Maternal Venous Hemodynamic Dysfunction in Proteinuric Gestational Hypertension: Evidence and Implications
Abstract
:1. Introduction
2. Renal Physiology in Normal Pregnancy and in Two Types of Preeclampsia
3. Abnormal Venous Hemodynamics and Renal Dysfunction in Experimental Conditions and Clinical Syndromes
4. Venous Adaptations in Normal Pregnancy and in Early- or Late-Onset Preeclampsia
5. Increased Risk for Chronic Renal Disease and/or Persistent Hemodynamic Dysfunction after Gestational Hypertension and Preeclampsia
6. Implications for Clinical Practice
7. New Hypothesis-Driven Research on the Role of Maternal Venous Hemodynamic Dysfunction in Preeclampsia
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- Duvekot, J.J.; Cheriex, E.C.; Pieters, F.A.; Menheere, P.P.; Peeters, L.H. Early pregnancy changes in hemodynamics and volume homeostasis are consecutive adjustments triggered by a primary fall in systemic vascular tone. Am. J. Obstet. Gynecol. 1993, 169, 1382–1392. [Google Scholar] [CrossRef]
- Davison, J.M.; Lindheimer, M.D. Volume homeostasis and osmoregulation in human pregnancy. Baillieres Clin. Endocrinol. Metab. 1989, 3, 451–472. [Google Scholar] [CrossRef]
- Lumbers, E.R.; Pringle, K.G. Roles of the circulating reni13-22 n-angiotensin-aldosterone system in human pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R91–R101. [Google Scholar] [CrossRef] [PubMed]
- Irani, R.A.; Xia, Y. The functional role of the renin-angiotensin system in pregnancy and preeclampsia. Placenta 2008, 29, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Lafayette, R. Renal Physiology of Pregnancy. Adv. Chronic Kidney Dis. 2013, 20, 209–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backes, C.H.; Markham, K.; Moorehead, P.; Cordero, L.; Nankervis, C.A.; Giannone, P.J. Maternal preeclampsia and neonatal outcomes. J. Pregnancy 2011, 2011, 214365. [Google Scholar] [CrossRef] [PubMed]
- Kallela, J.; Jääskeläinen, T.; Kortelainen, E.; Heinonen, S.; Kajantie, E.; Kere, J.; Kivinen, K.; Pouta, A.; Laivuori, H. The diagnosis of pre-eclampsia using two revised classifications in the Finnish Pre-eclampsia Consortium (FINNPEC) cohort. BMC Pregnancy Childbirth 2016, 16, 221. [Google Scholar] [CrossRef] [PubMed]
- Stillman, I.E.; Karumanchi, S.A. The glomerular injury of preeclampsia. J. Am. Soc. Nephrol. 2007, 18, 2281–2284. [Google Scholar] [CrossRef] [PubMed]
- Jen, K.Y.; Haragsim, L.; Laszik, Z.G. Kidney microvasculature in health and disease. Contrib. Nephrol. 2011, 169, 51–72. [Google Scholar] [CrossRef] [PubMed]
- Craici, I.M.; Wagner, S.J.; Weissgerber, T.L.; Grande, J.P.; Garovic, V.D. Advances in the pathophysiology of pre-eclampsia and related podocyte injury. Kidney Int. 2014, 86, 275–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, Y.J.; Cho, H.Y.; Cho, S.; Kim, Y.H.; Jeon, J.D.; Kim, Y.J.; Lee, S.; Park, J.; Kim, H.Y.; Park, Y.W.; et al. The Level of Serum and Urinary Nephrin in Normal Pregnancy and Pregnancy with Subsequent Preeclampsia. Yonsei Med. J. 2017, 58, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, K.P.; Davison, J.M. The renal circulation in normal pregnancy and preeclampsia: Is there a place for relaxin? Am. J. Physiol. Ren. Physiol. 2014, 306, F1121–F1135. [Google Scholar] [CrossRef] [PubMed]
- Van Drongelen, J.; de Vries, R.; Lotgering, F.K.; Smits, P.; Spaanderman, M.E. Functional vascular changes of the kidney during pregnancy in animals: A systematic review and meta-analysis. PLoS ONE 2014, 9, e112084. [Google Scholar] [CrossRef] [PubMed]
- Fakhouri, F.; Vercel, C.; Frémeaux-Bacchi, V. Obstetric nephrology: AKI and thrombotic microangiopathies in pregnancy. Clin. J. Am. Soc. Nephrol. 2012, 7, 2100–2106. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Ganiger, V.C. Acute Kidney Injury in Pregnancy-specific Disorders. Indian J. Nephrol. 2017, 27, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Lafayette, R.A.; Druzin, M.; Sibley, R.; Derby, G.; Malik, T.; Huie, P.; Polhemus, C.; Deen, W.M.; Myers, B.D. Nature of glomerular dysfunction in pre-eclampsia. Kidney Int. 1998, 54, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, A.; Brown, M. Proteinuria in preeclampsia: From bench to bedside. Fetal Matern. Med. Rev. 2010, 21, 1–23. [Google Scholar] [CrossRef]
- Carty, D.M.; Siwy, J.; Brennand, J.E.; Zürbig, P.; Mullen, W.; Franke, J.; McCulloch, J.W.; Roberts, C.T.; North, R.A.; Chappell, L.C.; et al. Urinary proteomics for prediction of preeclampsia. Hypertension 2011, 57, 561–569, Erratum in 2011, 58, e32. Roberts, C.T. [added]. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.; Sargent, I.L. Latest advances in understanding preeclampsia. Science 2005, 308, 1592–1594. [Google Scholar] [CrossRef] [PubMed]
- Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef]
- Albertoni, G.A.; Teixeira Borges, F.; Schor, N. Uric Acid and Renal Function in Diseases of Renal Parenchyma; Sahay, M., Ed.; IntechOpen: London, UK, 2012; Available online: https://www.intechopen.com/books/diseases-of-renal-parenchyma/uric-acid-and-renal-function (accessed on 1 March 2019). [CrossRef]
- Abdalla, S.; Lother, H.; el Massiery, A.; Quitterer, U. Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med. 2001, 7, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Anton, L.; Brosnihan, K.B. Systemic and uteroplacental renin–angiotensin system in normal and pre-eclamptic pregnancies. Ther. Adv. Cardiovasc. Dis. 2008, 2, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, O.; Shchekochikhin, D.; Schrier, R.W. Hormones and hemodynamics in pregnancy. Int. J. Endocrinol. Metab. 2014, 12, e14098. [Google Scholar] [CrossRef] [PubMed]
