
Supplementary Methods 

Stochastic Measures 

The small-worldness [1,2] was proposed for the characterization of a given network as small-
world (SW), meaning that it exhibits a high average clustering coefficient and a low characteristic 
path length [3]. It relies on comparing a given network with an equivalent random network and 
lattice network on the basis of the average clustering coefficient, a local measure, and the 
characteristic path length, a global measure. In 2006 a coefficient called ‘σ’ for characterizing SW 
networks was introduced by Humphries et al. [1]. To calculate this measure, the average clustering 
coefficient C and characteristic path length L of the network are compared to 𝐶ௗ and 𝐿ௗ of an 
equivalent random network (with similar node degree distribution), obtaining the SW coefficient: 𝜎 = 𝐶 𝐶ௗ⁄𝐿 𝐿ௗ⁄  (1) 

A condition for a network to exhibit small-worldness is that the characteristic path length should 
be close to that of an equivalent random network, 𝐿 ≈ 𝐿ௗ. At the same time, the average clustering 
coefficient should be close to that of an equivalent lattice network, which also implies that C should 
be much higher than that of equivalent random network, 𝐶 ≫ 𝐶ௗ. These boundary conditions, if 
met, restrict the value of 𝜎 > 1 for small-world networks. The problem with this coefficient is that 
even small variations in the already low value of the average clustering coefficient for random 
networks, 𝐶ௗ, significantly influences the value of the ratio 𝐶 𝐶ௗ⁄ . To overcome this problem, a 
new robust measure was introduced by Telesford et al. [2] which is called ‘𝜔’. The characteristic path 
length L is compared to 𝐿ௗ of an equivalent random network and the average clustering coefficient 
C is compared to 𝐶௧௧ of an equivalent lattice network, obtaining the SW coefficient: 𝜔 = 𝐿ௗ𝐿 − 𝐶𝐶௧௧ (2) 

Note that 𝐶ௗ is not considered, therefore this measure neglects its fluctuations. Since the boundary 
conditions for small-worldness are 𝐿 ≈ 𝐿ௗ and 𝐶 ≈ 𝐶௧௧, the values of 𝜔 are expected to be close 
to 0 in small-world networks. The equation suggests that the typical range for the coefficient is 𝜔 ∈[−1,1], with positive values representing a network closer to a random one (𝐿 ≈ 𝐿ௗ and 𝐶 ≪ 𝐶௧௧), 
and negative values representing a network closer to a lattice (𝐿 ≫ 𝐿ௗ and 𝐶 ≈ 𝐶௧௧).  

Taking into account the abovementioned limitations for 𝜎, in the present study we decided to 
calculate the SW𝜔 coefficient.  

The modularity [4,5] is a global measure that indicates the possible presence of segregated 
modules or communities in a network. In networks with high modularity, the modules tend to 
interact densely within themselves but sparsely or not at all between each other. The modularity 
index Q measures the quality of the best possible partition of nodes, which maximizes the intra-
module connectivity and minimizes the inter-modules connectivity. It has been introduced according 
to the following formula [4]: 

𝑄 =  𝑒௨௨ −  ൭ 𝑒௨௩௩ఢெ ൱ଶ௨ఢெ  (3) 

Where M is a partition of the nodes (whose elements u are called modules) and 𝑒௨௩ is the proportion 
of links in module u connecting to module v. If the number of intra-module edges is no better than 
random, Q is close to 0, whereas values approaching to the maximum Q = 1 indicates strong 
community structure, although values for such networks typically fall in the range (0.3, 0.7) [4]. 
Several methods for finding the optimal modularity of a network has been proposed [4–6] and they 
rely on different heuristics for sampling the partition space [6]. The randomness in the sampling 
procedure leads to the stochasticity in the measure. 



The structural consistency [7] is a global measure that quantifies the link predictability of a 
complex network. The link predictability characterizes the inherent difficulty to predict the missing 
or non-observed links of a network regardless of the specific algorithm used for the prediction. Its 
evaluation relies on a random perturbation (which is origin of stochasticity) and first-order 
approximation of the adjacency matrix. It is based on the hypothesis that a group of links is highly 
predictable if their addition does not cause huge structural changes, therefore a network is highly 
predictable if the removal or addition of a set of randomly selected links does not significantly change 
the network’s structural features. [7]. The measure assumes values in the interval [0,1], where 0 
indicates absence of link predictability and 1 indicates full link predictability. 

Deterministic measures 

The characteristic path length (L) [2,3] is a global measure and describes the average of the shortest 
path lengths between all the pairs of vertices. It is defined as: 𝐿 = 2𝑛(𝑛 − 1)  𝑠𝑝ழ  (4) 

Where 𝑠𝑝 is the shortest path length between a pair of nodes (𝑖, 𝑗) ∈ 𝑁 and ଶ(ିଵ) is the number of 

possible node pairs in an undirected network. A small value of L in a connectome means that the 
information flow between the nodes across the network is facilitated, and that the nodes are able to 
exchange messages between each other easily. In other words, the nodes across connectomes are 
functionally convergent.  

The average efficiency (Eglob) [8,9] is a global measure that quantifies how efficiently the 
information is exchanged within the network. It is inversely proportional to the L, therefore a network 
with low characteristic path length is highly efficient. 𝐸 = 2𝑛(𝑛 − 1)  1𝑠𝑝ழ  (5) 

Where 𝑠𝑝 is the shortest path length between a pair of nodes (𝑖, 𝑗) ∈ 𝑁 and ଶ(ିଵ) is the number of 

possible node pairs in an undirected network. 
The average local efficiency (Eloc) reflects the extent of integration between the immediate neighbors 

of a given node. In this way, local efficiency can be considered a generalization of the clustering 
coefficient that explicitly takes into account paths. The clustering coefficient only counts the direct 
connections between the neighbors of a node, whereas both indirect paths and direct connections are 
considered by local efficiency. It has been argued that local efficiency also provides a measure of fault 
tolerance that indicates how efficiently the neighbors of a node are able to communicate when that 
node is disrupted. 𝐸(𝑖) = 1𝑁ீ(𝑁ீ − 1)  1𝑠𝑝,∈ீ  (6) 

where Gi denotes the subgraph comprising all nodes that are immediate neighbors of the ith node. 
The average clustering coefficient (C) [3] is a local measure and offers an average evaluation of the 

cross-interaction density between the first neighbours of each node in the network. 𝐶 = 1𝑛  2𝑡𝑑(𝑑 − 1)  (7) 

Where 𝑡 is the number of cross-interactions that occur between the first neighbours of the node 𝑖 ∈𝑁 and ଶௗ(ௗିଵ) is the total number of possible cross-interactions that could occur between them. It 

assumes values in the range [0,1], large values indicate that the nodes in the network tend to have 
highly connected neighbours. 

