Non-Aβ-Dependent Factors Associated with Global Cognitive and Physical Function in Alzheimer’s Disease: A Pilot Multivariate Analysis
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Li, F.; Wang, F.; Jia, J. Evaluating the prevalence of dementia in hospitalized older adults and effects of comorbid dementia on patients’ hospital course. Aging Clin. Exp. Res. 2013, 25, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Lopez, O.L. Mild cognitive impairment. Continuum (Minneap Minn) 2013, 19, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Petersen, R.C. Mild Cognitive Impairment and Mild Dementia: A Clinical Perspective. Mayo Clin. Proc. 2014, 89, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Korolev, I.O.; Symonds, L.L.; Bozoki, A.C. Predicting progression from mild cognitive impairment to Alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification. PLoS ONE 2016, 11, e0138866. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Rodríguez, A.; Rodríguez-Sotelo, J.L.; Osorio-Forero, A.; Medina, J.M.; de Mejía, F.R. The shape of dementia: New measures of morphological complexity in event-related potentials (ERP) and its application to the detection of Alzheimer’s disease. Med. Biol. Eng. Comput. 2015, 53, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Pistollato, F.; Ohayon, E.L.; Lam, A.; Langley, G.R.; Novak, T.J.; Pamies, D.; Perry, G.; Trushina, E.; Williams, R.S.; Roher, A.E.; et al. Alzheimer disease research in the 21st century: Past and current failures, new perspectives and funding priorities. Oncotarget 2016, 7, 38999–39016. [Google Scholar] [CrossRef] [PubMed]
- Koychev, I.; Gunn, R.N.; Firouzian, A.; Lawson, J.; Zamboni, G.; Ridha, B.; Sahakian, B.J.; Rowe, J.B.; Thomas, A.; Rochester, L.; et al. PET tau and amyloid-β burden in mild Alzheimer’s disease: Divergent relationship with age, cognition, and cerebrospinal fluid biomarkers. J. Alzheimer’s Dis. 2017, 60, 283–293. [Google Scholar] [CrossRef]
- Dumurgier, J.; Hanseeuw, B.J.; Hatling, F.B.; Judge, K.A.; Schultz, A.P.; Chhatwal, J.P.; Blacker, D.; Sperling, R.A.; Johnson, K.A.; Hyman, B.T.; et al. Alzheimer’s Disease Biomarkers and Future Decline in Cognitive Normal Older Adults. J. Alzheimer’s Dis. 2017, 60, 1451–1459. [Google Scholar] [CrossRef]
- Melo, A.D. Molecular Pathways in Normal Aging and Neurodegeneration: Mechanisms and Therapeutics. J. Alzheimer’s Dis. 2017, 60 (Suppl. 1), S1–S2. [Google Scholar]
- Dede, D.S.; Yavuz, B.; Yavuz, B.B.; Cankurtaran, M.; Halil, M.; Ulger, Z.; Cankurtaran, E.S.; Aytemir, K.; Kabakci, G.; Ariogul, S. Assessment of endothelial function in Alzheimer’s disease: Is Alzheimer’s disease a vascular disease? J. Am. Geriatr. Soc. 2007, 55, 1613–1617. [Google Scholar] [CrossRef]