- West, C.A.; Sasser, J.M.; Baylis, C. The enigma of continual plasma volume expansion in pregnancy: Critical role of the renin-angiotensin-aldosterone system. Am. J. Physiol. Ren. Physiol. 2016, 311, F1125–F1134. [Google Scholar] [CrossRef] [PubMed]
- Rakova, N.; Muller, D.N.; Staff, A.C.; Luft, F.C.; Dechend, R. Novel ideas about salt, blood pressure, and pregnancy. J. Reprod. Immunol. 2014, 101–102, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhou, C.C.; Ramin, S.M.; Kellems, R.E. Angiotensin receptors, autoimmunity, and preeclampsia. J. Immunol. 2007, 179, 3391–3395. [Google Scholar] [CrossRef] [PubMed]
- Herse, F.; Verlohren, S.; Wenzel, K.; Pape, J.; Muller, D.N.; Modrow, S.; Wallukat, G.; Luft, F.C.; Redman, C.W.; Dechend, R. Prevalence of agonistic autoantibodies against the angiotensin II type 1 receptor and soluble fms-like tyrosine kinase 1 in a gestational age-matched case study. Hypertension 2009, 53, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Uma, R.; Forsyth, S.J.; Struthers, A.D.; Fraser, C.G.; Godfrey, V.; Murphy, D.J. Polymorphisms of the angiotensin converting enzyme gene in early-onset and late-onset pre-eclampsia. J. Matern. Fetal Neonatal Med. 2010, 23, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Davison, J.M. Edema in pregnancy. Kidney Int. Suppl. 1997, 59, S90–S96. [Google Scholar] [PubMed]
- Gyselaers, W.; Vonck, S.; Staelens, A.S.; Lanssens, D.; Tomsin, K.; Oben, J.; Dreesen, P.; Bruckers, L. Body fluid volume homeostasis is abnormal in pregnancies complicated with hypertension and/or poor fetal growth. PLoS ONE 2018, 13, e0206257. [Google Scholar] [CrossRef] [PubMed]
- Staelens, A.S.; Vonck, S.; Molenberghs, G.; Malbrain, M.L.; Gyselaers, W. Maternal body fluid composition in uncomplicated pregnancies and preeclampsia: A bioelectrical impedance analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 204, 69–73. [Google Scholar] [CrossRef] [PubMed]
- De Haas, S.; Ghossein-Doha, C.; van Kuijk, S.M.; van Drongelen, J.; Spaanderman, M.E. Physiological adaptation of maternal plasma volume during pregnancy: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017, 49, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Friedberg, V.; Lutz, J. Studies on capillary permeability in pregnancy: A contribution to the cause of proteinuria in toxaemias. Arch. Gynakol. 1963, 199, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Schrier, R.W.; Briner, V.A. Peripheral arterial vasodilatation hypothesis of sodium and water retention in pregnancy: Implications for pathogenesis of preeclampsia-eclampsia. Obstet. Gynecol. 1991, 77, 632–639. [Google Scholar] [PubMed]
- Salas, S.P.; Marshall, G.; Gutiérrez, B.L.; Rosso, P. Time course of maternal plasma volume and hormonal changes in women with preeclampsia or fetal growth restriction. Hypertension 2006, 47, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, L.; Siekmann, U.; Schmid-Schönbein, H.; Ludwig, H. Hemoconcentration and pre-eclampsia. Arch. Gynecol. 1981, 231, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, N.M.; Panchal, A.R.; Boulger, C.; Vira, A.; Bischof, J.J.; Amick, C.; Way, D.P.; Bahner, D.P. Inferior Vena Cava Measurement with Ultrasound: What Is the Best View and Best Mode? West. J. Emerg. Med. 2017, 18, 496–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stawicki, S.P.; Papadimos, T.J.; Bahner, D.P.; Evans, D.C.; Jones, C. Correlations between pulmonary artery pressures and inferior vena cava collapsibility in critically ill surgical patients: An exploratory study. Int. J. Crit. Illn. Inj. Sci. 2016, 6, 194–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilyas, A.; Ishtiaq, W.; Assad, S.; Ghazanfar, H.; Mansoor, S.; Haris, M.; Qadeer, A.; Akhtar, A. Correlation of IVC Diameter and Collapsibility Index With Central Venous Pressure in the Assessment of Intravascular Volume in Critically Ill Patients. Cureus 2017, 9, e1025. [Google Scholar] [CrossRef] [PubMed]
- Stergiotou, I.; Crispi, F.; Valenzuela-Alcaraz, B.; Bijnens, B.; Gratacos, E. Patterns of maternal vascular remodeling and responsiveness in early- versus late-onset preeclampsia. Am. J. Obstet. Gynecol. 2013, 209, 558.e1–558.e14. [Google Scholar] [CrossRef] [PubMed]
- Tuten, A.; Oncul, M.; Kucur, M.; Imamoglu, M.; Ekmekci, O.B.; Acıkgoz, A.S.; Cebe, F.S.; Yesilbas, C.; Madazlı, R. Maternal serum copeptin concentrations in early- and late-onset pre-eclampsia. Taiwan J. Obstet. Gynecol. 2015, 54, 350–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandgren, J.A.; Scroggins, S.M.; Santillan, D.A.; Devor, E.J.; Gibson-Corley, K.N.; Pierce, G.L.; Sigmund, C.D.; Santillan, M.K.; Grobe, J.L. Vasopressin: The missing link for preeclampsia? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R1062–R1064. [Google Scholar] [CrossRef] [PubMed]
- Borges, V.T.M.; Zanati, S.G.; Peraçoli, M.T.S.; Poiati, J.R.; Romão-Veiga, M.; Peraçoli, J.C.; Thilaganathan, B. Maternal left ventricular hypertrophy and diastolic dysfunction and brain natriuretic peptide concentration in early- and late-onset pre-eclampsia. Ultrasound Obstet. Gynecol. 2018, 51, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Fernández, I.; Prieto, B.; Rodríguez, V.; Ruano, Y.; Escudero, A.I.; Álvarez, F.V. N-terminal pro B-type natriuretic peptide and angiogenic biomarkers in the prognosis of adverse outcomes in women with suspected preeclampsia. Clin. Chim. Acta 2016, 463, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Szabó, G.; Molvarec, A.; Nagy, B.; Rigó, J., Jr. Increased B-type natriuretic peptide levels in early-onset versus late-onset preeclampsia. Clin. Chem. Lab. Med. 2014, 52, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Birdir, C.; Janssen, K.; Stanescu, A.D.; Enekwe, A.; Kasimir-Bauer, S.; Gellhaus, A.; Kimmig, R.; Köninger, A. Maternal serum copeptin, MR-proANP and procalcitonin levels at 11–13 weeks gestation in the prediction of preeclampsia. Arch. Gynecol. Obstet. 