Are There New Biomarkers in Tissue and Liquid Biopsies for the Early Detection of Non-Small Cell Lung Cancer?
Abstract
:1. Introduction
2. Potential Biomarkers in Lung Tissue/Cytological Samples
2.1. Epigenetic Biomarkers
DNA Methylation
2.2. miRNA
2.3. Proteomics
2.4. Metabolomics
2.5. Microbiome
2.6. What is the Future for Tissue/Cytological Biomarkers for Detecting Lung Cancer at the Early Stage?
3. Potential Biomarkers from Liquid Biopsy
3.1. Circulating Tumor Cells
3.2. Plasma miRNA
3.3. Circulating Free DNA
3.4. Other Circulating Biomarkers of Potential Interest
3.5. What Is the Future for the Use of Liquid Biopsies to Detect Lung Cancer at an Early Stage?
4. Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Gadgeel, S.M. Personalized Therapy of Non-Small Cell Lung Cancer (NSCLC). Adv. Exp. Med. Biol. 2016, 890, 203–222. [Google Scholar] [PubMed]
- Remon, J.; Chaput, N.; Planchard, D. Predictive biomarkers for programmed death-1/programmed death ligand immune checkpoint inhibitors in nonsmall cell lung cancer. Curr. Opin. Oncol. 2016, 28, 122–129. [Google Scholar] [CrossRef]
- Wang Memoli, J.S.; Nietert, P.J.; Silvestri, G.A. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest 2012, 142, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Thunnissen, F.B. Sputum examination for early detection of lung cancer. J. Clin. Pathol. 2003, 56, 805–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chansky, K.; Sculier, J.P.; Crowley, J.J.; Giroux, D.; Van Meerbeeck, J.; Goldstraw, P. International Staging Committee and Participating Institutions. The International Association for the Study of Lung Cancer Staging Project: Prognostic factors and pathologic TNM stage in surgically managed non-small cell lung cancer. J. Thorac. Oncol. 2009, 4, 792–801. [Google Scholar] [CrossRef]
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.; Salgia, R. Biomarkers in lung cancer: From early detection to novel therapeutics and decision making. Biomark. Med. 2008, 2, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, M.; Callison, J.C.; Callaway-Lane, C.; Aldrich, M.C.; Grogan, E.L.; Massion, P.P. The state of molecular biomarkers for the early detection of lung cancer. Cancer Prev. Res. (Phila) 2012, 5, 992–1006. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, G.; McCrory, D.C. Performance characteristics of different modalities for diagnosis of suspected lung cancer: Summary of published evidence. Chest 2003, 123, 115S–128S. [Google Scholar] [CrossRef]
- Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.M.; et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Balgkouranidou, I.; Liloglou, T.; Lianidou, E.S. Lung cancer epigenetics: Emerging biomarkers. Biomark. Med. 2013, 7, 49–58. [Google Scholar] [CrossRef]
- Li, C.M.; Chu, W.Y.; Wong, D.L.; Tsang, H.F.; Tsui, N.B.; Chan, C.M.; Xue, V.W.; Siu, P.M.; Yung, B.Y.; Chan, L.W.; et al. Current and future molecular diagnostics in non-small-cell lung cancer. Expert Rev. Mol. Diagn. 2015, 15, 1061–1074. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Li, J.; Zhang, C.; Hong, Q.; Jiang, D.; Ye, M.; Duan, S. Distinguishing Lung Adenocarcinoma from Lung Squamous Cell Carcinoma by Two Hypomethylated and Three. Hypermethylated Genes: A Meta-Analysis. PLoS ONE 2016, 11, e0149088. [Google Scholar] [CrossRef]