- Popa-wagner, A.; Mitran, S.; Sivanesan, S.; Chang, E.; Buga, A. ROS and Brain Diseases: The Good, the Bad, and the Ugly. Oxid. Med. Cell. Longev. 2013, 2013, 963520. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A.; Attems, J. Neuropathological approaches to cerebral aging and neuroplasticity. Dialogues Clin. Neurosci. 2013, 15, 29–43. [Google Scholar] [PubMed]
- Pedrinolla, A.; Schena, F.; Venturelli, M. Resilience to Alzheimer’s Disease: The Role of Physical Activity. Curr. Alzheimer Res. 2017, 14, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Venturelli, M.; Pedrinolla, A.; Galazzo, I.B.; Fonte, C.; Smania, N.; Tamburin, S.; Muti, E.; Crispoltoni, L.; Stabile, A.; Pistilli, A.; et al. Impact of nitric oxide bioavailability on the progressive cerebral and peripheral circulatory impairments during aging and Alzheimer’s disease. Front. Physiol. 2018, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Pedrinolla, A.; Venturelli, M.; Fonte, C.; Munari, D.; Benetti, M.V.; Rudi, D.; Tamburin, S.; Muti, E.; Zanolla, L.; Smania, N.; et al. Exercise training on locomotion in patients with Alzheimer’s disease: A feasibility study. J. Alzheimer’s Dis. 2018, 61, 1599–1609. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, K.C.; Ryu, W.I.; Amirault, K.M.; Healy, R.A.; Siegel, A.J.; McPhie, D.L.; Forester, B.; Cohen, B.M. Late-onset Alzheimer’s disease is associated with inherent changes in bioenergetics profiles. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Allali, G.; Annweiler, C.; Blumen, H.M.; Callisaya, M.L.; De Cock, A.M.; Kressig, R.W.; Srikanth, V.; Steinmetz, J.P.; Verghese, J.; Beauchet, O. Gait phenotype from mild cognitive impairment to moderate dementia: Results from the GOOD initiative. Eur. J. Neurol. 2016, 23, 527–541. [Google Scholar] [CrossRef]
- Buchman, A.S.; Boyle, P.A.; Leurgans, S.E.; Barnes, L.L.; Bennett, D.A. Cognitive Function is Associated with the Development of Mobility Impairments in Community-Dwelling Elders. Am. J. Geriatr. Psychiatry 2011, 19, 571–580. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef]
- Burns, J.M.; Cronk, B.B.; Anderson, H.S.; Donnelly, J.E.; Thomas, G.P.; Harsha, A.; Brooks, W.M.; Swerdlow, R.H. Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology 2008, 71, 210–216. [Google Scholar] [CrossRef]
- Perea, R.D.; Vidoni, E.D.; Morris, J.K.; Graves, R.S.; Burns, J.M.; Honea, R.A. Cardiorespiratory fitness and white matter integrity in Alzheimer’s disease. Brain Imaging Behav. 2016, 10, 660–668. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.; Knopman, D.S.; Chertkow, H.; Hymann, B.; Jack, C.R.; Kawas, C.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging- Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Van Straaten, E.C.W.; Scheltens, P.; Knol, D.L.; van Buchem, M.A.; van Dijk, E.J.; Hofman, P.A.M.; Karas, G.; Kjartansson, O.; de Leeuw, F.E.; Prins, N.D.; et al. Operational definitions for the NINDS-AIREN criteria for vascular dementia: An interobserver study. Stroke 2003, 34, 1907–1912. [Google Scholar] [CrossRef] [PubMed]