2015, 292, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Espiner, E.A.; Prickett, T.C.; Taylor, R.S.; Reid, R.A.; McCowan, L.M. Effects of pre-eclampsia and fetal growth restriction on C-type natriuretic peptide. BJOG 2015, 122, 1236–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doty, J.M.; Saggi, B.H.; Sugerman, H.J.; Blocher, C.R.; Pin, R.; Fakhry, I.; Gehr, T.W.; Sica, D.A. Effect of increased renal venous pressure on renal function. J. Trauma 1999, 47, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Doty, J.M.; Saggi, B.H.; Blocher, C.R.; Fakhry, I.; Gehr, T.; Sica, D.; Sugerman, H.J. Effects of increased renal parenchymal pressure on renal function. J. Trauma 2000, 48, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Dilley, J.R.; Corradi, A.; Arendshorst, W.J. Glomerular ultrafiltration dynamics during increased renal venous pressure. Am. J. Physiol. 1983, 244, F650–F658. [Google Scholar] [CrossRef] [PubMed]
- Corradi, A.; Arendshorst, W.J. Rat renal hemodynamics during venous compression: Roles of nerves and prostaglandins. Am. J. Physiol. 1985, 248, F810–F820. [Google Scholar] [CrossRef] [PubMed]
- Lotgering, F.K.; Wallenburg, H.C. Hemodynamic effects of caval and uterine venous occlusion in pregnant sheep. Am. J. Obstet. Gynecol. 1986, 155, 1164–1170. [Google Scholar] [CrossRef]
- Cops, J.; Mullens, W.; Verbrugge, F.H.; Swennen, Q.; De Moor, B.; Reynders, C.; Penders, J.; Achten, R.; Driessen, A.; Dendooven, A.; et al. Selective abdominal venous congestion induces adverse renal and hepatic morphological and functional alterations despite a preserved cardiac function. Sci. Rep. 2018, 8, 17757. [Google Scholar] [CrossRef] [PubMed]
- Zigman, A.; Yazbeck, S.; Emil, S.; Nguyen, L. Renal vein thrombosis: A 10-year review. J. Pediatr. Surg. 2000, 35, 1540–1542. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Sampath, R.; Khan, M.S. Current trends in the diagnosis and management of renal nutcracker syndrome: A review. Eur. J. Vasc. Endovasc. Surg. 2006, 31, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Yoshida, K.; Nakamura, Y.; Mitsuhashi, N. Aggravation of the nutcracker syndrome during pregnancy. Obstet. Gynecol. 1997, 90, 661–663. [Google Scholar] [CrossRef]
- Naschitz, J.E.; Slobodin, G.; Lewis, R.J.; Zuckerman, E.; Yeshurun, D. Heart diseases affecting the liver and liver diseases affecting the heart. Am. Heart J. 2000, 140, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Mullens, W. Cardiorenal syndrome in decompensated heart failure. Heart 2010, 96, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.D.; Raine, A.E.; Ledingham, J.G. Raised venous pressure: A direct cause of renal sodium retention in oedema? Lancet 1988, 1, 1033–1035. [Google Scholar] [CrossRef]
- Winton, F.R. The influence of venous pressure on the isolated mammalian kidney. J. Physiol. 1931, 72, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnett, J.C., Jr.; Haas, J.A.; Knox, F.G. Segmental analysis of sodium reabsorption during renal vein constriction. Am. J. Physiol. 1982, 243, F19–F22. [Google Scholar] [CrossRef] [PubMed]
- Burnett, J.C., Jr.; Knox, F.G. Renal interstitial pressure and sodium excretion during renal vein constriction. Am. J. Physiol. 1980, 238, F279–F282. [Google Scholar] [CrossRef] [PubMed]
- Wathen, R.L.; Selkurt, E.E. Intrarenal regulatory factors of salt excretion during renal venous pressure elevation. Am. J. Physiol. 1969, 216, 1517–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, M.H.; Breed, E.S.; Schwartz, I.L. Renal venous pressure in chronic congestive heart failure. J. Clin. Investig. 1950, 29, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Fiksen-Olsen, M.J.; Romero, J.C. Renal effects of prostaglandin inhibition during increases in renal venous pressure. Am. J. Physiol. 1991, 260, F525–F529. [Google Scholar] [CrossRef] [PubMed]
- Fiksen-Olsen, M.J.; Strick, D.M.; Hawley, H.; Romero, J.C. Renal effects of angiotensin IIe inhibition during increases in renal venous pressure. Hypertension 1992, 19 (Suppl. 2), II137–II141. [Google Scholar] [CrossRef] [PubMed]
- Seeto, R.K.; Fenn, B.; Rockey, D.C. Ischemic hepatitis: Clinical presentation and pathogenesis. Am. J. Med. 2000, 109, 109–113. [Google Scholar] [CrossRef]
- Badalamenti, S.; Graziani, G.; Salerno, F.; Ponticelli, C. Hepatorenal syndrome. New perspectives in pathogenesis and treatment. Arch. Intern. Med. 1993, 153, 1957–1967. [Google Scholar] [CrossRef] [PubMed]
- Castells, A.; Salo, J.; Planas, R.; Quer, J.C.; Gines, A.; Boix, J.; Gines, P.; Gassull, M.A.; Teres, J.; Arroyo, V. Impact of shunt surgery for variceal bleeding in the natural history of ascites in cirrhosis: A retrospective study. Hepatology 1994, 20, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Hamza, S.M.; Kaufman, S. Effect of mesenteric vascular congestion on reflex control of renal blood flow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R1917–R1922. [Google Scholar] [CrossRef] [PubMed]
- Kastner, P.R.; Hall, J.E.; Guyton, A.C. Renal hemodynamic responses to increased renal venous pressure: Role of angiotensin II. Am. J. Physiol. 1982, 243, F260–F264. [Google Scholar] [CrossRef] [PubMed]
- DiBona, G.F.; Kopp, U.C. Neural control of renal function. Physiol. Rev. 1997, 77, 75–197. [Google Scholar] [CrossRef] [PubMed]
