Delayed Antibiotic Therapy and Organ Dysfunction in Critically Ill Septic Patients in the Emergency Department
Abstract
:1. Background
2. Materials and Methods
3. Results
3.1. Baseline Characteristics
3.2. Outcome Comparison
3.3. Multivariable Linear Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The epidemiology of sepsis in the united states from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of clinical criteria for sepsis: For the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Evans, L.E.; Rhodes, A. The surviving sepsis campaign bundle: 2018 update. Crit. Care Med. 2018, 46, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Crit. Care Med. 2017, 45, 486–552. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. Apache II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Madan, A. Correlation between the levels of SpO2 and PaO2. Lung India 2017, 34, 307–308. [Google Scholar] [PubMed]
- Whiles, B.B.; Deis, A.S.; Simpson, S.Q. Increased time to initial antimicrobial administration is associated with progression to septic shock in severe sepsis patients. Crit. Care Med. 2017, 45, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Kahn, J.M.; Martin-Gill, C.; Callaway, C.W.; Yealy, D.M.; Scales, D.; Angus, D.C. Delays from first medical contact to antibiotic administration for sepsis. Crit. Care Med. 2017, 45, 759–765. [Google Scholar] [CrossRef]
- Liu, V.X.; Fielding-Singh, V.; Greene, J.D.; Baker, J.M.; Iwashyna, T.J.; Bhattacharya, J.; Escobar, G.J. The timing of early antibiotics and hospital mortality in sepsis. Am. J. Respir. Crit. Care Med. 2017, 196, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Wisdom, A.; Eaton, V.; Gordon, D.; Daniel, S.; Woodman, R.; Phillips, C. Initiat-e.D.: Impact of timing of initiation of antibiotic therapy on mortality of patients presenting to an emergency department with sepsis. Emerg. Med. Australas. 2015, 27, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Sterling, S.A.; Miller, W.R.; Pryor, J.; Puskarich, M.A.; Jones, A.E. The impact of timing of antibiotics on outcomes in severe sepsis and septic shock: A systematic review and meta-analysis. Crit. Care Med. 2015, 43, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- De Groot, B.; Ansems, A.; Gerling, D.H.; Rijpsma, D.; van Amstel, P.; Linzel, D.; Kostense, P.J.; Jonker, M.; de Jonge, E. The association between time to antibiotics and relevant clinical outcomes in emergency department patients with various stages of sepsis: A prospective multi-center study. Crit. Care 2015, 19, 194. [Google Scholar] [CrossRef] [PubMed]
- Joo, Y.M.; Chae, M.K.; Hwang, S.Y.; Jin, S.C.; Lee, T.R.; Cha, W.C.; Jo, I.J.; Sim, M.S.; Song, K.J.; Jeong, Y.K.; et al. Impact of timely antibiotic administration on outcomes in patients with severe sepsis and septic shock in the emergency department. Clin. Exp. Emerg. Med. 2014, 1, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On Behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Akca, S.; Haji-Michael, P.; de Mendonca, A.; Suter, P.; Levi, M.; Vincent, J.L. Time course of platelet counts in critically ill patients. Crit. Care Med. 2002, 30, 753–756. [Google Scholar] [CrossRef]
- Vanderschueren, S.; De Weerdt, A.; Malbrain, M.; Vankersschaever, D.; Frans, E.; Wilmer, A.; Bobbaers, H. Thrombocytopenia and prognosis in intensive care. Crit. Care Med. 2000, 28, 1871–1876. [Google Scholar] [CrossRef]
