Google Scholar] [CrossRef]
- Hamann, N.; Brüggemann, G.P.; Niehoff, A. Topographical variations in articular cartilage and subchondral bone of the normal rat knee are age-related. Ann. Anat. 2014, 196, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, V.K.; Laurent, M.P.; Muehleman, C.; Wimmer, M.A. Surface topography of viable articular cartilage measured with scanning white light interferometry. Osteoarthr. Cartil. 2009, 17, 1197–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loparic, M.; Wirz, D.; Daniels, A.U.; Raiteri, R.; Vanlandingham, M.R.; Guex, G.; Martin, I.; Aebi, U.; Stolz, M. Micro- and nanomechanical analysis of articular cartilage by indentation-type atomic force microscopy: Validation with a gel-microfiber composite. Biophys. J. 2010, 98, 2731–2740. [Google Scholar] [CrossRef] [PubMed]
- Prein, C.; Warmbold, N.; Farkas, Z.; Schieker, M.; Aszodi, A.; Clausen-Schaumann, H. Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy. Matrix Biol. 2016, 50, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sakharova, N.A.; Fernandes, J.M.; Antunes, J.M.; Oliveira, M.C. Comparison between Berkovich, Vickers and conical indentation tests: A three-dimensional numerical simulation study. Int. J. Solids Struct. 2009, 46, 1095–1104. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Xia, X.; Scriven, L.E.; Gerberich, W.W. Spherical-tip indentation of viscoelastic material. Mech. Mater. 2005, 37, 213–226. [Google Scholar] [CrossRef]
- Qian, L.; Zhao, H. Nanoindentation of Soft Biological Materials. Micromachines (Basel) 2018, 9, 654. [Google Scholar] [CrossRef]
- Trzeciak, T.; Rybka, J.D.; Akinoglu, E.; Richter, M.; Kaczmarczyk, J.; Giersig, M. In vitro evaluation of carbon nanotube-based scaffolds for cartilage tissue engineering. J. Nanosci. Nanotechnol. 2016, 16, 9022–9025. [Google Scholar] [CrossRef]
- Trzeciak, T.; Rybka, J.D.; Richter, M.; Kaczmarczyk, J.; Ramalingam, M.; Giersig, M. Cells and nanomaterial-based tissue engineering techniques in the treatment of bone and cartilage injuries. J. Nanosci. Nanotechnol. 2016, 16, 8948–8952. [Google Scholar] [CrossRef]
- Hassan, C.R.; Qin, Y.X.; Komatsu, D.E.; Uddin, S.M.Z. Utilization of Finite Element Analysis for Articular Cartilage Tissue Engineering. Materials 2019, 12, 3331. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Seidi, O.; Ribeiro, N.; Colaço, R.; Serro, A.P. Tribomechanical Comparison between PVA Hydrogels Obtained Using Different Processing Conditions and Human Cartilage. Materials 2019, 12, 3413. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean ± SD | Median | Min–Max |
---|---|---|---|
Age (years) | 68.5 ± 7.5 | 69.0 | 52.0–82.0 |
Weight (kg) | 84.0 ± 14.7 | 82.0 | 55.0–118.0 |
Height (cm) | 163.8 ± 8.7 | 164.0 | 146.0–183.0 |
BMI (kg/m2) | 31.3 ± 5.0 | 31.0 | 22.0–46.1 |
HWB Cartilage | LWB Cartilage | ||||||
---|---|---|---|---|---|---|---|
Variable | Mean ± SD | Median | Min–Max | Mean ± SD | Median | Min–Max | p-Value |
Elastic modulus (MPa) | 4.46 ± 4.44 | 2.90 | 1.10–24.35 | 9.81 ± 8.88 | 7.40 | 1.10–51.00 | <0.001 * |
Hardness (MPa) | 0.317 ± 0.397 | 0.190 | 0.040–2.640 | 0.455 ± 0.434 | 0.320 | 0.060–2.200 | <0.001 * |
HWB Cartilage | LWB Cartilage | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Sex | n | Mean ± SD | Median | Min–Max | Mean ± SD | Median | Min–Max | p-Value |
Elastic modulus (MPa) | Female | 57 | 4.52 ± 4.17 | 2.94 | 1.10–19.70 | 9.54 ± 8.56 | 7.11 | 1.10–51.00 | <0.001 * |
