High-Sensitivity C-Reactive Protein and Acute Kidney Injury in Patients with Acute Myocardial Infarction: A Prospective Observational Study
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marenzi, G.; Cosentino, N.; Bartorelli, A.L. Acute kidney injury in patients with acute coronary syndromes. Heart 2015, 101, 1778–1785. [Google Scholar] [CrossRef] [PubMed]
- Marenzi, G.; Cabiati, A.; Bertoli, S.V.; Assanelli, E.; Marana, I.; De Metrio, M.; Rubino, M.; Moltrasio, M.; Grazi, M.; Campodonico, J.; et al. Incidence and relevance of acute kidney injury in patients hospitalized with acute coronary syndromes. Am. J. Cardiol. 2013, 111, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Marenzi, G.; Lauri, G.; Assanelli, E.; Campodonico, J.; De Metrio, M.; Marana, I.; Grazi, M.; Veglia, F.; Bartorelli, A.L. Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J. Am. Coll Cardiol. 2004, 44, 1780–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marenzi, G.; Assanelli, E.; Campodonico, J.; Lauri, G.; Marana, I.; De Metrio, M.; Moltrasio, M.; Grazi, M.; Rubino, M.; Veglia, F.; et al. Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann. Intern. Med. 2009, 150, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Kaltsas, E.; Chalikias, G.; Tziakas, D. The Incidence and the prognostic impact of acute kidney injury in acute myocardial infarction patients: Current preventive strategies. Cardiovasc. Drugs Ther. 2018, 32, 81–98. [Google Scholar] [CrossRef]
- Marenzi, G.; Ferrari, C.; Marana, I.; Assanelli, E.; De Metrio, M.; Teruzzi, G.; Veglia, F.; Fabbiocchi, F.; Montorsi, P.; Bartorelli, A.L. Prevention of contrast nephropathy by furosemide with matched hydration: The MYTHOS (Induced Diuresis With Matched Hydration Compared to Standard Hydration for Contrast Induced Nephropathy Prevention) trial. JACC Cardiovasc. Interv. 2012, 5, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; James, M.T. Acute kidney injury. Ann. Intern. Med. 2017, 167, ITC66–ITC80. [Google Scholar] [CrossRef]
- Rabb, H.; Griffin, M.D.; McKay, D.B.; Swaminathan, S.; Pickkers, P.; Rosner, M.H.; Kellum, J.A.; Ronco, C. Acute Dialysis Quality Initiative Consensus XIII Work Group. Inflammation in AKI: Current understanding, key questions, and knowledge gaps. J. Am. Soc. Nephrol. 2016, 27, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Glodowski, S.D.; Wagener, G. New insights into the mechanisms of acute kidney injury in the Intensive Care Unit. J. Clin. Anesth. 2015, 27, 175–180. [Google Scholar] [CrossRef]
- Andrade-Oliveira, V.; Foresto-Neto, O.; Watanabe, I.K.M.; Zatz, R.; Câmara, N.O.S. Inflammation in Renal Diseases: New and Old Players. Front. Pharmacol. 2019, 10, 1192. [Google Scholar] [CrossRef]