- Wang, Y.W.; Ma, X.; Zhang, Y.A.; Wang, M.J.; Yatabe, Y.; Lam, S.; Girard, L.; Chen, J.Y.; Gazdar, A.F. ITPKA Gene Body Methylation Regulates Gene Expression and Serves as an Early Diagnostic Marker in Lung and Other Cancers. J. Thorac. Oncol. 2016, 11, 1469–1481. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Bai, Y.; Mao, H.; Hong, Q.; Yang, D.; Zhang, H.; Liu, F.; Wu, Z.; Jin, Q.; Zhou, H.; et al. A panel of promoter methylation markers for invasive and noninvasive early detection of NSCLC using a quantum dots-based FRET approach. Biosens. Bioelectron. 2016, 85, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Wang, C.; Sheng, D.; Shi, Y.; Jin, M.; Xu, S. Methylation analysis of SHOX2 and RASSF1A in bronchoalveolar lavage fluid for early lung cancer diagnosis. Ann. Diagn. Pathol. 2017, 27, 57–61. [Google Scholar] [CrossRef]
- Hubers, A.J.; Heideman, D.A.; Duin, S.; Witte, B.I.; de Koning, H.J.; Groen, H.J.; Prinsen, C.F.; Bolijn, A.S.; Wouters, M.; van der Meer, S.E.; et al. DNA hypermethylation analysis in sputum of asymptomatic subjects at risk for lung cancer participating in the NELSON trial: Argument for maximum screening interval of 2 years. J. Clin. Pathol. 2017, 70, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, A.; Jusue-Torres, I.; Stark, A.; Chen, C.; Rodgers, K.; Lee, B.; Griffin, C.; Yang, A.; Huang, P.; Wrangle, J.; et al. Early Detection of Lung Cancer Using DNA Promoter Hypermethylation in Plasma and Sputum. Clin. Cancer Res. 2017, 23, 1998–2005. [Google Scholar] [CrossRef]
- Ooki, A.; Maleki, Z.; Tsay, J.J.; Goparaju, C.; Brait, M.; Turaga, N.; Nam, H.S.; Rom, W.N.; Pass, H.I.; Sidransky, D.; et al. A Panel of Novel Detection and Prognostic Methylated DNA Markers in Primary Non-Small Cell Lung Cancer and Serum DNA. Clin. Cancer Res. 2017, 23, 7141–7152. [Google Scholar] [CrossRef] [PubMed]
- Foy, J.P.; Pickering, C.R.; Papadimitrakopoulou, V.A.; Jelinek, J.; Lin, S.H.; William, W.N.; Jr Frederick, M.J.; Wang, J.; Lang, W.; Feng, L.; et al. New DNA methylation markers and global DNA hypomethylation are associated with oral cancer development. Cancer Prev. Res. (Phila) 2015, 8, 1027–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Hong, Q.; Jiang, J.; Chen, X.; Jiang, Z.; Wang, J.; Liu, S.; Duan, S.; Shi, S. AGTR1 promoter hypermethylation in lung squamous cell carcinoma but not in lung adenocarcinoma. Oncol. Lett. 2017, 14, 4989–4994. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, H.; Lu, S.; Wu, Z.; Zhou, L.; Cheng, Z.; Bai, Y.; Zhao, J.; Zhang, Q.; Mao, H. Quantitative assessment of gene promoter methylation in non-small cell lung cancer using methylation-sensitive high-resolution melting. Oncol. Lett. 2018, 15, 7639–7648. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.F.H.; Rozynek, P.; Casjens, S.; Werner, R.; Mairinger, F.D.; Speel, E.J.M.; Zur Hausen, A.; Meier, S.; Wohlschlaeger, J.; Theegarten, D.; et al. Methylation of L1RE1, RARB, and RASSF1 function as possible biomarkers for the differential diagnosis of lung cancer. PLoS ONE 2018, 13, e0195716. [Google Scholar] [CrossRef]