The average node betweeness centrality (NBC) [10] is a global measure based on the node 
betweenness centrality, an indicator of node centrality that evaluates how crucial a particular node is 



in maintaining a path of optimum information flow between any other pair of nodes. The average 
measure calculates the average stress of information burden on the network nodes. For a single node 
it is defined as: 𝑁𝐵𝐶 =  𝜎(𝑖)𝜎ஷஷ  (8) 

Where 𝑖, 𝑗, 𝑘 ∈ 𝑁, 𝜎 is the total number of shortest paths between j and k and 𝜎(𝑖) is the number of 
those paths passing through i. NBC is obtained as average over the nodes 𝑖 ∈ 𝑁. 

In contrast to the existing node-neighbourhood-based local measures, a new strategic shift has 
been introduced recently in which the focus is no longer only on groups of nodes and their common 
neighbours, but also on the organization of the links between them [11]. This new idea inspired a 
theory, which is known as the local community paradigm (LCP-theory) and is valid both in 
monopartite [11] and in bipartite [12,13] undirected unweighted networks. The LCP-theory was 
proposed to mechanistically and deterministically model local-topology-dependent link-growth in 
complex networks, and holds that for modelling link prediction in complex networks, the 
information content related with the common neighbour nodes (CNs) of a given link should be 
complemented with the topological information emerging from the interactions between them. The 
cohort of CNs and their cross-interactions—which are called local community links (LCLs)—form 
what is called a local community. This first part of the theory inspired the Cannistraci variation of the 
classical CN-based similarity indices for link prediction, named also LCP-based link predictors, for 
details refers to Cannistraci et al. [11–13]. 

Furthermore, the LCP-theory holds that in many complex network topologies, the number of 
CNs of each link in the network is positively correlated with the respective number of LCLs. This 
second part of the LCP-theory motivated a new network measure called local-community-paradigm 
correlation (LCP-corr) [11–13], which is a local measure that represents an exception with respect to 
the majority of the previous ones, for two main reasons. Firstly, it is not related with only the node 
neighbourhood but with the node/link neighbourhood. Secondly, the general statistic used to obtain 
a unique value is not the average but the Pearson correlation. The formula for computing the LCP-
corr is: 𝐿𝐶𝑃𝑐𝑜𝑟𝑟 = 𝑐𝑜𝑣(𝐶𝑁, 𝐿𝐶𝐿)𝜎ே. 𝜎 , 𝑤ℎ𝑒𝑛 𝐶𝑁 > 0 (9) 

where cov indicates the covariance operator and σ the standard deviation. This formula is clearly a 
Pearson correlation between the CN and LCL variables. CN indicates a one-dimensional array. Its 
length is equal to the number of links in the network that have at least one common neighbour, and 
it reports the number of common neighbours for each of them. LCL indicates a one-dimensional array 
of the same size as CN, and it reports the number of local community links between the common 
neighbours. Mathematically the value of LCP-corr would be in the interval [−1,1]. But, extensive tests 
on many artificial and real complex networks demonstrate that an inverse correlation between CN 
and LCL is unlikely, therefore the interval is in general between [0,1]. In particular, it was revealed 
that LCP networks (with high LCP-corr, i.e., > 0.7) are very frequent to occur, and they are related to 
dynamic and heterogeneous systems that are characterised by weak interactions (relatively expensive 
or relatively strong) that in turn facilitate network evolution and remodelling. These are typical 
features of social and biological systems, where the LCP architecture facilitates not only the rapid 
delivery of information across the various network modules, but also the local processing. In contrast, 
non-LCP networks (with low LCP-corr, i.e., < 0.4) are less frequent to occur and characterise steady 
and homogeneous systems that are assembled through strong (often quite expensive) interactions, 
difficult to erase. This non-LCP architecture is more useful for processes where: (i) the storage of 
information (or energy) is at least as important as its delivery; (ii) the cost of creating new interactions 
is excessive; (iii) the creation of a redundant and densely connected system is strategically 
inadvisable. An emblematic example is the road networks, for which the money and time costs of 
creating additional roads are very high, and in which a community of strongly connected and 
crowded links resembles an impractical labyrinth. 



In normal conditions, brain connectomes follow LCP organization [11], therefore they are 
characterized by high LCP-corr, which is in general higher than 0.8. 
  



Table S1. List of the fifty-four edges connecting thirty-two different cortical areas in the subnetwork 
of decreased functional connectivity in UWS patients compared to the MCS patients in the β1 
frequency. 