- Kon, V.; Yared, A.; Ichikawa, I. Role of renal sympathetic nerves in mediating hypoperfusion of renal cortical microcirculation in experimental congestive heart failure and acute extracellular fluid volume depletion. J. Clin. Investig. 1985, 76, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Charkoudian, N.; Martin, E.A.; Dinenno, F.A.; Eisenach, J.H.; Dietz, N.M.; Joyner, M.J. Influence of increased central venous pressure on baroreflex control of sympathetic activity in humans. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H1658–H1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creager, M.A.; Creager, S.J. Arterial baroreflex regulation of blood pressure in patients with congestive heart failure. J. Am. Coll. Cardiol. 1994, 23, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Foresman, B.H.; Raven, P.B. Interaction of central venous pressure, intramuscular pressure, and carotid baroreflex function. Am. J. Physiol. 1997, 272, H1359–H1363. [Google Scholar] [CrossRef] [PubMed]
- Gauer, O.H.; Henry, J.P. Neurohormonal control of plasma volume. Int. Rev. Physiol. 1976, 9, 145–190. [Google Scholar] [PubMed]
- Mullens, W.; Abrahams, Z.; Skouri, H.N.; Francis, G.S.; Taylor, D.O.; Starling, R.C.; Paganini, E.; Tang, W.H. Elevated intra-abdominal pressure in acute decompensated heart failure: A potential contributor to worsening renal function? J. Am. Coll. Cardiol. 2008, 51, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Malbrain, M.L.; Deeren, D.; De Potter, T.J. Intra-abdominal hypertension in the critically ill: It is time to pay attention. Curr. Opin. Crit. Care 2005, 11, 156–171. [Google Scholar] [CrossRef] [PubMed]
- Verbrugge, F.H.; Dupont, M.; Steels, P.; Grieten, L.; Malbrain, M.; Tang, W.H.; Mullens, W. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J. Am. Coll. Cardiol. 2013, 62, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Mullens, W.; Abrahams, Z.; Francis, G.S.; Sokos, G.; Taylor, D.O.; Starling, R.C.; Young, J.B.; Tnag, W.H. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 2009, 53, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; Navis, G.; Smilde, T.D.; Voors, A.A.; van der, B.W.; van Veldhuisen, D.J.; Hillege, H.L. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur. J. Heart Fail. 2007, 9, 872–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullens, W.; Abrahams, Z.; Francis, G.S.; Taylor, D.O.; Starling, R.C.; Tang, W.H. Prompt reduction in intra-abdominal pressure following large-volume mechanical fluid removal improves renal insufficiency in refractory decompensated heart failure. J. Card. Fail. 2008, 14, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Moser, G.; Weiss, G.; Sundl, M.; Gauster, M.; Siwetz, M.; Lang-Olip, I.; Huppertz, B. Extravillous trophoblasts invade more than uterine arteries: Evidence for the invasion of uterine veins. Histochem. Cell Biol. 2017, 147, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Moser, G.; Windsperger, K.; Pollheimer, J.; de Sousa Lopes, S.C.; Huppertz, B. Human trophoblast invasion: New and unexpected routes and functions. Histochem. Cell Biol. 2018, 150, 361–370. [Google Scholar] [CrossRef] [PubMed]
- He, N.; van Iperen, L.; de Jong, D.; Szuhai, K.; Helmerhorst, F.M.; van der Westerlaken, L.A.; Chuva de Sousa Lopes, S.M. Human Extravillous Trophoblasts Penetrate Decidual Veins and Lymphatics before Remodeling Spiral Arteries during Early Pregnancy. PLoS ONE 2017, 12, e0169849. [Google Scholar] [CrossRef] [PubMed]
- Windsperger, K.; Dekan, S.; Pils, S.; Golletz, C.; Kunihs, V.; Fiala, C.; Kristiansen, G.; Knöfler, M.; Pollheimer, J. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions. Hum. Reprod. 2017, 32, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Craven, C.M.; Chedwick, L.R.; Ward, K. Placental basal plate formation is associated with fibrin deposition in decidual veins at sites of trophoblast cell invasion. Am. J. Obstet. Gynecol. 2002, 186, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Craven, C.M.; Zhao, L.; Ward, K. Lateral placental growth occurs by trophoblast cell invasion of decidual veins. Placenta 2000, 21, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, M.; McLaughlin, M.K.; Künzel, W. Direct assessment of mesenteric vein compliance in the rat during pregnancy. Z. Geburtshilfe Perinatol. 1992, 196, 33–40. [Google Scholar] [PubMed]
- Wedel Jones, C.; Mandala, M.; Barron, C.; Bernstein, I.; Osol, G. Mechanisms underlying maternal venous adaptation in pregnancy. Reprod. Sci. 2009, 16, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Vonck, S.; Staelens, A.S.; Mesens, T.; Tomsin, K.; Gyselaers, W. Hepatic hemodynamics and fetal growth: A relationship of interest for further research. PLoS ONE 2014, 9, e115594. [Google Scholar] [CrossRef] [PubMed]
- Lui, E.Y.; Steinman, A.H.; Cobbold, R.S.; Johnston, K.W. Human factors as a source of error in peak Doppler velocity measurement. J. Vasc. Surg. 2005, 42, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Gyselaers, W.; Mesens, T.; Tomsin, K.; Peeters, L. Doppler assessment of maternal central venous hemodynamics in uncomplicated pregnancy: A comprehensive review. Facts Views Vis. ObGyn 2009, 1, 171–181. [Google Scholar] [PubMed]
- Staelens, A.S.; Tomsin, K.; Oben, J.; Mesens, T.; Grieten, L.; Gyselaers, W. Improving the reliability of venous Doppler flow measurements: Relevance of combined ECG, training and repeated measures. Ultrasound Med. Biol. 2014, 40, 1722–1728. [Google Scholar] [CrossRef] [PubMed]
- Senthelal, S.; Maingi, M. Physiology, Jugular Venous Pulsation; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Gyselaers, W. Hemodynamics of the maternal venous compartment: A new area to explore in obstetric ultrasound imaging. Ultrasound Obstet. Gynecol. 2008, 32, 716–717. [Google Scholar] [CrossRef] [PubMed]
- Bateman, G.A.; Giles, W.; England, S.L. Renal venous Doppler sonography in preeclampsia. J. Ultrasound Med. 2004, 23, 1607–1611. [Google Scholar] [CrossRef] [PubMed]