- Inamura, K.; Ishikawa, Y. MicroRNA in Lung Cancer: Novel Biomarkers and Potential Tools for Treatment. J. Clin. Med. 2016, 5, 36. [Google Scholar] [CrossRef]
- Lu, A.; Zhang, L. Tumor-Dependent and -Independent Serum/ Plasma Biomarkers for Early Diagnosis of Lung Cancer. Trans. Med. 2016, 6, 160. [Google Scholar] [CrossRef]
- Sheervalilou, R.; Ansarin, K.; Fekri Aval, S.; Shirvaliloo, S.; Pilehvar-Soltanahmadi, Y.; Mohammadian, M.; Zarghami, N. An update on sputum MicroRNAs in lung cancer diagnosis. Diagn. Cytopathol. 2016, 44, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.O.; Gazala, S.; Razzak, R.; Guo, L.; Ghosh, S.; Roa, W.H.; Bédard, E.L. Non-small cell lung cancer detection using microRNA expression profiling of bronchoalveolar lavage fluid and sputum. Anticancer Res. 2015, 35, 1873–1880. [Google Scholar]
- Li, W.; Wang, Y.; Zhang, Q.; Tang, L.; Liu, X.; Dai, Y.; Xiao, L.; Huang, S.; Chen, L.; Guo, Z.; et al. MicroRNA-486 as a Biomarker for Early Diagnosis and Recurrence of Non-Small Cell Lung Cancer. PLoS ONE 2015, 10, e0134220. [Google Scholar] [CrossRef]
- Xing, L.; Su, J.; Guarnera, M.A.; Zhang, H.; Cai, L.; Zhou, R.; Stass, S.A.; Jiang, F. Sputum microRNA biomarkers for identifying lung cancer in indeterminate solitary pulmonary nodules. Clin. Cancer Res. 2015, 21, 484–489. [Google Scholar] [CrossRef] [Green Version]
- Razzak, R.; Bédard, E.L.; Kim, J.O.; Gazala, S.; Guo, L.; Ghosh, S.; Joy, A.; Nijjar, T.; Wong, E.; Roa, W.H. MicroRNA expression profiling of sputum for the detection of early and locally advanced non-small-cell lung cancer: A prospective case-control study. Curr. Oncol. 2016, 23, e86–e94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sui, J.; Shen, X.; Li, C.; Yao, W.; Hong, W.; Peng, H.; Pu, Y.; Yin, L.; Liang, G. Differential expression profiles of microRNAs as potential biomarkers for the early diagnosis of lung cancer. Oncol. Rep. 2017, 37, 3543–3553. [Google Scholar] [CrossRef]
- Sui, J.; Yang, R.S.; Xu, S.Y.; Zhang, Y.Q.; Li, C.Y.; Yang, S.; Yin, L.H.; Pu, Y.P.; Liang, G.Y. Comprehensive analysis of aberrantly expressed microRNA profiles reveals potential biomarkers of human lung adenocarcinoma progression. Oncol. Rep. 2017, 38, 2453–2463. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Eom, J.S.; Kim, W.Y.; Jo, E.J.; Mok, J.; Lee, K.; Kim, K.U.; Park, H.K.; Lee, M.K.; Kim, M.H. Diagnostic value of microRNAs derived from exosomes in bronchoalveolar lavage fluid of early-stage lung adenocarcinoma: A pilot study. Thorac. Cancer 2018, 9, 911–915. [Google Scholar] [CrossRef]
- Powrózek, T.; Mlak, R.; Dziedzic, M.; Małecka-Massalska, T.; Sagan, D. Investigation of relationship between precursor of miRNA-944 and its mature form in lung squamous-cell carcinoma—The diagnostic value. Pathol. Res. Pract. 2018, 214, 368–373. [Google Scholar] [CrossRef]