- McFadyen, J.D.; Kiefer, J.; Braig, D.; Loseff-Silver, J.; Potempa, L.A.; Eisenhardt, S.U.; Peter, K. Dissociation of C-reactive protein localizes and amplifies inflammation: Evidence for a direct biological role of C-reactive protein and its conformational changes. Front. Immunol. 2018, 9, 1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigushin, D.M.; Pepys, M.B.; Hawkins, P.N. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J. Clin. Investig. 1993, 91, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Tang, Y.; Huang, X.R.; Tang, P.M.K.; Xu, A.; Szalai, A.J.; Lou, T.Q.; Lan, H.Y. C-reactive protein promotes acute kidney injury via Smad3-dependent inhibition of CDK2/cyclin E. Kidney Int. 2016, 90, 610–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Mak, S.K.; Lan, H.Y. Role of C-reactive protein in the pathogenesis of acute kidney injury. Nephrology 2018, 23 (Suppl. 4), 50–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rifai, N.; Ballantyne, C.M.; Cushman, M.; Levy, D.; Myers, G.L. Point: High-sensitivity C-reactive protein and cardiac C-reactive protein assays: Is there a need to differentiate? Clin. Chem. 2006, 52, 1254–1256. [Google Scholar] [CrossRef] [Green Version]
- Crea, F.; Libby, P. Acute coronary syndromes: The way forward from mechanisms to precision treatment. Circulation 2017, 136, 1155–1166. [Google Scholar] [CrossRef]
- Yousuf, O.; Mohanty, B.D.; Martin, S.S.; Joshi, P.H.; Blaha, M.J.; Nasir, K.; Blumenthal, R.S.; Budoff, M.J. High-sensitivity C-reactive protein and cardiovascular disease: A resolute belief or an elusive link? J. Am. Coll. Cardiol. 2013, 62, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Zhou, Y.J.; Zhu, X.; Wang, Z.J.; Yang, S.W.; Shen, H. C-reactive protein and the risk of contrast-induced acute kidney injury in patients undergoing percutaneous coronary intervention. Am. J. Nephrol. 2011, 34, 203–210. [Google Scholar] [CrossRef]
- Han, S.S.; Kim, D.K.; Kim, S.; Chin, H.J.; Chae, D.W.; Na, K.Y. C-reactive protein predicts acute kidney injury and death after coronary artery bypass grafting. Ann. Thorac. Surg. 2017, 104, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Shacham, Y.; Leshem-Rubinow, E.; Steinvil, A.; Keren, G.; Roth, A.; Arbel, Y. High sensitive C-reactive protein and the risk of acute kidney injury among ST-elevation myocardial infarction patients undergoing primary percutaneous intervention. Clin. Exp. Nephrol. 2015, 19, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Podmore, C.; Meidtner, K.; Schulze, M.B.; Scott, R.A.; Ramond, A.; Butterworth, A.S.; Di Angelantonio, E.; Danesh, J.; Arriola, L.; Barricarte, A.; et al. The association of multiple biomarkers of iron metabolism and type 2 diabetes - the EPIC-InterAct Study. Diabetes Care 2016, 39, 572–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. Modification of Diet in Renal Disease Study Group. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudiger, A.; Singer, M. The heart in sepsis: From basic mechanisms to clinical management. Curr. Vasc. Pharmacol. 2013, 11, 187–195. [Google Scholar] [PubMed]
- Takasu, O.; Gaut, J.P.; Watanabe, E.; To, K.; Fagley, R.E.; Sato, B.; Jarman, S.; Efimov, I.R.; Janks, D.L.; Srivastava, A.; et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am. J. Respir. Crit. Care Med. 2013, 187, 509–517. [Google Scholar] [CrossRef]