- Tomsin, K.; Mesens, T.; Molenberghs, G.; Gyselaers, W. Venous pulse transit time in normal pregnancy and preeclampsia. Reprod. Sci. 2012, 19, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Willenberg, T.; Clemens, R.; Haegeli, L.M.; Amann-Vesti, B.; Baumgartner, I.; Husmann, M. The influence of abdominal pressure on lower extremity venous pressure and hemodynamics: A human in-vivo model simulating the effect of abdominal obesity. Eur. J. Vasc. Endovasc. Surg. 2011, 41, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Tomsin, K.; Vriens, A.; Mesens, T.; Gyselaers, W. Non-invasive cardiovascular profiling using combined electrocardiogram-Doppler ultrasonography and impedance cardiography: An experimental approach. Clin. Exp. Pharmacol. Physiol. 2013, 40, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Tomsin, K. The maternal venous system: The ugly duckling of obstetrics. Facts Views Vis. ObGyn 2013, 5, 116–123. [Google Scholar] [PubMed]
- Gyselaers, W.; Verswijvel, G.; Molenberghs, G.; Ombelet, W. Interlobar venous flow is different between left and right kidney in uncomplicated third trimester pregnancy. Gynecol. Obstet. Investig. 2008, 65, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Gyselaers, W.; Molenberghs, G.; Van Mieghem, W.; Ombelet, W. Doppler measurement of renal interlobar vein impedance index in uncomplicated and preeclamptic pregnancies. Hypertens. Pregnancy 2009, 28, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Gyselaers, W.; Mullens, W.; Tomsin, K.; Mesens, T.; Peeters, L. Role of dysfunctional maternal venous hemodynamics in the pathophysiology of pre-eclampsia: A review. Ultrasound Obstet. Gynecol. 2011, 38, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Roobottom, C.A.; Hunter, J.D.; Weston, M.J.; Dubbins, P.A. Hepatic venous Doppler waveforms: Changes in pregnancy. J. Clin. Ultrasound 1995, 23, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, N.; Baki Yağci, A.; Karabulut, A. Renal vein Doppler ultrasound of maternal kidneys in normal second and third trimester pregnancy. Br. J. Radiol. 2003, 76, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Gyselaers, W.; Molenberghs, G.; Mesens, T.; Peeters, L. Maternal hepatic vein Doppler velocimetry during uncomplicated pregnancy and pre-eclampsia. Ultrasound Med. Biol. 2009, 35, 1278–1283. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Imaizumi, T.; Maeda, H.; Nagata, H.; Tsukimori, K.; Takeshita, A.; Nakano, H. Venous distensibility during pregnancy. Comparisons between normal pregnancy and preeclampsia. Hypertension 1994, 24, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Gyselaers, W.; Staelens, A.; Mesens, T.; Tomsin, K.; Oben, J.; Vonck, S.; Verresen, L.; Molenberghs, G. Maternal venous Doppler characteristics are abnormal in pre-eclampsia but not in gestational hypertension. Ultrasound Obstet. Gynecol. 2015, 45, 421–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyselaers, W.; Tomsin, K.; Staelens, A.; Mesens, T.; Oben, J.; Molenberghs, G. Maternal venous hemodynamics in gestational hypertension and preeclampsia. BMC Pregnancy Childbirth 2014, 14, 212. [Google Scholar] [CrossRef] [PubMed]
- Gyselaers, W.J.; Vonck, S.; Staelens, A.S.E.; Lanssens, D.; Tomsin, K.; Oben, J.; Dreesen, P.; Bruckers, L. Gestational hypertensive disorders show unique patterns of circulatory deterioration with ongoing pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R210–R221. [Google Scholar] [CrossRef] [PubMed]
- Gyselaers, W.; Mesens, T.; Tomsin, K.; Molenberghs, G.; Peeters, L. Maternal renal interlobar vein impedance index is higher in early- than in late-onset pre-eclampsia. Ultrasound Obstet. Gynecol. 2010, 36, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyselaers, W.; Mesens, T. Renal interlobar vein impedance index: A potential new Doppler parameter in the prediction of preeclampsia? J. Matern. Fetal Neonatal Med. 2009, 22, 1219–1221. [Google Scholar] [CrossRef] [PubMed]
- Mesens, T.; Tomsin, K.; Staelens, A.S.; Oben, J.; Molenberghs, G.; Gyselaers, W. Is there a correlation between maternal venous hemodynamic dysfunction and proteinuria of preeclampsia? Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 181, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.L.; Ford, J.B.; Algert, C.S.; Antonsen, S.; Chalmers, J.; Cnattingius, S.; Gokhale, M.; Kotelchuck, M.; Melve, K.K.; Langridge, A.; et al. Population-based trends in pregnancy hypertension and pre-eclampsia: An international comparative study. BMJ Open 2011, 1, e000101. [Google Scholar] [CrossRef] [PubMed]
- Ghossein-Doha, C.; Spaanderman, M.; van Kuijk, S.M.; Kroon, A.A.; Delhaas, T.; Peeters, L. Long-Term Risk to Develop Hypertension in Women With Former Preeclampsia: A Longitudinal Pilot Study. Reprod. Sci. 2014, 21, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Amaral, L.M.; Cunningham, M.W., Jr.; Cornelius, D.C.; LaMarca, B. Preeclampsia: Long-term consequences for vascular health. Vasc. Health Risk Manag. 2015, 11, 403–415. [Google Scholar] [PubMed]
- Lopes van Balen, V.A.; Spaan, J.J.; Cornelis, T.; Spaanderman, M.E.A. Prevalence of chronic kidney disease after preeclampsia. J. Nephrol. 2017, 30, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Paauw, N.D.; Luijken, K.; Franx, A.; Verhaar, M.C.; Lely, A.T. Long-term renal and cardiovascular risk after preeclampsia: Towards screening and prevention. Clin. Sci. (Lond.) 2016, 130, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Breetveld, N.M.; Ghossein-Doha, C.; van Kuijk, S.; van Dijk, A.P.; van der Vlugt, M.J.; Heidema, W.M.; Scholten, R.R.; Spaanderman, M.E. Cardiovascular disease risk is only elevated in hypertensive, formerly preeclamptic women. BJOG 2015, 122, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Lisonkova, S.; Sabr, Y.; Mayer, C.; Young, C.; Skoll, A.; Joseph, K.S. Maternal morbidity associated with early-onset and late-onset preeclampsia. Obstet. Gynecol. 2014, 124, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Chen, S.H.; Ho, C.H.; Liang, F.W.; Chu, C.C.; Wang, H.Y.; Lu, Y.H. End-stage renal disease after hypertensive disorders in pregnancy. Am. J. Obstet. Gynecol. 2014, 210, 147.e1–147.e8. [Google Scholar] [CrossRef] [PubMed]