REGION A REGION B T-STAT 
L-BA8 L-BA23 3.30 
L-BA31 L-BA32 2.63 
L-BA23 L-BA33 3.08 
L-BA11 R-BA1 2.93 
L-BA32 R-BA1 3.03 
L-BA32 R-BA2 4.08 
L-BA33 R-BA2 3.43 
L-BA10 R-BA3 3.07 
L-BA32 R-BA3 3.03 
L-BA9 R-BA4 2.95 
L-BA10 R-BA4 2.62 
L-BA33 R-BA4 2.62 
L-BA9 R-BA5 2.67 
L-BA10 R-BA5 3.25 
L-BA11 R-BA5 3.13 
L-BA45 R-BA5 2.64 
L-BA47 R-BA5 3.33 
L-BA9 R-BA6 2.82 
L-BA32 R-BA6 3.51 
L-BA9 R-BA7 2.71 
L-BA10 R-BA7 2.63 
L-BA11 R-BA7 3.87 
L-BA33 R-BA7 3.19 
L-BA45 R-BA7 2.89 
L-BA46 R-BA7 3.07 
L-BA47 R-BA7 3.01 
L-BA9 R-BA13 2.70 
L-BA8 R-BA23 2.86 
L-BA9 R-BA23 3.32 
L-BA32 R-BA23 2.80 
L-BA33 R-BA23 3.26 
R-BA17 R-BA25 3.01 
R-BA23 R-BA25 2.74 
L-BA8 R-BA31 2.97 
L-BA9 R-BA31 2.94 
L-BA11 R-BA31 4.67 
L-BA25 R-BA31 2.64 
L-BA32 R-BA31 2.71 
L-BA33 R-BA31 2.61 
R-BA25 R-BA31 2.62 
R-BA1 R-BA32 3.06 
R-BA5 R-BA32 3.37 
R-BA6 R-BA32 2.91 
R-BA31 R-BA32 3.08 
R-BA19 R-BA33 2.84 
R-BA31 R-BA33 2.74 
L-BA11 R-BA39 3.06 
L-BA9 R-BA40 2.61 
L-BA32 R-BA40 3.12 
L-BA33 R-BA40 2.61 
R-BA33 R-BA40 3.02 
L-BA9 R-BA41 2.61 



L-BA9 R-BA43 3.02 
R-BA33 R-BA44 2.62 

p = 0.004, corrected for multiple comparison. 

  



Table S2. Clinical-electrophysiological correlation coefficients for every single edge belonging to the 
dysconnectivity subnetwork identified in UWS by the NBS analysis.  

Edge Pearson 
Rho 

Pearson 
p-value Edge Spearman 

Rho 
Spearman 

p-value 
L_BA47-R_BA7 0.53 0.007 L_BA47-R_BA7 0.54 0.006 
L_BA33-R_BA2 0.51 0.009 L_BA47-R_BA5 0.51 0.009 
L_BA9-R_BA43 0.51 0.010 L_BA46-R_BA7 0.51 0.010 

R_BA33-R_BA44 0.49 0.014 L_BA33-R_BA40 0.50 0.010 
L_BA33-R_BA4 0.48 0.014 R_BA33-R_BA44 0.49 0.012 
L_BA33-R_BA40 0.48 0.015 L_BA23-L_BA33 0.48 0.015 
L_BA11-R_BA31 0.48 0.016 L_BA33-R_BA2 0.47 0.017 
L_BA46-R_BA7 0.46 0.021 L_BA11-R_BA31 0.46 0.019 
L_BA32-R_BA2 0.45 0.026 L_BA33-R_BA7 0.44 0.027 
L_BA23-L_BA33 0.44 0.027 L_BA33-R_BA4 0.44 0.027 
L_BA10-R_BA3 0.43 0.034 L_BA9-R_BA43 0.44 0.028 
L_BA47-R_BA5 0.42 0.036 R_BA5-R_BA32 0.43 0.031 
L_BA10-R_BA5 0.42 0.037 L_BA11-R_BA5 0.43 0.032 
L_BA11-R_BA39 0.41 0.039 L_BA10-R_BA5 0.43 0.033 
L_BA45-R_BA7 0.41 0.039 L_BA10-R_BA7 0.42 0.035 
L_BA9-R_BA4 0.41 0.039 L_BA45-R_BA7 0.42 0.036 

L_BA11-R_BA7 0.40 0.048 L_BA9-R_BA23 0.42 0.039 
L_BA33-R_BA7 0.40 0.048 L_BA8-L_BA23 0.41 0.041 
L_BA8-L_BA23 0.39 0.051 R_BA6-R_BA32 0.40 0.047 
L_BA9-R_BA40 0.39 0.054 L_BA32-R_BA2 0.40 0.049 

R_BA25-R_BA31 0.36 0.07 L_BA11-R_BA39 0.39 0.051 
L_BA11-R_BA5 0.36 0.08 L_BA33-R_BA23 0.38 0.06 
R_BA5-R_BA32 0.36 0.08 R_BA31-R_BA32 0.38 0.06 
L_BA33-R_BA23 0.36 0.08 L_BA45-R_BA5 0.37 0.07 
L_BA9-R_BA6 0.36 0.08 L_BA10-R_BA3 0.37 0.07 

R_BA33-R_BA40 0.36 0.08 L_BA32-R_BA6 0.36 0.08 
L_BA32-R_BA6 0.35 0.08 R_BA33-R_BA40 0.36 0.08 
R_BA1-R_BA32 0.35 0.09 R_BA1-R_BA32 0.34 0.09 
R_BA6-R_BA32 0.35 0.09 L_BA9-R_BA4 0.34 0.09 
L_BA9-R_BA23 0.34 0.09 R_BA25-R_BA31 0.34 0.10 
L_BA32-R_BA1 0.34 0.10 L_BA9-R_BA6 0.33 0.11 

R_BA17-R_BA25 0.33 0.10 L_BA11-R_BA7 0.33 0.11 
L_BA10-R_BA7 0.33 0.11 L_BA9-R_BA40 0.33 0.11 

R_BA31-R_BA32 0.33 0.11 L_BA32-R_BA40 0.32 0.12 
R_BA23-R_BA25 0.32 0.12 L_BA32-R_BA1 0.31 0.13 
L_BA32-R_BA40 0.32 0.12 L_BA11-R_BA1 0.31 0.13 
L_BA9-R_BA5 0.31 0.14 R_BA23-R_BA25 0.30 0.15 

L_BA9-R_BA41 0.30 0.14 L_BA25-R_BA31 0.29 0.16 
L_BA32-R_BA3 0.30 0.14 L_BA9-R_BA41 0.28 0.17 
L_BA10-R_BA4 0.29 0.15 L_BA32-R_BA3 0.28 0.17 
L_BA9-R_BA7 0.29 0.16 L_BA9-R_BA5 0.28 0.17 