- Crispoltoni, L.; Stabile, A.M.; Pistilli, A.; Venturelli, M.; Cerulli, G.; Fonte, C.; Smania, N.; Schena, F.; Rende, M. Changes in Plasma β-NGF and Its Receptors Expression on Peripheral Blood Monocytes During Alzheimer’s Disease Progression. J. Alzheimer’s Dis. 2016, 55, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Stożek, J.; Rudzińska, M.; Pustułka-Piwnik, U.; Szczudlik, A. The effect of the rehabilitation program on balance, gait, physical performance and trunk rotation in Parkinson’s disease. Aging Clin. Exp. Res. 2016, 28, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Mier, C.M.; Gibson, A.L. Evaluation of a treadmill test for predicting the aerobic capacity of firefighters. Occup. Med. 2004, 54, 373–378. [Google Scholar] [CrossRef]
- Makizako, H.; Shimada, H.; Doi, T.; Park, H.; Yoshida, D.; Suzuki, T. Six-Minute Walking Distance Correlated with Memory and Brain Volume in Older Adults with Mild Cognitive Impairment: A Voxel-Based Morphometry Study. Dement. Geriatr. Cogn. Dis. Extra 2013, 3, 223–232. [Google Scholar] [CrossRef]
- Harris, R.A.; Nishiyama, S.K.; Wray, D.W.; Richardson, R.S. Ultrasound Assessment of Flow-Mediated Dilation. Hypertension 2010, 55, 1075–1085. [Google Scholar] [CrossRef]
- Coolbaugh, X.C.L.; Bush, E.C.; Caskey, C.F.; Damon, B.M.; Towse, T.F. FloWave.US: Validated, open-source, and flexible software for ultrasound blood flow analysis. J. Appl. Physiol. 2016, 121, 849–857. [Google Scholar] [CrossRef]
- Beauchet, O.; Launay, C.P.; Annweiler, C.; Allali, G. Hippocampal volume, early cognitive decline and gait variability: Which association? Exp. Gerontol. 2015, 61, 98–104. [Google Scholar] [CrossRef]
- Bronas, U.G.; Salisbury, D.; Kelly, K.; Leon, A.; Chow, L.; Yu, F. Determination of Aerobic Capacity via Cycle Ergometer Exercise Testing in Alzheimer’s Disease. Am. J. Alzheimers Dis. Other Demen. 2017, 32, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, Y.-S.; Khan, M.A.; Brunk, E.; Martin-Cook, K.; Weiner, M.F.; Cullum, C.M.; Lu, H.; Levine, B.D.; Diaz-Arrastia, R.; et al. Global brain hypoperfusion and oxygenation in amnestic mild cognitive impairment. Alzheimers Dement. 2014, 10, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Welmer, A.-K.; Rizzuto, D.; Qiu, C.; Caracciolo, B.; Laukka, E.J. Walking Speed, Processing Speed, and Dementia: A Population-Based Longitudinal Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Orcioli-Silva, D.; Simieli, L.; Barbieri, F.A.; Stella, F.; Gobbi, L.T.B. Adaptive walking in alzheimer’s disease. Int. J. Alzheimers Dis. 2012, 2012, 674589. [Google Scholar] [CrossRef] [PubMed]
- Yanes, D.; Loprinzi, P. Experimental Effects of Acute Exercise on Iconic Memory, Short-Term Episodic, and Long-Term Episodic Memory. J. Clin. Med. 2018, 7, 146. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.K.; Loprinzi, P.D. Experimental effects ofacute exercise and meditation on parameters of cognitive function. J. Clin. Med. 2018, 7, 125. [Google Scholar] [CrossRef]