- Chand, N.; Sanyal, A.J. Sepsis-induced cholestasis. Hepatology 2007, 45, 230–241. [Google Scholar] [CrossRef]
- Zhai, R.; Sheu, C.C.; Su, L.; Gong, M.N.; Tejera, P.; Chen, F.; Wang, Z.; Convery, M.P.; Thompson, B.T.; Christiani, D.C. Serum bilirubin levels on ICU admission are associated with ARDS development and mortality in sepsis. Thorax 2009, 64, 784–790. [Google Scholar] [CrossRef]
- Pierrakos, C.; Velissaris, D.; Felleiter, P.; Antonelli, M.; Vanhems, P.; Sakr, Y.; Vincent, J.L. Increased mortality in critically ill patients with mild or moderate hyperbilirubinemia. J. Crit. Care 2017, 40, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.J.; Taneja, A.; Niccum, D.; Kumar, G.; Jacobs, E.; Nanchal, R. The association of serum bilirubin levels on the outcomes of severe sepsis. J. Intensive Care Med. 2015, 30, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Yoshikai, Y.; Kamiya, J.; Nagino, M.; Uesaka, K.; Yuasa, N.; Oda, K.; Sano, T.; Nimura, Y. Bilirubin impairs bactericidal activity of neutrophils through an antioxidant mechanism in vitro. J. Surg. Res. 2001, 96, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A. Acute kidney injury network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Lameire, N. Diagnosis, evaluation, and management of acute kidney injury: A kdigo summary (part 1). Crit Care 2013, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.R.; Lee, S.N.; Cho, Y.J.; Jeon, J.S.; Noh, H.; Han, D.C.; Park, S.; Kwon, S.H. A decrease in serum creatinine after icu admission is associated with increased mortality. PLoS ONE 2017, 12, e0183156. [Google Scholar] [CrossRef]
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef]
- Thomas, M.E.; Blaine, C.; Dawnay, A.; Devonald, M.A.; Ftouh, S.; Laing, C.; Latchem, S.; Lewington, A.; Milford, D.V.; Ostermann, M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015, 87, 62–73. [Google Scholar] [CrossRef]
- Zhang, D.; Micek, S.T.; Kollef, M.H. Time to appropriate antibiotic therapy is an independent determinant of postinfection icu and hospital lengths of stay in patients with sepsis. Crit. Care Med. 2015, 43, 2133–2140. [Google Scholar] [CrossRef]
- Kumar, A.; Ellis, P.; Arabi, Y.; Roberts, D.; Light, B.; Parrillo, J.E.; Dodek, P.; Wood, G.; Kumar, A.; Simon, D.; et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009, 136, 1237–1248. [Google Scholar]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall (n = 1784) | Survivor Group (n = 1528) | Non-Survivor Group (n = 256) | p-Value |
---|---|---|---|---|
Age (years) | 66 (55, 73) | 66 (55, 73) | 66 (55, 73) | 0.656 |
Sex (male) | 1027 (57.6) | 873 (57.1) | 154 (60.2) | 0.365 |
Comorbidities | ||||
Hypertension | 633 (35.5) | 549 (35.9) | 84 (32.8) | 0.335 |
Diabetes | 450 (25.2) | 391 (25.6) | 59 (23.1) | 0.386 |
Cardiac disease | 227 (12.7) | 189 (12.4) | 38 (14.8) | 0.272 |
Chronic lung disease | 109 (6.1) | 90 (5.9) | 19 (7.4) | 0.344 |
Chronic renal disease | 92 (5.2) | 80 (5.2) | 12 (4.7) | 0.714 |
Chronic liver disease † | 157 (8.8) | 122 (8.0) | 35 (13.7) | 0.003 |
Metastatic solid cancer † | 406 (22.8) | 318 (20.8) | 88 (34.4) | <0.001 |
Hematologic malignancy | 185 (10.4) | 155 (10.1) | 30 (11.7) | 0.444 |
Suspected infectious focus † | <0.001 | |||
Intra-abdominal | 595 (33.4) | 526 (34.4) | 69(27.0) | |
Respiratory | 635 (35.6) | 508 (33.3) | 127 (49.6) | |
Urinary | 234 (13.1) | 226 (14.8) | 8 (3.1) | |
Other | 320 (17.9) | 268 (17.5) | 52 (20.3) | |