- Lopes van Balen, V.A.; Spaan, J.J.; Cornelis, T.; Heidema, W.M.; Scholten, R.R.; Spaanderman, M.E.A. Endothelial and kidney function in women with a history of preeclampsia and healthy parous controls: A case control study. Microvasc. Res. 2018, 116, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Pourrat, O.; Pierre, F. Late prognosis after preeclampsia. Ann. Fr. Anesth. Reanim. 2010, 29, e155–e160. [Google Scholar] [CrossRef] [PubMed]
- Ihle, B.U.; Long, P.; Oats, J. Early onset pre-eclampsia: Recognition of underlying renal disease. Br. Med. J. (Clin. Res. Ed.) 1987, 294, 79–81. [Google Scholar] [CrossRef]
- Kaplan, N.M. Hypertension induced by pregnancy, oral contraceptives, and postmenopausal replacement therapy. Cardiol. Clin. 1988, 6, 475–482. [Google Scholar] [CrossRef]
- Lopes van Balen, V.A.; Spaan, J.J.; Ghossein, C.; van Kuijk, S.M.; Spaanderman, M.E.; Peeters, L.L. Early pregnancy circulatory adaptation and recurrent hypertensive disease: An explorative study. Reprod. Sci. 2013, 20, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Magee, L.A.; von Dadelszen, P.; Bohun, C.M.; Rey, E.; El-Zibdeh, M.; Stalker, S.; Ross, S.; Hewson, S.; Logan, A.G.; Ohlsson, A.; et al. Serious perinatal complications of non-proteinuric hypertension: An international, multicentre, retrospective cohort study. J. Obstet. Gynaecol. Can. 2003, 25, 372–382. [Google Scholar] [CrossRef]
- Homer, C.S.; Brown, M.A.; Mangos, G.; Davis, G.K. Non-proteinuric pre-eclampsia: A novel risk indicator in women with gestational hypertension. J. Hypertens. 2008, 26, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Innes, K.E.; Wimsatt, J.H. Pregnancy-induced hypertension and insulin resistance: Evidence for a connection. Acta Obstet. Gynecol. Scand. 1999, 78, 263–284. [Google Scholar] [CrossRef] [PubMed]
- Aardenburg, R.; Spaanderman, M.E.; Ekhart, T.H.; van Eijndhoven, H.W.; van der Heijden, O.W.; Peeters, L.L. Low plasma volume following pregnancy complicated by pre-eclampsia predisposes for hypertensive disease in a next pregnancy. BJOG 2003, 110, 1001–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrietti, S.; Kruse, A.J.; Bekkers, S.C.; Sep, S.; Spaanderman, M.; Peeters, L.L. Cardiac adaptation to pregnancy in women with a history of preeclampsia and a subnormal plasma volume. Reprod. Sci. 2008, 15, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Ghossein-Doha, C.; Spaanderman, M.E.; Al Doulah, R.; Van Kuijk, S.M.; Peeters, L.L. Maternal cardiac adaptation to subsequent pregnancy in formerly pre-eclamptic women according to recurrence of pre-eclampsia. Ultrasound Obstet. Gynecol. 2016, 47, 96–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidema, W.M.; van Drongelen, J.; Spaanderman, M.E.A.; Scholten, R.R. Venous and autonomic function in formerly pre-eclamptic women and BMI-matched controls. Ultrasound Obstet. Gynecol. 2019, 53, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Mesens, T.; Tomsin, K.; Oben, J.; Staelens, A.; Gyselaers, W. Maternal venous hemodynamics assessment for prediction of preeclampsia should be longitudinal. J. Matern. Fetal Neonatal Med. 2015, 28, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Scholten, R.R.; Hopman, M.T.; Lotgering, F.K.; Spaanderman, M.E. Aerobic Exercise Training in Formerly Preeclamptic Women: Effects on Venous Reserve. Hypertension 2015, 66, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Krabbendam, I.; Maas, M.L.; Thijssen, D.H.; Oyen, W.J.; Lotgering, F.K.; Hopman, M.T.; Spaanderman, M.E. Exercise-induced changes in venous vascular function in nonpregnant formerly preeclamptic women. Reprod. Sci. 2009, 16, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.C. Autonomic control of the venous system in health and disease: Effects of drugs. Pharmacol. Ther. 2001, 90, 179–230. [Google Scholar] [CrossRef]
- Pryde, P.G.; Mittendorf, R. Contemporary usage of obstetric magnesium sulfate: Indication, contraindication, and relevance of dose. Obstet. Gynecol. 2009, 114, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Euser, A.G.; Cipolla, M.J. Magnesium sulfate for the treatment of eclampsia: A brief review. Stroke 2009, 40, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M. Role of magnesium in the pathogenesis of hypertension. Mol. Asp. Med. 2003, 24, 107–136. [Google Scholar] [CrossRef]
- Keyrouz, S.G.; Diringer, M.N. Clinical review: Prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit. Care 2007, 11, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teragawa, H.; Kato, M.; Yamagata, T.; Matsuura, H.; Kajiyama, G. The preventive effect of magnesium on coronary spasm in patients with vasospastic angina. Chest 2000, 118, 1690–1695. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.W.; Gebrewold, A.; Nowakowski, M.; Altura, B.T.; Altura, B.M. Mg(2+)-induced endothelium-dependent relaxation of blood vessels and blood pressure lowering: Role of NO. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R628–R639. [Google Scholar] [CrossRef] [PubMed]