- Siddiqui, A.; Loprinzi, P. Experimental Investigation of the Time Course Effects of Acute Exercise on False Episodic Memory. J. Clin. Med. 2018, 7, 157. [Google Scholar] [CrossRef] [PubMed]
- Wall, K.; Stark, J.; Schillaci, A.; Saulnier, E.; McLaren, E.; Striegnitz, K.; Cohen, B.D.; Arciero, P.J.; Kramer, A.F.; Anderson-Hanley, C. The Enhanced Interactive Physical and Cognitive Exercise System (iPACESTM v2.0): Pilot Clinical Trial of an In-Home iPad-Based Neuro-Exergame for Mild Cognitive Impairment (MCI). J. Clin. Med. 2018, 7, 249. [Google Scholar] [CrossRef]
- Boots, E.A.; Schultz, S.A.; Oh, J.M.; Larson, J.; Edwards, D.; Cook, D.; Koscik, R.L.; Dowling, M.N.; Gallagher, C.L.; Carlsson, C.M.; et al. Cardiorespiratory fitness is associated with brain structure, cognition, and mood in a middle-aged cohort at risk for Alzheimer’s disease. Brain Imaging Behav. 2015, 9, 639–649. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Frith, E.; Ponce, P. Memorcise and Alzheimer’s disease. Phys. Sportsmed. 2018, 46, 145–154. [Google Scholar] [CrossRef]
Characteristic | M ± SD |
---|---|
MCI, n (%) | 12 (28.6) |
AD, n (%) | 30 (71.4) |
Female, n (%) | 27 (64.3) |
Age, years | 78.7 ± 5.7 |
Weight, kg | 72.5 ± 14.5 |
Height, m | 1.64 ± 0.2 |
IPAQ (METs·min·week−1) | 3837 ± 589 |
Clinical Characteristics | |
Time since diagnoses, years | 4.5 ± 2.5 |
MMSE, (0–30) | 24 ± 2.9 |
CDR, (0–3) | 1.25 |
FAB, (0–18) | 9.5 ± 3 |
IADL, (0–100%) | 61.7 ± 32.5 |
Health-Related Markers | |
Sys, mmHg | 130.4 ± 6.2 |
Dia, mmHg | 87.8 ± 5.2 |
HCT, L/L | 0.42 ± 0.04 |
Hb, g/L | 13.6 ± 1.4 |
Glicemia, mg/dL | 100.5 ± 26.2 |
HDL, mg/dL | 61.9 ± 23.7 |
LDL, mg/dL | 110 ± 23 |
Trigl, mg/dL | 102.7 ± 29.4 |
Cortisol, nmol/L | 14.5 ± 3.4 |
Pharmacological Treatment, n (%) | |
Cholinesterase inhibitors | 14(33.3) |
Antipsychotics | 4(9.5) |
Antidepressants | 7(16.6) |
Benzodiazepines | 2(4.8) |
Comorbidities, n (%) | |
Cardiovascular disease | 9(21.4) |
Diabetes | 3(7.1) |
Arthrosis | 5(11.9) |
Markers | M ± SD |
---|---|
Bain volume | |
Non normalized, mL | 928 ± 119 |
Normalized for skull size, mL | 1354 ± 75 |
Physical and bioenergetic variables | |
6MWT, m | 365 ± 87 |
VO2max, mL·kg·min−1 | 25.8 ± 5.9 |
Vascular function and inflammatory markers | |
VEGF, pg/mL | 31.9 ± 10.5 |
TNF-a, pg/mL | 0.714 ± 0.015 |
IL-15, pg/mL | 29.1 ± 23.1 |
FMD, % | 7.8 ± 2.6 |
FMD/Shear | 0.1015 ± 0.149 |
Shear Rate | 175,618 ± 111,627 |
Lymphocytes markers and receptors | |
β-NGF, pg/mL | 103.9 ± 51.8 |
TrkA Mono, % | 93.7 ± 7.3 |
p75 Mono, % | 81.4 ± 9.4 |
MFI TrkA | 153.6 ± 101.7 |
MFI p75 | 23.9 ± 10.7 |
IL-6, % | 6.5 ± 2.1 |
IL-10, % | 4.4 ± 2.4 |
Variables | MMSE | PPT | ||
---|---|---|---|---|
p | R | p | R | |
MMSE | ----- | ----- | ----- | ----- |
PPT | ----- | ----- | ----- | ----- |
Age | 0.331 | 0.198 | 0.298 | 0.201 |
Gender | 0.276 | 0.159 | 0.300 | 0.299 |