L_BA11-R_BA1 0.28 0.18 R_BA19-R_BA33 0.28 0.18 
L_BA31-L_BA32 0.26 0.21 L_BA8-R_BA23 0.27 0.19 
L_BA8-R_BA23 0.26 0.22 R_BA17-R_BA25 0.26 0.22 
L_BA32-R_BA31 0.26 0.22 L_BA9-R_BA7 0.25 0.23 
L_BA45-R_BA5 0.26 0.22 L_BA32-R_BA31 0.25 0.23 

R_BA19-R_BA33 0.25 0.22 R_BA31-R_BA33 0.25 0.23 
L_BA9-R_BA31 0.24 0.24 L_BA9-R_BA13 0.24 0.25 
L_BA9-R_BA13 0.23 0.27 L_BA32-R_BA23 0.24 0.25 
L_BA8-R_BA31 0.22 0.29 L_BA33-R_BA31 0.23 0.28 
L_BA25-R_BA31 0.20 0.33 L_BA31-L_BA32 0.22 0.28 
L_BA32-R_BA23 0.20 0.33 L_BA10-R_BA4 0.22 0.28 



R_BA31-R_BA33 0.18 0.39 L_BA9-R_BA31 0.20 0.35 
L_BA33-R_BA31 0.15 0.49 L_BA8-R_BA31 0.10 0.63 

The table reports both the Pearson’s and Spearman’s rho and related p-values. Statistically significant 
correlations (p < 0.05) between the edge strength and the Coma Recovery Scale-Revised scores have 
been highlighted in bold character. 

  



Table S3. Single node topological measures differences between UWS and MCS. 
 Degree Betweeness Centrality Clustering Coefficient 

Node Label 
MW 

p-value 
BH-corrected 

p-value 
MW 

p-value 
BH-corrected 

p-value 
MW 

p-value 
BH-corrected 

p-value 
L-BA1 0.429 0.819 0.744 0.947 0.173 0.502 
L-BA2 0.643 0.916 0.532 0.877 0.744 0.906 
L-BA3 0.165 0.629 0.220 0.740 1.000 1.000 
L-BA4 0.091 0.573 0.087 0.455 0.586 0.858 
L-BA5 0.010 0.399 0.047 0.395 0.092 0.405 
L-BA6 0.313 0.764 0.430 0.877 0.605 0.858 
L-BA7 0.892 0.968 0.724 0.935 0.041 0.248 
L-BA8 0.157 0.627 0.265 0.742 0.135 0.471 
L-BA9 0.038 0.402 0.032 0.380 0.183 0.511 
L-BA10 0.102 0.573 0.047 0.395 0.005 0.232 
L-BA11 0.015 0.399 0.201 0.704 0.253 0.574 
L-BA13 0.849 0.968 0.978 1.000 0.550 0.851 
L-BA17 0.141 0.627 0.024 0.380 0.265 0.574 
L-BA18 0.020 0.399 0.007 0.350 0.531 0.851 
L-BA19 0.046 0.432 0.032 0.380 0.149 0.472 
L-BA20 0.479 0.833 0.314 0.776 0.157 0.472 
L-BA21 0.723 0.964 0.463 0.877 0.414 0.722 
L-BA22 0.477 0.833 0.683 0.926 1.000 1.000 
L-BA23 0.586 0.895 0.341 0.796 0.121 0.462 
L-BA24 0.870 0.968 0.849 0.977 0.230 0.553 
L-BA25 0.355 0.764 0.849 0.977 0.010 0.232 
L-BA27 0.764 0.968 0.935 0.982 0.127 0.465 
L-BA28 0.531 0.875 0.605 0.877 0.644 0.858 
L-BA29 0.210 0.705 0.369 0.817 0.039 0.248 
L-BA30 0.251 0.707 0.165 0.697 0.014 0.232 
L-BA31 0.892 0.968 0.605 0.877 0.221 0.546 
L-BA32 0.068 0.505 0.183 0.697 0.036 0.248 
L-BA33 0.024 0.399 0.008 0.350 0.068 0.319 
L-BA34 0.935 0.968 0.683 0.926 0.008 0.232 
L-BA35 0.827 0.968 0.807 0.977 0.314 0.574 
L-BA36 0.219 0.707 0.532 0.877 0.157 0.472 
L-BA37 0.156 0.627 0.053 0.395 0.314 0.574 
L-BA38 0.446 0.832 0.341 0.796 0.068 0.319 
L-BA39 0.252 0.707 0.183 0.697 0.021 0.232 
L-BA40 0.340 0.764 0.430 0.877 0.624 0.858 
L-BA41 0.413 0.807 0.605 0.877 0.624 0.858 
L-BA42 0.957 0.968 0.807 0.977 0.430 0.722 
L-BA43 0.353 0.764 0.289 0.758 0.892 1.000 
L-BA44 1.000 1.000 0.568 0.877 0.935 1.000 
L-BA45 0.703 0.964 0.683 0.926 0.036 0.248 
L-BA46 0.038 0.402 0.021 0.380 0.021 0.232 
L-BA47 0.134 0.627 0.242 0.742 0.121 0.462 
R-BA1 0.567 0.895 0.935 0.982 1.000 1.000 
R-BA2 0.935 0.968 0.532 0.877 0.703 0.882 
R-BA3 0.892 0.968 0.935 0.982 0.644 0.858 
R-BA4 0.828 0.968 0.568 0.877 0.549 0.851 
R-BA5 0.764 0.968 0.644 0.917 0.289 0.574 
R-BA6 0.384 0.786 0.115 0.535 0.957 1.000 
R-BA7 0.060 0.505 0.053 0.395 0.221 0.546 
R-BA8 0.253 0.707 0.242 0.742 0.341 0.609 
R-BA9 0.102 0.573 0.265 0.742 0.288 0.574 
R-BA10 0.785 0.968 0.724 0.935 0.034 0.248 