- Upton, R.N.; Ludbrook, G.L. Pharmacokinetic-pharmacodynamic modelling of the cardiovascular effects of drugs—Method development and application to magnesium in sheep. BMC Pharmacol. 2005, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Silber, S. Nitrates: Why and how should they be used today? Current status of the clinical usefulness of nitroglycerin, isosorbide dinitrate and isosorbide-5-mononitrate. Eur. J. Clin. Pharmacol. 1990, 38 (Suppl. 1), S35–S51. [Google Scholar] [CrossRef] [PubMed]
- Cetin, A.; Yurtcu, N.; Guvenal, T.; Imir, A.G.; Duran, B.; Cetin, M. The effect of glyceryl trinitrate on hypertension in women with severe preeclampsia, HELLP syndrome, and eclampsia. Hypertens. Pregnancy 2004, 23, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Cotton, D.B.; Jones, M.M.; Longmire, S.; Dorman, K.F.; Tessem, J.; Joyce, T.H., 3rd. Role of intravenous nitroglycerin in the treatment of severe pregnancy-induced hypertension complicated by pulmonary edema. Am. J. Obstet. Gynecol. 1986, 154, 91–93. [Google Scholar] [CrossRef]
- Grunewald, C.; Kublickas, M.; Carlström, K.; Lunell, N.O.; Nisell, H. Effects of nitroglycerin on the uterine and umbilical circulation in severe preeclampsia. Obstet. Gynecol. 1995, 86, 600–604. [Google Scholar] [CrossRef]
- Cacciatore, B.; Halmesmäki, E.; Kaaja, R.; Teramo, K.; Ylikorkala, O. Effects of transdermal nitroglycerin on impedance to flow in the uterine, umbilical, and fetal middle cerebral arteries in pregnancies complicated by preeclampsia and intrauterine growth retardation. Am. J. Obstet. Gynecol. 1998, 179, 140–145. [Google Scholar] [CrossRef]
- Johal, T.; Lees, C.C.; Everett, T.R.; Wilkinson, I.B. The nitric oxide pathway and possible therapeutic options in pre-eclampsia. Br. J. Clin. Pharmacol. 2014, 78, 244–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valensise, H.; Vasapollo, B.; Novelli, G.P.; Giorgi, G.; Verallo, P.; Galante, A.; Arduini, D. Maternal and fetal hemodynamic effects induced by nitric oxide donors and plasma volume expansion in pregnancies with gestational hypertension complicated by intrauterine growth restriction with absent end-diastolic flow in the umbilical artery. Ultrasound Obstet. Gynecol. 2008, 31, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Vasapollo, B.; Novelli, G.P.; Gagliardi, G.; Tiralongo, G.M.; Pisani, I.; Manfellotto, D.; Giannini, L.; Valensise, H. Medical treatment of early-onset mild gestational hypertension reduces total peripheral vascular resistance and influences maternal and fetal complications. Ultrasound Obstet. Gynecol. 2012, 40, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Veena, P.; Perivela, L.; Raghavan, S.S. Furosemide in postpartum management of severe preeclampsia: A randomized controlled trial. Hypertens. Pregnancy 2017, 36, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Carr, D.B.; Gavrila, D.; Brateng, D.; Easterling, T.R. Maternal hemodynamic changes associated with furosemide treatment. Hypertens. Pregnancy 2007, 26, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Al-Balas, M.; Bozzo, P.; Einarson, A. Use of diuretics during pregnancy. Can. Fam. Physician 2009, 55, 44–45. [Google Scholar] [PubMed]
- Von Dadelszen, P.; Menzies, J.; Gilgoff, S.; Xie, F.; Douglas, M.J.; Sawchuck, D.; Magee, L.A. Evidence-based management for preeclampsia. Front. Biosci. 2007, 12, 2876–2889. [Google Scholar] [CrossRef] [PubMed]
- National High Blood Pressure Education Program. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am. J. Obstet. Gynecol. 2000, 183, s1–s22. [Google Scholar] [CrossRef]
- Brown, C.M.; Garovic, V.D. Drug treatment of hypertension in pregnancy. Drugs 2014, 74, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Tamás, P.; Hantosi, E.; Farkas, B.; Ifi, Z.; Betlehem, J.; Bódis, J. Preliminary study of the effects of furosemide on blood pressure during late-onset pre-eclampsia in patients with high cardiac output. Int. J. Gynaecol. Obstet. 2017, 136, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Melchiorre, K.; Sharma, R.; Khalil, A.; Thilaganathan, B. Maternal Cardiovascular Function in Normal Pregnancy: Evidence of Maladaptation to Chronic Volume Overload. Hypertension 2016, 67, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Di Lullo, L.; Bellasi, A.; Barbera, V.; Russo, D.; Russo, L.; Di Iorio, B.; Cozzolino, M.; Ronco, C. Pathophysiology of the cardio-renal syndromes types 1–5: An uptodate. Indian Heart J. 2017, 69, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Laribi, S.; Mebazaa, A. Cardiohepatic syndrome: Liver injury in decompensated heart failure. Curr. Heart Fail. Rep. 2014, 11, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Anim-Nyame, N.; Gamble, J.; Sooranna, S.R.; Johnson, M.R.; Sullivan, M.H.; Steer, P.J. Evidence of impaired microvascular function in pre-eclampsia: A non-invasive study. Clin. Sci. (Lond.) 2003, 104, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Anim-Nyame, N.; Sooranna, S.R.; Johnson, M.R.; Sullivan, M.H.; Gamble, J.; Steer, P.J. Impaired retrograde transmission of vasodilatory signals via the endothelium in pre-eclampsia: A cause of reduced tissue blood flow? Clin. Sci. (Lond.) 2004, 106, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Staelens, A.S.; Van Cauwelaert, S.; Tomsin, K.; Mesens, T.; Malbrain, M.L.; Gyselaers, W. Intra-abdominal pressure measurements in term pregnancy and postpartum: An observational study. PLoS ONE 2014, 9, e104782. [Google Scholar] [CrossRef] [PubMed]