Weight | 0.199 | 0.174 | 0.250 | 0.183 |
Non-correted Brain Volume | 0.194 | 0.023 | 0.168 | 0.037 |
Corrected Brain Volume | 0.202 | 0.129 | 0.198 | 0.248 |
IADL | <0.001 | 0.664 | <0.001 | 0.725 |
6MWT | <0.001 | 0.627 | <0.001 | 0.749 |
VO2max | <0.001 | 0.662 | <0.001 | 0.490 |
VEGF | 0.789 | 0.178 | 0.876 | 0.112 |
TNF-a | 0.179 | 0.292 | 0.098 | 0.209 |
IL-15 | 0.173 | 0.341 | 0.181 | 0.139 |
FMD% | 0.069 | 0.298 | 0.129 | 0.298 |
FMD/Shear | 0.321 | 0.210 | 0.183 | 0.372 |
Shear Rate | 0.199 | 0.203 | 0.193 | 0.389 |
β-NGF | 0.004 | 0.453 | 0.015 | 0.398 |
TrkA Mono | 0.062 | 0.302 | 0.752 | 0.412 |
p75 Mono | 0.113 | 0.267 | 0.018 | 0.387 |
MFI TrkA | 0.158 | 0.307 | 0.083 | 0.288 |
MFI p75 | 0.020 | 0.372 | <0.001 | 0.497 |
IL-6 | 0.210 | 0.111 | 0.191 | 0.234 |
IL-10 | 0.157 | 0.320 | 0.016 | 0.499 |
Variable | Coeff. | S Coeff. | SE | P |
---|---|---|---|---|
Costant | 13.384 | 2.864 | ||
6MWT | 0.00599 | 0.131 | 0.00863 | 0.029 |
VO2max | 0.235 | 0.341 | 0.130 | 0.087 |
MMSE = 11.384 + (0.00599 × 6MWT) + (0.235 × VO2max) |
Variable | Coeff. | S Coeff. | SE | P |
---|---|---|---|---|
Constant | 1.848 | 4.502 | ||
6MWT | 0.0264 | 0.698 | 0.00491 | <0.001 |
VO2max | 19.693 | 0.251 | 10.197 | 0.079 |
PPT = 1.848 + (0.0264 × 6MWT) + (19.693 × VO2max) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrinolla, A.; Venturelli, M.; Tamburin, S.; Fonte, C.; Stabile, A.M.; Boscolo Galazzo, I.; Ghinassi, B.; Venneri, M.A.; Pizzini, F.B.; Muti, E.; et al. Non-Aβ-Dependent Factors Associated with Global Cognitive and Physical Function in Alzheimer’s Disease: A Pilot Multivariate Analysis. J. Clin. Med. 2019, 8, 224. https://doi.org/10.3390/jcm8020224
Pedrinolla A, Venturelli M, Tamburin S, Fonte C, Stabile AM, Boscolo Galazzo I, Ghinassi B, Venneri MA, Pizzini FB, Muti E, et al. Non-Aβ-Dependent Factors Associated with Global Cognitive and Physical Function in Alzheimer’s Disease: A Pilot Multivariate Analysis. Journal of Clinical Medicine. 2019; 8(2):224. https://doi.org/10.3390/jcm8020224
Chicago/Turabian StylePedrinolla, Anna, Massimo Venturelli, Stefano Tamburin, Cristina Fonte, Anna Maria Stabile, Ilaria Boscolo Galazzo, Barbara Ghinassi, Mary Anna Venneri, Francesca Benedetta Pizzini, Ettore Muti, and et al. 2019. "Non-Aβ-Dependent Factors Associated with Global Cognitive and Physical Function in Alzheimer’s Disease: A Pilot Multivariate Analysis" Journal of Clinical Medicine 8, no. 2: 224. https://doi.org/10.3390/jcm8020224
APA StylePedrinolla, A., Venturelli, M., Tamburin, S., Fonte, C., Stabile, A. M., Boscolo Galazzo, I., Ghinassi, B., Venneri, M. A., Pizzini, F. B., Muti, E., Smania, N., Di Baldassarre, A., Naro, F., Rende, M., & Schena, F. (2019). Non-Aβ-Dependent Factors Associated with Global Cognitive and Physical Function in Alzheimer’s Disease: A Pilot Multivariate Analysis. Journal of Clinical Medicine, 8(2), 224. https://doi.org/10.3390/jcm8020224