- Marenzi, G.; Cosentino, N.; Boeddinghaus, J.; Trinei, M.; Giorgio, M.; Milazzo, V.; Moltrasio, M.; Cardinale, D.; Sandri, M.T.; Veglia, F.; et al. Diagnostic and prognostic utility of circulating cytochrome c in acute myocardial infarction. Circ. Res. 2016, 119, 1339–1346. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Stein, C.M.; Morris, N.J.; Hall, N.B.; Nock, N.L. Structural equation modeling. Methods Mol. Biol. 2017, 1666, 557–580. [Google Scholar]
- Cook, N.R.; Ridker, P.M. Advances in measuring the effect of individual predictors of cardiovascular risk: The role of reclassification measures. Ann. Intern. Med. 2009, 150, 795–802. [Google Scholar] [CrossRef]
- James, M.T.; Ghali, W.A.; Knudtson, M.L.; Ravani, P.; Tonelli, M.; Faris, P.; Pannu, N.; Manns, B.J.; Klarenbach, S.W.; Hemmelgarn, B.R. Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) Investigators. Associations between acute kidney injury and cardiovascular and renal outcomes after coronary angiography. Circulation 2011, 123, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marenzi, G.; Cosentino, N.; Milazzo, V.; De Metrio, M.; Rubino, M.; Campodonico, J.; Moltrasio, M.; Marana, I.; Grazi, M.; Lauri, G.; et al. Acute kidney injury in diabetic patients with acute myocardial infarction: Role of acute and chronic glycemia. J. Am. Heart Assoc. 2018, 7, e008122. [Google Scholar] [CrossRef] [PubMed]
- Marenzi, G.; Cosentino, N.; Moltrasio, M.; Rubino, M.; Crimi, G.; Buratti, S.; Grazi, M.; Milazzo, V.; Somaschini, A.; Camporotondo, R.; et al. Acute kidney injury definition and in-hospital mortality in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. J. Am. Heart Assoc. 2016, 5, e003522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardinale, D.; Cosentino, N.; Moltrasio, M.; Sandri, M.T.; Petrella, F.; Colombo, A.; Bacchiani, G.; Tessitore, A.; Bonomi, A.; Veglia, F.; et al. Acute kidney injury after lung cancer surgery: Incidence and clinical relevance, predictors, and role of N-terminal pro B-type natriuretic peptide. Lung Cancer 2018, 123, 155–159. [Google Scholar] [CrossRef]
- Ammirati, E.; Cannistraci, C.V.; Cristell, N.A.; Vecchio, V.; Palini, A.G.; Tornvall, P.; Paganoni, A.M.; Miendlarzewska, E.A.; Sangalli, L.M.; Monello, A.; et al. Identification and predictive value of interleukin-6+ interleukin-10+ and interleukin-6− interleukin-10+ cytokine patterns in ST-elevation acute myocardial infarction. Circ. Res. 2012, 111, 1336–1348. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, C.; Sheriff, A.; Zimmermann, S.; Schaefauer, L.; Schlundt, C.; Raaz, D.; Garlichs, C.D.; Achenbach, S. C-reactive protein levels predict systolic heart failure and outcome in patients with first ST-elevation myocardial infarction treated with coronary angioplasty. Arch. Med. Sci. 2017, 13, 1086–1093. [Google Scholar] [CrossRef] [Green Version]
- Halkin, A.; Stone, G.W.; Dixon, S.R.; Grines, C.L.; Tcheng, J.E.; Cox, D.A.; Garcia, E.; Brodie, B.; Stuckey, T.D.; Mehran, R.; et al. Impact and determinants of left ventricular function in patients undergoing primary percutaneous coronary intervention in acute myocardial infarction. Am. J. Cardiol. 2005, 96, 325–331. [Google Scholar] [CrossRef]