- Reuter, D.G.; Law, Y.; Levy, W.C.; Seslar, S.P.; Zierler, R.E.; Ferguson, M.; Chattra, J.; McQuinn, T.; Liu, L.L.; Terry, M.; et al. Can preeclampsia be considered a renal compartment syndrome? A hypothesis and analysis of the literature. J. Am. Soc. Hypertens. 2016, 10, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Wider, M.D. Metabolic syndrome and the hepatorenal reflex. Surg. Neurol. Int. 2016, 7, 83, Erratum in 2017, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzi, E.; Stampalija, T.; Monasta, L.; Di Martino, D.; Vonck, S.; Gyselaers, W. Maternal hemodynamics: A method to classify hypertensive disorders of pregnancy. Am. J. Obstet. Gynecol. 2018, 218, 124.e1–124.e11. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.; Foo, L.; Masini, G.; Bennett, P.R.; McEniery, C.M.; Wilkinson, I.B.; Lees, C.C. Early and late preeclampsia are characterized by high cardiac output, but in the presence of fetal growth restriction, cardiac output is low: Insights from a prospective study. Am. J. Obstet. Gynecol. 2018, 218, 517.e1–517.e12. [Google Scholar] [CrossRef] [PubMed]
- Verlohren, S.; Melchiorre, K.; Khalil, A.; Thilaganathan, B. Uterine artery Doppler, birth weight and timing of onset of pre-eclampsia: Providing insights into the dual etiology of late-onset pre-eclampsia. Ultrasound Obstet. Gynecol. 2014, 44, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Bosio, P.M.; McKenna, P.J.; Conroy, R.; O’Herlihy, C. Maternal central hemodynamics in hypertensive disorders of pregnancy. Obstet. Gynecol. 1999, 94, 978–984. [Google Scholar] [PubMed]
- Easterling, T.R.; Benedetti, T.J.; Schmucker, B.C.; Millard, S.P. Maternal hemodynamics in normal and preeclamptic pregnancies: A longitudinal study. Obstet. Gynecol. 1990, 76, 1061–1069. [Google Scholar] [PubMed]
- Gyselaers, W.; Peeters, L. Physiological implications of arteriovenous anastomoses and venous hemodynamic dysfunction in early gestational uterine circulation: A review. J. Matern. Fetal Neonatal Med. 2013, 26, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Roth, C.J.; Haeussner, E.; Ruebelmann, T.; Koch, F.V.; Schmitz, C.; Frank, H.G.; Wall, W.A. Dynamic modeling of uteroplacental blood flow in IUGR indicates vortices and elevated pressure in the intervillous space—A pilot study. Sci. Rep. 2017, 7, 40771. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, E.S.; Brownbill, P.; Jones, N.W.; Abrahams, V.M.; Baker, P.N.; Sibley, C.P.; Crocker, I.P. Utero-placental haemodynamics in the pathogenesis of pre-eclampsia. Placenta 2009, 30, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, B.; Weiss, G.; Moser, G. Trophoblast invasion and oxygenation of the placenta: Measurements versus presumptions. J. Reprod. Immunol. 2014, 101–102, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Siegmund, A.S.; Kampman, M.A.M.; Oudijk, M.A.; Mulder, B.J.M.; Sieswerda, G.T.; Koenen, S.V.; Hummel, Y.M.; de Laat, M.W.M.; Sollie-Szarynska, K.M.; Groen, H.; et al. Maternal right ventricular function, uteroplacental circulation in first trimester, and pregnancy outcome in women with congenital heart disease. Ultrasound Obstet. Gynecol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Mari, G.; Uerpairojkit, B.; Copel, J.A. Abdominal venous system in the normal fetus. Obstet. Gynecol. 1995, 86, 729–733. [Google Scholar] [CrossRef]
- Gonser, M.; Goelz, R.; Erz, W.; Mielke, G. Doppler sonography of the ductus venosus in high risk pregnancies at 23 and 26 weeks. Geburtshilfe Frauenheilkd. 1995, 55, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Areias, J.C.; Matias, A.; Montenegro, N. Venous return and right ventricular diastolic function in ARED flow fetuses. J. Perinat Med. 1998, 26, 157–167. [Google Scholar] [PubMed]
- Aublin, P.; Aublin, C. Oligoamnios and intrauterine growth retardation. Apropos of 2 cases. Rev. Fr. Gynecol. Obstet. 1989, 84, 767–770. [Google Scholar] [PubMed]
- Daniel, S.S.; Stark, R.I.; Tropper, P.J.; James, L.S. Amniotic fluid composition in the fetal lamb with intrauterine growth restriction. Am. J. Obstet. Gynecol. 1999, 180, 703–710. [Google Scholar] [CrossRef]
- Luyckx, V.A.; Perico, N.; Somaschini, M.; Manfellotto, D.; Valensise, H.; Cetin, I.; Simeoni, U.; Allegaert, K.; Vikse, B.E.; Steegers, E.A.; et al. A developmental approach to the prevention of hypertension and kidney disease: A report from the Low Birth Weight and Nephron Number Working Group. Lancet 2017, 390, 424–428. [Google Scholar] [CrossRef]
- Schreuder, M.; Delemarre-van de Waal, H.; van Wijk, A. Consequences of intrauterine growth restriction for the kidney. Kidney Blood Press Res. 2006, 29, 108–125. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.; Kalra, V.; Agarwal, S.K. Low birth weight and its implication in renal disease. J. Assoc. Physicians India 2004, 52, 649–652. [Google Scholar] [PubMed]
- Menendez-Castro, C.; Rascher, W.; Hartner, A. Intrauterine growth restriction—Impact on cardiovascular diseases later in life. Mol. Cell. Pediatr. 2018, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Colella, M.; Frérot, A.; Novais, A.R.B.; Baud, O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Curr. Pediatr. Rev. 2018, 14, 212–218. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyselaers, W. Maternal Venous Hemodynamic Dysfunction in Proteinuric Gestational Hypertension: Evidence and Implications. J. Clin. Med. 2019, 8, 335. https://doi.org/10.3390/jcm8030335
Gyselaers W. Maternal Venous Hemodynamic Dysfunction in Proteinuric Gestational Hypertension: Evidence and Implications. Journal of Clinical Medicine. 2019; 8(3):335. https://doi.org/10.3390/jcm8030335
Chicago/Turabian StyleGyselaers, Wilfried. 2019. "Maternal Venous Hemodynamic Dysfunction in Proteinuric Gestational Hypertension: Evidence and Implications" Journal of Clinical Medicine 8, no. 3: 335. https://doi.org/10.3390/jcm8030335
APA StyleGyselaers, W. (2019). Maternal Venous Hemodynamic Dysfunction in Proteinuric Gestational Hypertension: Evidence and Implications. Journal of Clinical Medicine, 8(3), 335. https://doi.org/10.3390/jcm8030335