- Bagheri, A.; Khorshid, H.R.K.; Tavallaie, M.; Mowla, S.J.; Sherafatian, M.; Rashidi, M.; Zargari, M.; Boroujeni, M.E.; Hosseini, S.M. A panel of noncoding RNAs in non-small-cell lung cancer. J. Cell Biochem. 2018, in press. [Google Scholar] [CrossRef]
- Indovina, P.; Marcelli, E.; Pentimalli, F.; Tanganelli, P.; Tarro, G.; Giordano, A. Mass spectrometry-based proteomics: The road to lung cancer biomarker discovery. Mass Spectrom. Rev. 2013, 32, 129–142. [Google Scholar] [CrossRef]
- Uribarri, M.; Hormaeche, I.; Zalacain, R.; Lopez-Vivanco, G.; Martinez, A.; Nagore, D.; Ruiz-Argüello, M.B. A new biomarker panel in bronchoalveolar lavage for an improved lung cancer diagnosis. J. Thorac. Oncol. 2014, 9, 1504–1512. [Google Scholar] [CrossRef] [PubMed]
- Almatroodi, S.A.; McDonald, C.F.; Collins, A.L.; Darby, I.A.; Pouniotis, D.S. Quantitative proteomics of bronchoalveolar lavage fluid in lung adenocarcinoma. Cancer Genom. Proteom. 2015, 12, 39–48. [Google Scholar]
- Kato, Y.; Nakamura, H.; Tojo, H.; Nomura, M.; Nagao, T.; Kawamura, T.; Kodama, T.; Ohira, T.; Ikeda, N.; Fehniger, T.; et al. A proteomic profiling of laser-microdissected lung adenocarcinoma cells of early lepidic-types. Clin. Trans. Med. 2015, 4, 64. [Google Scholar] [CrossRef]
- Tenzer, S.; Leidinger, P.; Backes, C.; Huwer, H.; Hildebrandt, A.; Lenhof, H.P.; Wesse, T.; Franke, A.; Meese, E.; Keller, A. Integrated quantitative proteomic and transcriptomic analysis of lung tumor and control tissue: A lung cancer showcase. Oncotarget 2016, 7, 14857–14870. [Google Scholar] [CrossRef]
- Hsu, C.H.; Hsu, C.W.; Hsueh, C.; Wang, C.L.; Wu, Y.C.; Wu, C.C.; Liu, C.C.; Yu, J.S.; Chang, Y.S.; Yu, C.J. Identification and characterization of potential biomarkers by quantitative tissue proteomics of primary lung Adenocarcinoma. Mol. Cell Proteom. 2016, 15, 2396–2410. [Google Scholar] [CrossRef] [PubMed]
- Ortea, I.; Rodríguez-Ariza, A.; Chicano-Gálvez, E.; Arenas Vacas, M.S.; Jurado Gámez, B. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction. J. Proteom. 2016, 138, 106–114. [Google Scholar] [CrossRef]
- Carvalho, A.S.; Cuco, C.M.; Lavareda, C.; Miguel, F.; Ventura, M.; Almeida, S.; Pinto, P.; de Abreu, T.T.; Rodrigues, L.V.; Seixas, S.; et al. Bronchoalveolar Lavage Proteomics in Patients with Suspected Lung Cancer. Sci. Rep. 2017, 7, 42190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codreanu, S.G.; Hoeksema, M.D.; Slebos, R.J.C.; Zimmerman, L.J.; Rahman, S.M.J.; Li, M.; Chen, S.C.; Chen, H.; Eisenberg, R.; Liebler, D.C.; et al. Identification of Proteomic Features to Distinguish Benign Pulmonary Nodules from Lung Adenocarcinoma. J. Proteome Res. 2017, 16, 3266–3276. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Du, J.; Ma, L.; Jiang, H.; Jin, F.; Yang, S. Early Candidate Biomarkers of Non-Small Cell Lung Cancer Are Screened and Identified in Premalignant Lung Lesions. Technol. Cancer Res. Treat. 2017, 16, 66–74. [Google Scholar] [CrossRef]