- Gibson, C.M.; Pinto, D.S.; Murphy, S.A.; Morrow, D.A.; Hobbach, H.P.; Wiviott, S.D.; Giugliano, R.P.; Cannon, C.P.; Antman, E.M.; Braunwald, E.; et al. TIMI Study Group Association of creatinine and creatinine clearance on presentation in acute myocardial infarction with subsequent mortality. J. Am. Coll. Cardiol. 2003, 42, 1535–1543. [Google Scholar] [CrossRef] [Green Version]
- Marenzi, G.; Moltrasio, M.; Assanelli, E.; Lauri, G.; Marana, I.; Grazi, M.; Rubino, M.; De Metrio, M.; Veglia, F.; Bartorelli, A.L. Impact of cardiac and renal dysfunction on inhospital morbidity and mortality of patients with acute myocardial infarction undergoing primary angioplasty. Am. Heart J. 2007, 153, 755–762. [Google Scholar] [CrossRef]
- Fujii, H.; Li, S.H.; Szmitko, P.E.; Fedak, P.W.; Verma, S. C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2476–2482. [Google Scholar] [CrossRef] [Green Version]
- Marenzi, G.; Cosentino, N.; Cortinovis, S.; Milazzo, V.; Rubino, M.; Cabiati, A.; De Metrio, M.; Moltrasio, M.; Lauri, G.; Campodonico, J.; et al. Myocardial infarct size in patients on long-term statin therapy undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. Am. J. Cardiol. 2015, 116, 1791–1797. [Google Scholar] [CrossRef]
- Marenzi, G.; Cosentino, N.; Werba, J.P.; Tedesco, C.C.; Veglia, F.; Bartorelli, A.L. A meta-analysis of randomized controlled trials on statins for the prevention of contrast-induced acute kidney injury in patients with and without acute coronary syndromes. Int. J. Cardiol. 2015, 183, 47–53. [Google Scholar] [CrossRef]
- Zahler, D.; Rozenfeld, K.L.; Stein, M.; Milwidsky, A.; Berliner, S.; Banai, S.; Arbel, Y.; Shacham, Y. C-reactive protein velocity and the risk of acute kidney injury among ST-elevation myocardial infarction patients undergoing primary percutaneous intervention. J. Nephrol. 2019, 32, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Karabağ, Y.; Çağdaş, M.; Rencuzogullari, I.; Karakoyun, S.; Artaç, İ.; İliş, D.; Yesin, M.; Çiftçi, H.; Erdoğdu, H.I.; Tanboğa, I.H. Protein to albumin ratio predicts acute kidney injury in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Heart Lung Circ. 2018, 28, 1638–1645. [Google Scholar] [CrossRef] [PubMed]
Variable | Acute Kidney Injury | ||
---|---|---|---|
No | Yes | p Value | |
(n = 1829) | (n = 234) | ||
Age (years) | 66 ± 12 | 74 ± 11 | <0.0001 |
Male sex, n (%) | 1351 (74%) | 165 (71%) | 0.27 |
Body weight (kg) | 76 ± 14 | 76 ± 16 | 0.88 |
Diabetes mellitus, n (%) | 386 (21%) | 87 (37%) | <0.0001 |
Hypertension, n (%) | 1157 (63%) | 178 (76%) | 0.0001 |
Smokers, n (%) | 1003 (55%) | 95 (41%) | <0.0001 |
Hyperlipidemia, n (%) | 900 (49%) | 129 (55%) | 0.09 |
Prior myocardial infarction, n (%) | 451 (25%) | 82 (35%) | 0.0006 |
Prior CABG, n (%) | 210 (11%) | 41 (18%) | 0.007 |
Prior PCI, n (%) | 450 (25%) | 66 (28%) | 0.22 |
Left ventricular ejection fraction (%) | 51 ± 11 | 41 ± 14 | <0.0001 |
STEMI, n (%) | 885 (48%) | 131 (56%) | 0.03 |
CA/PCI during hospitalization, n (%) | 1724 (94%) | 206 (88%) | 0.0006 |
Laboratory values at hospital admission | |||
Serum creatinine (mg/dL) | 1.0 ± 0.4 | 1.4 ± 0.9 | <0.0001 |
eGFR (ml/min/1.73m2) | 80 ± 26 | 63 ± 30 | <0.0001 |