Positive blood cultures | 728 (40.8) | 621 (40.6) | 107 (41.8) | 0.728 |
Resistant bacterial infection | 147 (8.2) | 131 (8.6) | 16 (6.3) | 0.211 |
SOFA score (Baseline) † | 6 (4, 9) | 6 (4, 8) | 9 (6, 11) | <0.001 |
SOFA score (Day 3) † | 5 (3, 8) | 4 (3, 7) | 10 (7, 14) | <0.001 |
APACHE II score (Baseline) † | 18 (13, 24) | 17 (12, 23) | 21 (15, 30) | <0.001 |
Laboratory results | ||||
Initial lactate (mmol/L) † | 4.3 (2.7, 5.6) | 4.2 (2.6, 5.4) | 5.3 (3.5, 8.4) | <0.001 |
C-reactive protein (mg/dL) † | 10.7 (4.4, 21.6) | 9.9 (3.9, 20.5) | 15.2 (8.2, 25.9) | <0.001 |
Interventions | ||||
Fluid resuscitation within 3 h (30 mL/kg) † | 873 (49.0) | 727 (47.6) | 146 (57.0) | 0.005 |
Fluid input within 24 h (L) † | 4.3 (3.0, 5.7) | 4.2 (3.0, 5.5) | 5.0 (3.5, 6.5) | <0.001 |
Vasopressors † | 1111 (62.3) | 902 (59.0) | 209 (81.6) | <0.001 |
Renal replacement therapy † | 179 (10.0) | 104 (6.8) | 75 (29.3) | <0.001 |
Time to antibiotic therapy (hours) * | 2.2 (1.5, 3.3) | 2.2 (1.4, 3.3) | 2.3 (1.5, 3.4) | 0.473 |
Overall (n = 1784) | Survivor Group (n = 1528) | Non-Survivor Group (n = 256) | p-Value | |
---|---|---|---|---|
Platelet (× 103/mm3) * | ||||
ED enrollment † | 143 (73, 216) | 150 (80, 217) | 102 (40, 178) | <0.001 |
Day 3 † | 100 (49, 171) | 108 (56, 177) | 52 (27.5, 110.5) | <0.001 |
δ-platelet count | −27 (−63, −1) | −27 (−61, −2) | −28.5 (−77, 0) | 0.262 |
Serum bilirubin (mg/dL) * | ||||
ED enrollment † | 1.2 (0.8, 2.2) | 1.2 (0.8, 2.1) | 1.4 (0.8, 2.7) | 0.013 |
Day 3 † | 0.9 (0.6, 1.7) | 0.9 (0.5, 1.5) | 1.55 (0.8, 3.7) | <0.001 |
δ-serum bilirubin † | −0.3 (−0.7, 0) | −0.3 (−0.8, 0) | 0 (−0.3, 0.8) | <0.001 |
Serum creatinine (mg/dL) * | ||||
ED enrollment † | 1.26 (0.91, 1.87) | 1.22 (0.88, 1.8) | 1.48 (1.05, 2.38) | <0.001 |
Day 3 † | 0.85 (0.62, 1.31) | 0.81 (0.6, 1.16) | 1.39 (0.9, 1.92) | <0.001 |
δ-serum creatinine † | −0.31 (−0.61, −0.12) | −0.33 (−0.62, −0.15) | −0.13 (−0.47, 0.05) | <0.001 |
PaO2/FiO2 ratio * | ||||
ED enrollment † | 342 (250, 429) | 348 (260, 436) | 289 (166, 409) | <0.001 |
Day 3 † | 321 (207, 410) | 343 (232, 410) | 166 (90, 291) | <0.001 |
δ-PaO2/FiO2 ratio † | −11 (−103, 55) | −2 (−89, 60) | −68 (−189, 19) | <0.001 |
Variables | Regression Coefficient | Standard Error | p-Value |
---|---|---|---|
Analysis of δ-Platelet Count (×103/mm3) * | |||
Timing of antibiotic therapy (per hour delay †) | −1.950 | 0.749 | 0.009 |
Age | −0.140 | 0.101 | 0.164 |
Chronic renal disease † | −18.546 | 6.214 | 0.003 |
Chronic liver disease † | 26.021 | 5.086 | <0.001 |
Hematologic malignancy † | 16.257 | 4.899 | 0.001 |
Initial lactate (mmol/L) † | −2.764 | 0.473 | <0.001 |
C-reactive protein (mg/dL) † | 0.571 | 0.125 | <0.001 |
APACHE II score † | −0.381 | 0.171 | 0.026 |
Use of vasopressors within 24 h | −0.552 | 3.156 | 0.861 |
Fluid input within 24 h (L) † | −4.225 | 0.740 | <0.001 |
Suspected infectious focus | |||
Intra-abdominal | Reference | ||
Respiratory † | 13.866 | 3.382 | <0.001 |
Urinary † | 15.782 | 4.495 | <0.001 |
Other † | 16.206 | 4.093 | <0.001 |
Analysis of δ-Serum Bilirubin (mg/dL) * | Regression Coefficient | Standard Error | p-Value |
Timing of antibiotic therapy (per hour delay) † | 0.056 | 0.021 | 0.009 |
Hematologic malignancy † | 0.450 | 0.126 | <0.001 |
Metastatic solid cancer † | 0.167 | 0.090 | 0.046 |
Initial lactate (mmol/L) † | 0.081 | 0.013 | <0.001 |
C-reactive protein (mg/dL) | 0.001 | 0.003 | 0.409 |
Blood culture-positive | −0.129 | 0.081 | 0.117 |