- Li, T.; He, J.; Mao, X.; Bi, Y.; Luo, Z.; Guo, C.; Tang, F.; Xu, X.; Wang, X.; Wang, M.; et al. In situ biomarker discovery and label-free molecular histopathological diagnosis of lung cancer by ambient mass spectrometry imaging. Sci. Rep. 2015, 5, 14089. [Google Scholar] [CrossRef] [Green Version]
- Wikoff, W.R.; Grapov, D.; Fahrmann, J.F.; DeFelice, B.; Rom, W.N.; Pass, H.I.; Kim, K.; Nguyen, U.; Taylor, S.L.; Gandara, D.R.; et al. Metabolomic markers of altered nucleotide metabolism in early stage adenocarcinoma. Cancer Prev. Res. (Phila) 2015, 8, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lu, S.; Ou, J.; Wang, G.; Zu, Y.; Chen, F.; Bai, C. Metabonomic characteristics and biomarker research of human lung cancer tissues by HR1H NMR spectroscopy. Cancer Biomark. 2016, 16, 653–664. [Google Scholar] [PubMed]
- Cameron, S.J.; Lewis, K.E.; Beckmann, M.; Allison, G.G.; Ghosal, R.; Lewis, P.D.; Mur, L.A. The metabolomic detection of lung cancer biomarkers in sputum. Lung Cancer 2016, 94, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Callejón-Leblic, B.; García-Barrera, T.; Grávalos-Guzmán, J.; Pereira-Vega, A.; Gómez-Ariza, J.L. Metabolic profiling of potential lung cancer biomarkers using bronchoalveolar lavage fluid and the integrated direct infusion/ gas chromatography mass spectrometry platform. J. Proteom. 2016, 145, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, P.; Jiménez-Jiménez, C.; Garrido-Rodríguez, M.; Calderón-Santiago, M.; Molina, S.; Lara-Chica, M.; Priego-Capote, F.; Salvatierra, Á.; Muñoz, E.; Calzado, M.A. Metabolomic profiling of human lung tumor tissues—Nucleotide metabolism as a candidate for therapeutic interventions and biomarkers. Mol. Oncol. 2018, 12, 1778–1796. [Google Scholar] [CrossRef] [PubMed]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef]
- Goodman, B.; Gardner, H. The microbiome and cancer. J. Pathol. 2018, 244, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Gail, M.H.; Consonni, D.; Carugno, M.; Humphrys, M.; Pesatori, A.C.; Caporaso, N.E.; Goedert, J.J.; Ravel, J.; Landi, M.T. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 2016, 17, 163. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.X.; Tao, L.L.; Zhang, J.; Zhu, Y.G.; Zheng, Y.; Liu, D.; Zhou, M.; Ke, H.; Shi, M.M.; Qu, J.M. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int. J. Cancer 2018, 142, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Greathouse, K.L.; White, J.R.; Vargas, A.J.; Bliskovsky, V.V.; Beck, J.A.; von Muhlinen, N.; Polley, E.C.; Bowman, E.D.; Khan, M.A.; Robles, A.I.; et al. Interaction between the microbiome and TP53 in human lung cancer. Genome Biol. 2018, 19, 123. [Google Scholar] [CrossRef]
- Yan, X.; Yang, M.; Liu, J.; Gao, R.; Hu, J.; Li, J.; Zhang, L.; Shi, Y.; Guo, H.; Cheng, J.; et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am. J. Cancer Res. 2015, 5, 3111–3122. [Google Scholar] [PubMed]