Hemoglobin (g/dL) | 13.7 ± 1.8 | 13.1 ± 2.1 | <0.0001 |
Blood glucose (mg/dL) | 146 ± 57 | 192 ± 88 | <0.0001 |
hs-TnI (ng/L) | 5223 ± 20,634 | 12,992 ± 50,065 | <0.0001 |
Medication before hospital admission | |||
Aspirin, n (%) | 642 (35%) | 108 (46%) | 0.0009 |
Statins, n (%) | 601 (33%) | 90 (38%) | 0.11 |
Beta-blockers, n (%) | 632 (28%) | 100 (24%) | 0.01 |
ACE/AR blockers, n (%) | 718 (35%) | 93 (40%) | 0.89 |
Oral anticoagulants, n (%) | 91 (5%) | 17 (7%) | 0.29 |
In-hospital complications | |||
In-hospital death, n (%) | 9 (0.5%) | 30 (13%) | <0.0001 |
Cardiogenic shock, n (%) | 58 (3%) | 59 (25%) | <0.0001 |
Acute pulmonary edema, n (%) | 115 (6%) | 99 (42%) | <0.0001 |
Combined clinical endpoint, n (%) | 141 (8%) | 119 (51%) | <0.0001 |
Mechanical ventilation, n (%) | 32 (2%) | 46 (20%) | <0.0001 |
Atrial fibrillation, n (%) | 147 (8%) | 62 (26%) | <0.0001 |
VT/VF, n (%) | 127 (7%) | 41 (18%) | <0.0001 |
High-degree CD, n (%) | 60 (3%) | 14 (6%) | 0.04 |
Major bleeding, n (%) | 41 (2%) | 31 (13%) | <0.0001 |
ICCU length of stay (days) * | 4 (3–4) | 5 (4–8) | <0.001 † |
AUC (95% CI) | p Value AUC | p Value for AUC Comparison | NRI (95% CI) | p Value NRI | |
---|---|---|---|---|---|
Admission sCr | 0.66 (0.62–0.70) | <0.001 | - | - | - |
Admission hs-CRP + sCr | 0.72 (0.68–0.76) | <0.001 | <0.001 | 14% (10–17) | 0.01 |
Clinical predictors * | 0.79 (0.77–0.83) | <0.001 | - | - | - |
Admission hs-CRP + clinical predictors * | 0.81 (0.78–0.84) | <0.001 | 0.002 | 8% (3–12) | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosentino, N.; Genovese, S.; Campodonico, J.; Bonomi, A.; Lucci, C.; Milazzo, V.; Moltrasio, M.; Biondi, M.L.; Riggio, D.; Veglia, F.; et al. High-Sensitivity C-Reactive Protein and Acute Kidney Injury in Patients with Acute Myocardial Infarction: A Prospective Observational Study. J. Clin. Med. 2019, 8, 2192. https://doi.org/10.3390/jcm8122192
Cosentino N, Genovese S, Campodonico J, Bonomi A, Lucci C, Milazzo V, Moltrasio M, Biondi ML, Riggio D, Veglia F, et al. High-Sensitivity C-Reactive Protein and Acute Kidney Injury in Patients with Acute Myocardial Infarction: A Prospective Observational Study. Journal of Clinical Medicine. 2019; 8(12):2192. https://doi.org/10.3390/jcm8122192
Chicago/Turabian StyleCosentino, Nicola, Stefano Genovese, Jeness Campodonico, Alice Bonomi, Claudia Lucci, Valentina Milazzo, Marco Moltrasio, Maria Luisa Biondi, Daniela Riggio, Fabrizio Veglia, and et al. 2019. "High-Sensitivity C-Reactive Protein and Acute Kidney Injury in Patients with Acute Myocardial Infarction: A Prospective Observational Study" Journal of Clinical Medicine 8, no. 12: 2192. https://doi.org/10.3390/jcm8122192
APA StyleCosentino, N., Genovese, S., Campodonico, J., Bonomi, A., Lucci, C., Milazzo, V., Moltrasio, M., Biondi, M. L., Riggio, D., Veglia, F., Ceriani, R., Celentano, K., De Metrio, M., Rubino, M., Bartorelli, A. L., & Marenzi, G. (2019). High-Sensitivity C-Reactive Protein and Acute Kidney Injury in Patients with Acute Myocardial Infarction: A Prospective Observational Study. Journal of Clinical Medicine, 8(12), 2192. https://doi.org/10.3390/jcm8122192