R-BA11 0.191 0.699 0.183 0.697 0.935 1.000 
R-BA13 0.585 0.895 0.369 0.817 0.568 0.851 
R-BA17 0.462 0.833 0.568 0.877 0.053 0.300 
R-BA18 0.287 0.764 0.201 0.704 0.157 0.472 
R-BA19 0.156 0.627 0.077 0.455 0.221 0.546 
R-BA20 0.956 0.968 0.892 0.982 0.891 1.000 
R-BA21 0.723 0.964 0.978 1.000 0.828 0.965 
R-BA22 0.327 0.764 0.497 0.877 0.957 1.000 
R-BA23 0.956 0.968 0.724 0.935 0.041 0.248 
R-BA24 0.827 0.968 1.000 1.000 0.786 0.929 
R-BA25 0.368 0.774 0.265 0.742 0.289 0.574 
R-BA27 0.624 0.916 0.870 0.982 0.683 0.882 
R-BA28 0.935 0.968 0.605 0.877 0.978 1.000 
R-BA29 0.034 0.402 0.097 0.480 0.289 0.574 
R-BA30 0.072 0.505 0.068 0.442 0.068 0.319 
R-BA31 0.643 0.916 0.605 0.877 0.314 0.574 
R-BA32 0.327 0.764 0.849 0.977 0.221 0.546 
R-BA33 0.021 0.399 0.028 0.380 0.121 0.462 
R-BA34 0.913 0.968 0.605 0.877 0.913 1.000 
R-BA35 0.127 0.627 0.087 0.455 0.957 1.000 
R-BA36 0.313 0.764 0.056 0.395 0.566 0.851 
R-BA37 0.253 0.707 0.497 0.877 0.314 0.574 
R-BA38 0.413 0.807 0.495 0.877 0.682 0.882 
R-BA39 0.495 0.833 1.000 1.000 0.301 0.574 
R-BA40 0.785 0.968 0.314 0.776 0.430 0.722 
R-BA41 0.354 0.764 0.586 0.877 0.018 0.232 
R-BA42 0.209 0.705 0.496 0.877 0.022 0.232 
R-BA43 0.682 0.955 0.891 0.982 0.461 0.759 
R-BA44 0.605 0.907 0.288 0.758 0.701 0.882 
R-BA45 0.496 0.833 0.913 0.982 0.643 0.858 
R-BA46 0.586 0.895 0.806 0.977 0.764 0.917 
R-BA47 0.827 0.968 0.849 0.977 0.743 0.906 

The table reports for each measure (degree, betweenness centrality and clustering coefficient) and for 
each single network node the Mann–Whitney (MW) p-values and the Benjamini-Hochberg (BH) 
corrected p-values. Node that significant p-values are highlighted in bold, considering a confidence 
level of 0.05. It is worthy to note that the fact that the correction for multiple hypothesis testing 
nullifies any evidence of significant p-values does not mean that this is strictly true, indeed this just 
suggests that the results obtained without correction should be considered with a grain of salt and 
caution. These findings offer an indication that needs further investigation, but at the moment they 
cannot be considered as markers to discriminate between UWS and MCS. 

  



Table S4. Clinical-topological (degree) correlation coefficients for every single network node. 

Node Pearson 
Rho 

Pearson 
p-value 

Node Spearman 
Rho 

Spearman 
p-value 

L-BA5 −0.58 0.002 L-BA5 −0.61 0.001 
L-BA46 0.50 0.010 L-BA37 −0.46 0.022 
L-BA47 0.48 0.015 L-BA47 0.43 0.033 
L-BA37 −0.45 0.025 L-BA40 −0.43 0.033 
R-BA33 0.44 0.029 L-BA46 0.42 0.036 
L-BA33 0.41 0.043 R-BA33 0.41 0.041 
L-BA10 0.36 0.08 L-BA41 −0.41 0.043 
L-BA41 −0.35 0.08 L-BA3 −0.40 0.046 
L-BA3 −0.35 0.09 L-BA4 −0.38 0.06 

L-BA43 0.34 0.10 L-BA10 0.36 0.08 
L-BA22 −0.32 0.12 L-BA33 0.35 0.09 
L-BA40 −0.31 0.13 L-BA11 0.34 0.09 
R-BA9 0.31 0.13 L-BA31 −0.31 0.13 
R-BA8 0.30 0.15 L-BA22 −0.31 0.14 
L-BA31 −0.29 0.16 L-BA39 0.28 0.18 
L-BA24 −0.28 0.18 R-BA8 0.28 0.18 
R-BA30 −0.27 0.18 R-BA35 0.27 0.19 
L-BA11 0.27 0.19 R-BA30 −0.26 0.21 
R-BA35 0.27 0.19 L-BA1 −0.26 0.21 
R-BA36 0.27 0.20 L-BA34 −0.26 0.21 
L-BA4 −0.26 0.21 L-BA36 −0.25 0.22 

R-BA29 −0.26 0.22 R-BA28 0.25 0.23 
L-BA36 −0.25 0.22 R-BA22 −0.25 0.23 
L-BA7 −0.25 0.23 R-BA7 0.23 0.27 

L-BA45 0.23 0.27 L-BA27 0.23 0.27 
L-BA6 −0.22 0.28 L-BA43 0.23 0.27 
L-BA9 0.21 0.31 R-BA29 −0.23 0.28 

L-BA34 −0.20 0.33 L-BA24 −0.22 0.28 
R-BA22 −0.20 0.34 R-BA9 0.22 0.29 
R-BA7 0.20 0.34 R-BA44 0.21 0.32 
L-BA39 0.20 0.34 L-BA6 −0.20 0.33 
R-BA19 −0.20 0.35 R-BA36 0.20 0.33 
R-BA37 −0.19 0.36 L-BA35 0.18 0.39 
R-BA38 −0.19 0.36 L-BA20 −0.17 0.41 
R-BA44 0.19 0.36 L-BA21 0.17 0.41 
L-BA8 0.19 0.38 R-BA19 −0.17 0.42 

R-BA43 0.18 0.38 R-BA11 0.16 0.43 
R-BA24 −0.17 0.43 L-BA42 −0.16 0.45 
R-BA28 0.17 0.43 R-BA43 0.15 0.46 
R-BA21 −0.16 0.44 R-BA41 −0.15 0.48 
L-BA1 −0.16 0.44 R-BA21 −0.14 0.49 