Male | 18 | 4.25 ± 5.34 | 2.60 | 1.30–24.35 | 10.66 ± 10.05 | 8.30 | 1.19–37.40 | 0.002 * | |
Hardness (MPa) | Female | 57 | 0.309 ± 0.318 | 0.200 | 0.040–1.570 | 0.442 ± 0.424 | 0.320 | 0.060–2.200 | 0.004 * |
Male | 18 | 0.343 ± 0.594 | 0.130 | 0.070–2.640 | 0.493 ± 0.478 | 0.330 | 0.060–2.000 | 0.022 * |
HWB Cartilage | LWB Cartilage | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Age | n | Mean ± SD | Median | Min–Max | Mean ± SD | Median | Min–Max | p-Value |
Elastic modulus (MPa) | <69 | 39 | 5.28 ± 5.50 | 2.94 | 1.22–24.35 | 8.24 ± 5.94 | 7.11 | 1.10–27.80 | 0.002 * |
>70 | 36 | 3.56 ± 2.71 | 2.83 | 1.10–15.86 | 11.51 ± 11.07 | 8.18 | 2.13–51.00 | <0.001 * | |
Hardness (MPa) | <69 | 39 | 0.371 ± 0.480 | 0.210 | 0.070–2.640 | 0.389 ± 0.372 | 0.280 | 0.060–2.00 | 0.085 * |
>70 | 36 | 0.259 ± 0.277 | 0.165 | 0.040–1.570 | 0.525 ± 0.489 | 0.390 | 0.100–2.100 | <0.001 * |
HWB Cartilage | LWB Cartilage | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | K-L Grade | n | Mean ± SD | Median | Min–Max | Mean ± SD | Median | Min–Max | p-Value |
Elastic modulus (MPa) | 2 | 16 | 5.84 ± 5.04 | 3.76 | 1.70–18.99 | 11.32 ± 8.87 | 8.89 | 1.10–34.96 | 0.073 |
3 | 39 | 3.78 ± 3.53 | 2.75 | 1.22–19.70 | 10.29 ± 9.90 | 8.13 | 1.67–51.00 | <0.001 * | |
4 | 20 | 4.66 ± 5.42 | 2.59 | 1.10–24.35 | 7.66 ± 6.45 | 6.86 | 1.19–32.00 | 0.008 * | |
Hardness (MPa) | 2 | 16 | 0.416 ± 0.438 | 0.240 | 0.070–1.570 | 0.463 ± 0.391 | 0.370 | 0.060–1.680 | 0.772 |
3 | 39 | 0.248 ± 0.230 | 0.190 | 0.050–1.410 | 0.481 ± 0.462 | 0.370 | 0.080–2.200 | <0.001 * | |
4 | 20 | 0.375 ± 0.579 | 0.165 | 0.040–2.640 | 0.396 ± 0.426 | 0.285 | 0.060–2.000 | 0.179 * |
HWB Cartilage | LWB Cartilage | HWB vs. LWB | |||||
---|---|---|---|---|---|---|---|
Elastic Modulus | Hardness | Elastic Modulus | Hardness | Elastic Modulus | Hardness | ||
Age | <69 | 0.311 * | 0.270 * | 0.270 * | 0.127 * | 0.124 * | 0.160 * |
>70 | |||||||
Sex | f | 0.283 * | 0.208 * | 0.941 * | 0.936 * | 0.519 * | 0.355 * |
m | |||||||
BMI | normal | 0.548 ** | 0.406 ** | 0.742 ** | 0.738 ** | 0.938 ** | 0.991 ** |
overweight | |||||||
obese | |||||||
K-L grade | 2 | 0.130 ** | 0.365 ** | 0.414 ** | 0.482 ** | 0.523 ** | 0.688 ** |
3 | |||||||
4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mieloch, A.A.; Richter, M.; Trzeciak, T.; Giersig, M.; Rybka, J.D. Osteoarthritis Severely Decreases the Elasticity and Hardness of Knee Joint Cartilage: A Nanoindentation Study. J. Clin. Med. 2019, 8, 1865. https://doi.org/10.3390/jcm8111865
Mieloch AA, Richter M, Trzeciak T, Giersig M, Rybka JD. Osteoarthritis Severely Decreases the Elasticity and Hardness of Knee Joint Cartilage: A Nanoindentation Study. Journal of Clinical Medicine. 2019; 8(11):1865. https://doi.org/10.3390/jcm8111865
Chicago/Turabian StyleMieloch, Adam Aron, Magdalena Richter, Tomasz Trzeciak, Michael Giersig, and Jakub Dalibor Rybka. 2019. "Osteoarthritis Severely Decreases the Elasticity and Hardness of Knee Joint Cartilage: A Nanoindentation Study" Journal of Clinical Medicine 8, no. 11: 1865. https://doi.org/10.3390/jcm8111865
APA StyleMieloch, A. A., Richter, M., Trzeciak, T., Giersig, M., & Rybka, J. D. (2019). Osteoarthritis Severely Decreases the Elasticity and Hardness of Knee Joint Cartilage: A Nanoindentation Study. Journal of Clinical Medicine, 8(11), 1865. https://doi.org/10.3390/jcm8111865