Resistant bacterial infection | −0.170 | 0.137 | 0.341 |
APACHE II score | 0.015 | 0.015 | 0.563 |
Use of vasopressors within 24 h † | 0.147 | 0.100 | 0.031 |
Fluid resuscitation within 3 h (30 mL/kg) | −0.058 | 0.084 | 0.924 |
Fluid input within 24 h (L) † | 0.042 | 0.021 | 0.033 |
Suspected infectious focus | |||
Intra-abdominal | Reference | ||
Respiratory † | 0.294 | 0.093 | 0.001 |
Urinary † | 0.298 | 0.121 | 0.007 |
Other † | 0.244 | 0.109 | 0.012 |
Analysis of δ-Serum Creatinine (mg/dL) * | Regression Coefficient | Standard Error | p-Value |
Timing of antibiotic therapy (per hour delay) | 0.005 | 0.010 | 0.434 |
Cardiac disease | 0.079 | 0.058 | 0.258 |
Chronic lung disease | 0.167 | 0.080 | 0.371 |
Hematologic malignancy † | 0.150 | 0.064 | 0.017 |
Initial lactate (mmol/L) | −0.020 | 0.008 | 0.092 |
C-reactive protein (mg/dL) † | −0.014 | 0.002 | <0.001 |
APACHE II score † | 0.001 | 0.008 | <0.001 |
Use of vasopressors within 24 h | −0.063 | 0.050 | 0.095 |
Fluid resuscitation within 3 h (30 mL/kg) † | −0.176 | 0.042 | <0.001 |
Fluid input within 24 h (L) | −0.015 | 0.011 | 0.725 |
Suspected infectious focus | 0.005 | ||
Intra-abdominal | 0.079 | ||
Respiratory † | 0.167 | 0.047 | <0.001 |
Urinary | 0.150 | 0.061 | 0.413 |
Other | −0.020 | 0.056 | 0.403 |
Analysis of δ-PaO2/FiO2 Ratio * | Regression Coefficient | Standard Error | p-Value |
Timing of antibiotic therapy (per hour delay) | −0.797 | 1.858 | 0.668 |
Hypertension | 3.328 | 7.426 | 0.654 |
Diabetes | 11.740 | 8.201 | 0.152 |
Cardiac disease | 7.785 | 10.228 | 0.447 |
Metastatic solid cancer † | −18.769 | 8.092 | 0.020 |
Initial lactate (mmol/L) † | −5.900 | 1.187 | <0.001 |
C-reactive protein (mg/dL) † | −1.217 | 0.307 | <0.001 |
Blood culture-positive † | −16.016 | 7.242 | 0.027 |
Resistant bacterial infection | 7.760 | 12.365 | 0.530 |
APACHE II score † | 2.509 | 0.406 | <0.001 |
Use of vasopressors within 24 h † | −21.697 | 7.961 | 0.006 |
Fluid resuscitation within 3 h (30 mL/kg) † | 25.775 | 7.675 | 0.001 |
Fluid input within 24 h (L) † | −8.807 | 1.862 | <0.001 |
Suspected infectious focus | |||
Intra-abdominal | Reference | ||
Respiratory | 8.038 | 8.449 | 0.342 |
Urinary | 20.069 | 10.931 | 0.067 |
Other | 7.022 | 9.821 | 0.475 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.Y.; Shin, J.; Jo, I.J.; Park, J.E.; Yoon, H.; Cha, W.C.; Sim, M.S.; Shin, T.G. Delayed Antibiotic Therapy and Organ Dysfunction in Critically Ill Septic Patients in the Emergency Department. J. Clin. Med. 2019, 8, 222. https://doi.org/10.3390/jcm8020222
Hwang SY, Shin J, Jo IJ, Park JE, Yoon H, Cha WC, Sim MS, Shin TG. Delayed Antibiotic Therapy and Organ Dysfunction in Critically Ill Septic Patients in the Emergency Department. Journal of Clinical Medicine. 2019; 8(2):222. https://doi.org/10.3390/jcm8020222
Chicago/Turabian StyleHwang, Sung Yeon, Jikyoung Shin, Ik Joon Jo, Jong Eun Park, Hee Yoon, Won Chul Cha, Min Seob Sim, and Tae Gun Shin. 2019. "Delayed Antibiotic Therapy and Organ Dysfunction in Critically Ill Septic Patients in the Emergency Department" Journal of Clinical Medicine 8, no. 2: 222. https://doi.org/10.3390/jcm8020222
APA StyleHwang, S. Y., Shin, J., Jo, I. J., Park, J. E., Yoon, H., Cha, W. C., Sim, M. S., & Shin, T. G. (2019). Delayed Antibiotic Therapy and Organ Dysfunction in Critically Ill Septic Patients in the Emergency Department. Journal of Clinical Medicine, 8(2), 222. https://doi.org/10.3390/jcm8020222