L-BA21 0.15 0.46 L-BA8 0.14 0.50 
L-BA38 0.14 0.49 R-BA42 −0.14 0.50 
R-BA1 0.13 0.53 R-BA46 0.13 0.52 
L-BA42 −0.13 0.53 R-BA45 0.13 0.53 
R-BA41 −0.12 0.56 R-BA40 −0.13 0.54 
L-BA35 0.12 0.57 L-BA9 0.12 0.56 
L-BA23 0.11 0.59 L-BA18 −0.12 0.57 
L-BA20 −0.11 0.59 R-BA32 −0.12 0.57 
R-BA25 0.11 0.61 R-BA23 −0.12 0.57 
L-BA13 −0.11 0.61 R-BA1 0.12 0.57 
R-BA46 0.10 0.62 R-BA31 −0.11 0.59 
L-BA18 −0.10 0.65 R-BA34 0.11 0.60 



R-BA32 −0.09 0.66 R-BA38 −0.11 0.60 
L-BA19 −0.09 0.67 R-BA47 0.11 0.61 
L-BA28 0.09 0.68 R-BA27 0.11 0.61 
R-BA3 0.08 0.69 L-BA23 0.10 0.63 

R-BA10 −0.08 0.70 L-BA13 −0.10 0.63 
L-BA44 −0.08 0.71 L-BA7 −0.10 0.64 
L-BA27 0.08 0.71 L-BA28 −0.10 0.64 
L-BA25 0.08 0.71 L-BA25 0.09 0.66 
R-BA23 −0.08 0.72 R-BA10 −0.08 0.70 
R-BA11 0.08 0.72 L-BA32 0.08 0.71 
R-BA5 −0.07 0.74 R-BA37 −0.08 0.71 
L-BA32 0.07 0.76 L-BA44 −0.08 0.71 
R-BA2 0.06 0.77 R-BA17 0.08 0.72 

R-BA40 −0.06 0.77 R-BA4 −0.07 0.73 
R-BA42 −0.06 0.77 L-BA45 0.07 0.75 
R-BA39 −0.06 0.79 L-BA19 −0.05 0.80 
R-BA13 −0.05 0.82 R-BA5 −0.05 0.81 
R-BA47 0.05 0.82 L-BA38 0.05 0.81 
R-BA34 0.05 0.83 R-BA25 0.05 0.83 
R-BA45 −0.03 0.90 R-BA24 −0.04 0.84 
R-BA4 0.03 0.90 L-BA30 0.04 0.84 
L-BA17 −0.03 0.90 L-BA2 −0.04 0.85 
L-BA29 −0.02 0.91 R-BA18 −0.04 0.86 
R-BA6 0.02 0.92 R-BA6 0.03 0.88 
L-BA2 −0.02 0.93 L-BA29 −0.02 0.92 

R-BA18 −0.02 0.93 R-BA2 0.01 0.95 
R-BA20 0.01 0.94 R-BA39 0.01 0.96 
L-BA30 −0.01 0.95 R-BA3 −0.01 0.96 
R-BA27 0.01 0.96 R-BA20 −0.01 0.96 
R-BA31 −0.01 0.98 L-BA17 0.01 0.97 
R-BA17 0.00 0.99 R-BA13 −0.01 0.98 

The table reports both the Pearson’s and Spearman’s rho and related p-values. Statistically significant 
correlations (p < 0.05) between the node degree and the Coma Recovery Scale-Revised scores have 
been highlighted in bold character. 

  



Table S5. Clinical-topological (betweenness centrality) correlation coefficients for every single 
network node. 

Node Pearson 
Rho 

Pearson 
p-value Node Spearman 

Rho 
Spearman 

p-value 
L-BA46 0.51 0.009 L-BA37 −0.50 0.010 
L-BA10 0.50 0.011 L-BA5 −0.47 0.018 
R-BA35 0.48 0.014 L-BA46 0.46 0.021 
L-BA39 0.46 0.021 L-BA10 0.44 0.029 
R-BA36 0.45 0.023 L-BA31 −0.43 0.033 
L-BA31 −0.42 0.038 L-BA4 −0.41 0.042 
L-BA37 −0.40 0.050 L-BA3 −0.40 0.047 
R-BA33 0.39 0.06 L-BA47 0.38 0.06 
R-BA9 0.38 0.06 R-BA35 0.37 0.07 
L-BA47 0.38 0.06 L-BA40 −0.36 0.08 
L-BA43 0.38 0.06 R-BA30 −0.35 0.08 
L-BA33 0.35 0.09 R-BA44 0.35 0.08 
L-BA5 −0.34 0.09 L-BA34 −0.35 0.09 
L-BA3 −0.31 0.13 R-BA36 0.35 0.09 

L-BA24 −0.31 0.13 L-BA27 0.34 0.09 
R-BA30 −0.30 0.15 R-BA33 0.33 0.11 
R-BA44 0.30 0.15 R-BA8 0.32 0.11 
R-BA19 −0.29 0.16 L-BA39 0.30 0.14 
R-BA8 0.26 0.20 L-BA33 0.30 0.15 
L-BA34 −0.26 0.22 L-BA41 −0.29 0.16 
R-BA32 −0.25 0.23 R-BA7 0.29 0.16 
L-BA40 −0.25 0.23 R-BA32 −0.26 0.20 
R-BA29 −0.24 0.24 R-BA18 −0.24 0.24 
L-BA21 0.23 0.27 R-BA19 −0.24 0.24 
L-BA8 0.22 0.28 R-BA29 −0.24 0.25 

R-BA22 −0.22 0.29 L-BA20 −0.23 0.27 
L-BA36 −0.21 0.30 R-BA22 −0.22 0.28 
L-BA44 −0.21 0.31 L-BA24 −0.22 0.29 
L-BA9 0.21 0.31 L-BA44 −0.22 0.30 