- Cameron, S.J.S.; Lewis, K.E.; Huws, S.A.; Hegarty, M.J.; Lewis, P.D.; Pachebat, J.A.; Mur, L.A.J. A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS ONE 2017, 12, e0177062. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Sung, J.Y.; Yong, D.; Chun, J.; Kim, S.Y.; Song, J.H.; Chung, K.S.; Kim, E.Y.; Jung, J.Y.; Kang, Y.A.; et al. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer 2016, 102, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, A.; Taghizadeh, N.; McWilliams, A.M.; MacEachern, P.; Stather, D.R.; Soghrati, K.; Puksa, S.; Goffin, J.R.; Yasufuku, K.; Amjadi, K.; et al. Pan-Canadian Early Lung Cancer Study Group. Low Prevalence of High-Grade Lesions Detected with Autofluorescence Bronchoscopy in the Setting of Lung Cancer Screening in the Pan-Canadian Lung Cancer Screening Study. Chest 2016, 150, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Bracht, J.W.P.; Mayo-de-Las-Casas, C.; Berenguer, J.; Karachaliou, N.; Rosell, R. The Present and Future of Liquid Biopsies in Non-Small Cell Lung Cancer: Combining Four Biosources for Diagnosis, Prognosis, Prediction, and Disease Monitoring. Curr. Oncol. Rep. 2018, 20, 70. [Google Scholar] [CrossRef]
- Hofman, P. Liquid biopsy for early detection of lung cancer. Curr. Opin. Oncol. 2017, 29, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Mader, S.; Pantel, K. Liquid Biopsy: Current Status and Future Perspectives. Oncol. Res. Treat. 2017, 40, 404–408. [Google Scholar] [CrossRef]
- Reclusa, P.; Taverna, S.; Pucci, M.; Durendez, E.; Calabuig, S.; Manca, P.; Serrano, M.J.; Sober, L.; Pauwels, P.; Russo, A.; et al. Exosomes as diagnostic and predictive biomarkers in lung cancer. J. Thorac. Dis. 2017, 9, S1373–S1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofman, V.; Bonnetaud, C.; Ilie, M.I.; Vielh, P.; Vignaud, J.M.; Fléjou, J.F.; Lantuejoul, S.; Piaton, E.; Mourad, N.; Butori, C.; et al. Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin. Cancer Res. 2011, 17, 827–835. [Google Scholar] [CrossRef]
- Hofman, V.; Ilie, M.I.; Long, E.; Selva, E.; Bonnetaud, C.; Molina, T.; Vénissac, N.; Mouroux, J.; Vielh, P.; Hofman, P. Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small-cell lung carcinoma: Comparison of the efficacy of the CellSearch Assay™ and the isolation by size of epithelial tumor cell method. Int. J. Cancer 2011, 129, 1651–1660. [Google Scholar] [CrossRef]
- Xue, Y.; Cong, W.; Xie, S.; Shu, J.; Feng, G.; Gao, H. Folate-receptor-positive circulating tumor cells as an efficacious biomarker for the diagnosis of small pulmonary nodules. J. Cancer Res. Ther. 2018, 14, 1620–1626. [Google Scholar] [PubMed]
- Ilie, M.; Hofman, V.; Long-Mira, E.; Selva, E.; Vignaud, J.M.; Padovani, B.; Mouroux, J.; Marquette, C.H.; Hofman, P. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS ONE 2014, 9, e111597. [Google Scholar] [CrossRef]
- Shen, J.; Liu, Z.; Todd, N.W.; Zhang, H.; Liao, J.; Yu, L.; Guarnera, M.A.; Li, R.; Cai, L.; Zhan, M.; et al. Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer 2011, 11, 374. [Google Scholar] [CrossRef]
- Yu, H.; Guan, Z.; Cuk, K.; Brenner, H.; Zhang, Y. Circulating microRNA biomarkers for lung cancer detection in Western populations. Cancer Med. 2018, 7, 4849–4862. [Google Scholar] [CrossRef]
- Boeri, M.; Verri, C.; Conte, D.; Roz, L.; Modena, P.; Facchinetti, F.; Calabrò, E.; Croce, C.M.; Pastorino, U.; Sozzi, G. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl. Acad. Sci. USA 2011, 108, 3713–3718. [Google Scholar] [CrossRef] [Green Version]
- Sozzi, G.; Boeri, M.; Rossi, M.; Verri, C.; Suatoni, P.; Bravi, F.; Roz, L.; Conte, D.; Grassi, M.; Sverzellati, N.; et al. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: A correlative MILD trial study. J. Clin. Oncol. 2014, 32, 768–773. [Google Scholar] [CrossRef]
- Sozzi, G.; Roz, L.; Conte, D.; Mariani, L.; Andriani, F.; Lo Vullo, S.; Verri, C.; Pastorino, U. Plasma DNA quantification in lung cancer computed tomography screening: Five-year results of a prospective study. Am. J. Respir. Crit. Care Med. 2009, 179, 69–74. [Google Scholar] [CrossRef]
- Boyle, P.; Chapman, C.J.; Holdenrieder, S.; Murray, A.; Robertson, C.; Wood, W.C.; Maddison, P.; Healey, G.; Fairley, G.H.; Barnes, A.C.; et al. Clinical validation of an autoantibody test for lung cancer. Ann. Oncol. 2011, 22, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Coe, S.P.; Stromberg, A.J.; Khattar, N.H.; Jett, J.R.; Hirschowitz, E.A. Profiling tumor-associated antibodies for early detection of non-small cell lung cancer. J. Thorac. Oncol. 2006, 1, 513–519. [Google Scholar] [CrossRef]
- Guida, F.; Sun, N.; Bantis, L.E.; Muller, D.C.; Li, P.; Taguchi, A.; Dhillon, D.; Kundnani, D.L.; Patel, N.J.; Yan, Q.; et al. Assessment of Lung Cancer Risk on the Basis of a Biomarker Panel of Circulating Proteins. JAMA Oncol. 2018, 4, e182078. [Google Scholar]
- Vykoukal, J.; Sun, N.; Aguilar-Bonavides, C.; Katayama, H.; Tanaka, I.; Fahrmann, J.F.; Capello, M.; Fujimoto, J.; Aguilar, M.; Wistuba, I.I.; et al. Plasma-derived extracellular vesicle proteins as a source of biomarkers for lung adenocarcinoma. Oncotarget 2017, 8, 95466–95480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazzoli, R.; Buttitta, F.; Di Nicola, M.; Malatesta, S.; Marchetti, A.; Rom, W.N.; Pass, H.I. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J. Thorac. Oncol. 2013, 8, 1156–1162. [Google Scholar] [CrossRef]
- Jin, X.; Chen, Y.; Chen, H.; Fei, S.; Chen, D.; Cai, X.; Liu, L.; Lin, B.; Su, H.; Zhao, L.; et al. Evaluation of Tumor-Derived Exosomal miRNA as Potential Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using Next-Generation Sequencing. Clin. Cancer Res. 2017, 23, 5311–5319. [Google Scholar] [CrossRef] [PubMed]
- Hofman, V.J.; Ilie, M.; Hofman, P.M. Detection and characterization of circulating tumor cells in lung cancer: Why and how? Cancer Cytopathol. 2016, 124, 380–387. [Google Scholar] [CrossRef]
- Leroy, S.; Benzaquen, J.; Mazzetta, A.; Marchand-Adam, S.; Padovani, B.; Israel-Biet, D.; Pison, C.; Chanez, P.; Cadranel, J.; Mazières, J.; et al. AIR Project Study Group. Circulating tumour cells as a potential screening tool for lung cancer (the AIR study): Protocol of a prospective multicentre cohort study in France. BMJ Open 2017, 7, e018884. [Google Scholar] [CrossRef]