L-BA17 −0.21 0.31 L-BA11 0.21 0.31 
L-BA1 −0.21 0.32 R-BA11 0.20 0.34 
L-BA6 −0.18 0.38 L-BA22 −0.19 0.36 

L-BA45 0.17 0.41 R-BA4 −0.19 0.36 
R-BA24 −0.17 0.42 L-BA21 0.18 0.39 
R-BA7 0.17 0.42 R-BA28 0.18 0.39 

R-BA23 −0.16 0.43 L-BA1 −0.16 0.44 
L-BA7 −0.16 0.44 L-BA23 0.16 0.46 

R-BA43 0.16 0.44 L-BA35 0.15 0.46 
R-BA38 −0.15 0.46 L-BA18 −0.14 0.50 
R-BA39 −0.15 0.47 R-BA9 0.13 0.52 
L-BA23 0.15 0.48 L-BA36 −0.13 0.53 
R-BA45 −0.14 0.49 L-BA43 0.13 0.53 
L-BA18 −0.14 0.51 L-BA9 0.13 0.55 
L-BA11 0.14 0.51 L-BA7 −0.13 0.55 
L-BA2 0.14 0.51 L-BA38 0.12 0.56 
R-BA4 0.13 0.52 R-BA43 0.11 0.59 

R-BA31 −0.13 0.54 R-BA40 −0.11 0.59 
R-BA37 −0.12 0.55 R-BA46 0.11 0.60 
R-BA41 −0.12 0.57 R-BA6 −0.11 0.62 
R-BA42 −0.11 0.59 L-BA32 −0.10 0.64 
R-BA46 0.11 0.61 L-BA8 0.10 0.64 
L-BA32 −0.11 0.61 R-BA38 −0.10 0.65 



R-BA21 −0.10 0.62 R-BA1 0.09 0.67 
R-BA34 −0.10 0.63 L-BA19 −0.09 0.68 
L-BA38 0.10 0.63 L-BA28 −0.08 0.69 
L-BA4 −0.10 0.63 R-BA10 −0.08 0.69 

L-BA22 −0.10 0.63 L-BA17 −0.08 0.70 
R-BA20 −0.10 0.64 R-BA21 0.08 0.70 
R-BA17 −0.10 0.65 R-BA27 0.07 0.73 
L-BA20 0.09 0.65 R-BA39 −0.07 0.74 
R-BA3 0.09 0.65 R-BA47 0.07 0.75 

R-BA25 0.09 0.66 R-BA31 −0.06 0.76 
L-BA28 0.08 0.70 L-BA25 −0.06 0.76 
R-BA13 −0.07 0.75 L-BA6 −0.06 0.77 
R-BA47 0.06 0.79 R-BA23 −0.06 0.77 
R-BA18 −0.05 0.79 R-BA41 −0.06 0.77 
L-BA29 0.05 0.80 R-BA13 −0.05 0.80 
L-BA35 0.05 0.80 R-BA37 −0.05 0.83 
L-BA27 0.05 0.81 R-BA25 0.05 0.83 
L-BA41 −0.05 0.82 R-BA17 0.05 0.83 
L-BA25 −0.05 0.83 R-BA42 −0.04 0.85 
L-BA19 0.04 0.84 R-BA2 −0.04 0.85 
L-BA42 0.04 0.84 L-BA30 −0.04 0.86 
R-BA10 0.04 0.85 L-BA13 −0.03 0.87 
R-BA5 0.04 0.86 R-BA3 −0.03 0.87 

R-BA27 −0.03 0.87 L-BA29 0.03 0.88 
R-BA11 −0.03 0.88 R-BA5 −0.02 0.92 
R-BA40 0.03 0.89 L-BA42 −0.02 0.93 
L-BA13 0.02 0.91 L-BA2 −0.02 0.93 
R-BA28 0.02 0.92 R-BA45 0.02 0.94 
R-BA1 0.02 0.94 R-BA20 0.02 0.94 
R-BA2 −0.01 0.94 L-BA45 −0.02 0.94 
R-BA6 −0.01 0.96 R-BA34 −0.01 0.96 
L-BA30 −0.01 0.97 R-BA24 −0.01 0.97 

The table reports both the Pearson’s and Spearman’s rho and related p-values. Statistically significant 
correlations (p < 0.05) between the node betweenness centrality and the Coma Recovery Scale-Revised 
scores have been highlighted in bold character. 

  



Table S6. Clinical-topological (clustering coefficient) correlation coefficients for every single network node. 

Node Pearson 
Rho 

Pearson 
p-value 

Node Spearman 
Rho 

Spearman 
p-value 

R-BA41 −0.51 0.009 R-BA41 −0.56 0.003 
R-BA42 −0.44 0.026 R-BA42 −0.49 0.012 
L-BA21 −0.38 0.06 L-BA21 −0.46 0.021 
L-BA10 −0.37 0.07 L-BA36 −0.39 0.052 
R-BA47 −0.35 0.08 L-BA37 −0.39 0.054 
R-BA6 −0.35 0.08 L-BA10 −0.39 0.055 
L-BA39 −0.34 0.09 L-BA39 −0.37 0.07 
R-BA46 −0.34 0.09 R-BA46 −0.33 0.10 
L-BA36 −0.33 0.11 L-BA24 −0.33 0.11 
L-BA37 −0.33 0.11 L-BA7 −0.31 0.13 
L-BA34 −0.31 0.13 R-BA47 −0.31 0.13 
L-BA25 −0.30 0.14 L-BA30 −0.30 0.14 
L-BA5 −0.29 0.16 R-BA10 −0.29 0.16 

L-BA28 −0.29 0.16 L-BA25 −0.28 0.18 
L-BA35 −0.29 0.17 L-BA35 −0.28 0.18 
L-BA24 −0.28 0.17 L-BA34 −0.27 0.20 
R-BA4 0.28 0.17 R-BA6 −0.25 0.22 

R-BA39 −0.27 0.19 L-BA38 −0.25 0.24 
L-BA46 −0.27 0.20 R-BA40 −0.24 0.26 
L-BA30 −0.25 0.22 L-BA1 −0.24 0.26 
R-BA38 −0.25 0.23 L-BA5 −0.23 0.26 
L-BA38 −0.25 0.23 R-BA39 −0.23 0.27 
R-BA28 −0.24 0.24 R-BA17 −0.23 0.28 
R-BA40 −0.24 0.24 L-BA41 −0.22 0.29 
L-BA45 −0.24 0.25 R-BA37 −0.21 0.31 
L-BA7 −0.24 0.26 L-BA46 −0.21 0.31 

R-BA45 −0.22 0.30 L-BA45 −0.21 0.31 
R-BA36 −0.20 0.33 L-BA29 −0.20 0.33 
L-BA27 −0.20 0.33 L-BA42 −0.20 0.34 
R-BA23 −0.20 0.33 L-BA17 −0.20 0.34 
R-BA21 −0.20 0.33 R-BA45 −0.19 0.37 
R-BA3 0.20 0.34 R-BA19 −0.19 0.37 
L-BA17 −0.18 0.38 L-BA18 −0.18 0.38 
L-BA11 −0.18 0.39 L-BA8 −0.18 0.38 
L-BA1 −0.17 0.40 L-BA31 −0.17 0.41 

R-BA13 0.17 0.40 L-BA9 −0.17 0.42 
R-BA10 −0.17 0.41 R-BA38 −0.16 0.44 
R-BA5 −0.17 0.41 R-BA28 −0.16 0.44 
L-BA41 −0.16 0.44 L-BA4 −0.16 0.45 
L-BA47 −0.16 0.46 R-BA36 −0.16 0.45 
L-BA19 −0.15 0.46 R-BA11 0.15 0.46 
L-BA18 −0.15 0.48 L-BA28 −0.15 0.47 
L-BA22 −0.14 0.49 L-BA33 −0.15 0.48 
R-BA37 −0.14 0.51 L-BA40 −0.14 0.49 
L-BA20 0.13 0.53 R-BA3 0.14 0.50 
R-BA29 0.13 0.54 R-BA4 0.14 0.50 
R-BA9 −0.12 0.56 L-BA22 −0.14 0.51 
R-BA7 −0.12 0.57 R-BA35 0.14 0.51 

R-BA27 0.12 0.57 L-BA27 −0.14 0.52 
L-BA8 −0.11 0.59 R-BA1 0.13 0.53 

L-BA13 0.11 0.60 L-BA2 0.13 0.54 
R-BA24 −0.10 0.62 L-BA6 −0.13 0.55 
L-BA29 −0.10 0.63 R-BA18 −0.12 0.56 



R-BA11 0.10 0.64 L-BA19 −0.12 0.57 
L-BA2 0.10 0.65 R-BA22 −0.11 0.59 

R-BA22 −0.09 0.66 L-BA47 −0.11 0.59 
L-BA42 −0.09 0.68 L-BA32 −0.11 0.59 
L-BA33 −0.09 0.68 L-BA23 −0.11 0.61 
L-BA44 0.09 0.68 R-BA23 −0.11 0.61 
R-BA35 0.08 0.69 R-BA21 −0.09 0.66 
R-BA25 −0.08 0.69 R-BA5 −0.09 0.67 
R-BA34 −0.08 0.70 R-BA2 0.09 0.68 
R-BA30 −0.08 0.71 R-BA31 0.08 0.69 
R-BA44 −0.08 0.71 L-BA11 −0.08 0.71 
L-BA31 −0.08 0.71 R-BA24 −0.08 0.71 
R-BA33 −0.08 0.72 L-BA44 0.08 0.72 
L-BA9 −0.08 0.72 R-BA13 0.08 0.72 
L-BA3 0.07 0.73 L-BA43 0.07 0.73 

R-BA18 0.07 0.73 R-BA29 0.07 0.74 
L-BA23 −0.07 0.73 L-BA20 0.07 0.76 
L-BA32 −0.07 0.74 R-BA27 0.06 0.76 
R-BA17 −0.07 0.75 R-BA32 −0.06 0.78 
R-BA8 0.06 0.78 R-BA34 −0.06 0.79 

R-BA20 −0.06 0.79 R-BA30 −0.05 0.80 
R-BA43 −0.05 0.80 R-BA7 −0.05 0.81 
R-BA1 0.05 0.83 R-BA33 −0.05 0.81 
L-BA6 −0.04 0.86 R-BA9 −0.05 0.81 

R-BA32 0.03 0.87 R-BA25 −0.05 0.82 
L-BA4 −0.03 0.87 L-BA3 −0.04 0.84 
R-BA2 0.03 0.89 R-BA8 0.02 0.92 
L-BA40 −0.02 0.91 L-BA13 −0.02 0.93 
R-BA19 −0.01 0.96 R-BA43 −0.02 0.94 
L-BA43 −0.01 0.96 R-BA44 −0.01 0.96 
R-BA31 0.00 1.00 R-BA20 0.00 0.98 

The table reports both the Pearson’s and Spearman’s rho and related p-values. Statistically significant 
correlations (p < 0.05) between the node clustering coefficient and the Coma Recovery Scale-Revised 
scores have been highlighted in bold character. 

  



 
Figure S1. Topological measure curves between UWS and MCS patients across a range of 
proportional thresholds (35% < PT < 1%). Proportional thresholding was performed on the functional 
connectivity matrices by selecting the proportional thresholded (PT%) strongest connections of the 
derived LPS-weighted connectivity matrix and setting these connections to 1, whereas all other 
connections to 0. Proportional thresholding of a functional connectivity matrix thus resulted in a 
binary graph with a density of PT%. We examined a range of levels of PT from 35% to 1% in steps of 
1% so to depict the trend of the topological measures in UWS and MCS patients across the whole 
range of thresholds. Considering the robustness of the curves and results, we have then defined to 
use the specific cut-off of PT 20% to illustrate results, in line with previous works [14,15]. 

  



 
Figure S2. Average overall functional connectivity (FC) strength between the UWS and MCS patients, 
computed as the mean of the absolute values of the edge weights (strengths) in the connectomes. We 
performed a Mann-Whitney test to compare (for each of the 6 EEG frequency types) the overall FC in 
UWS and MCS patients in order to investigate the extent to which a biasing effect for overall FC was 
present in the data. In this way, it is possible to exclude that the altered topology of a network is 
dependent from the FC between groups. No statistically significant changes (p > 0.05) have been 
detected between the two groups. 
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