- Seijo, L.M.; Peled, N.; Ajona, D.; Boeri, M.; Field, J.K.; Sozzi, G.; Pio, R.; Zulueta, J.J.; Spira, A.; Massion, P.P.; et al. Biomarkers in Lung Cancer Screening: Achievements, Promises, and Challenges. J. Thorac. Oncol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Rabinowits, G.; Gerçel-Taylor, C.; Day, J.M.; Taylor, D.D.; Kloecker, G.H. Exosomal microRNA: A diagnostic marker for lung cancer. Clin. Lung Cancer 2009, 10, 42–46. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, K.Z.; Hui, B.G.; Zhang, K.; Yang, F.; Wang, J. Role of circulating tumor DNA in the management of early-stage lung cancer. Thorac. Cancer 2018, 9, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Alipoor, S.D.; Mortaz, E.; Garssen, J.; Movassaghi, M.; Mirsaeidi, M.; Adcock, I.M. Exosomes and Exosomal miRNA in Respiratory Diseases. Med. Inflamm. 2016, 5628404. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wang, S.; Liu, Y. The diagnostic accuracy of liquid exosomes for lung cancer detection: A meta-analysis. Onco Targets Ther. 2018, 12, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Best, M.G.; Wesseling, P.; Wurdinger, T. Tumor-Educated Platelets as a Noninvasive Biomarker Source for Cancer Detection and Progression Monitoring. Cancer Res. 2018, 78, 3407–3412. [Google Scholar] [CrossRef] [PubMed]
- Hofman, P.; Popper, H.H. Pathologists and liquid biopsies: To be or not to be? Virchows Arch. 2016, 469, 601–609. [Google Scholar] [CrossRef]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30. [Google Scholar] [CrossRef]
Authors | PubMed ID | Markers | Source and Type of Tumor | AUC | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Huang T [14] | 26862903 | CDH13 APC CDKN2A MGMT RUNX3 | - Meta-analysis of 151 studies on 108 genes - Tissues - AC vs. SSC | 0.68 (CDH13) 0.66 (APC) 0.45 (CDKN2A) 0.40 (MGMT) 0.47 (RUNX3) | 0.49 0.60 0.37 0.32 0.47 | 0.74 0.65 0.55 0.60 0.86 |
Wang YW [15] | 27234602 | ITPKA | - Tissues - 83 AC vs. adjacent normal tissues - Cell lines (NSCLC, SCLC) | n.a. | n.a. | n.a. |
Ma Y [16] | 27240011 | PCDHGB6, HOXA9, RASSF1A | - Tissues (50 NSCLC vs. adjacent normal tissues) - Bronchial brushing (NSCLC vs. healthy patients) | 0.977 * 0.907 ** | 0.92 0.80 | 1.0 1.0 |
Ren M [17] | 28325362 | RASSF1A SHOX2 | - BAL - 305 patients with lung cancer, benign lung lesions, other solid organ cancer or no exact diagnosis | n.a. | 0.50 (RASSF1A) 0.64 (SHOX2) | 0.96 0.92 |
Hubers AJ [18] | 27496969 | RASSF1A 3OST2 PRDM14 | - Sputum - 1548 patients screened for lung cancer development within 2 years | n.a. | 0.28 | 0.90 |
Hulbert A [19] | 27729459 | TAC1, HOXA17, SOX17 | - Sputum - 210 patients | 0.89 | 0.98 | 0.71 |
Ooki A [20] | 28855354 | SOX17, HOXA9, AJAP1, PTGDR, UNCX, MARCH11 | - Tissues - 133 NSCLC vs. adjacent normal tissues | n.a. | 0.97 | 0.60 |
Chen R [22] | 29085512 | AGTR1 | - Tissues - 111 NSCLC vs. adjacent normal tissue - AC vs. SCC | n.a. | n.a. | n.a. |
Liu F [23] | 29725463 | PCDHGB6, HOXA9, MGMT, miR-126 | - Tissues - 54 NSCLC vs. adjacent normal tissues - AC vs. SCC | 0.89 | 0.85 | 0.81 |
Walter RFH [24] | 29851970 | L1RE1-RARB, L1RE1-RASSF1 | - Tissues - 116 lung cancer vs. 22 normal tissues | n.a. | 1.0 | 0.91 |
Authors | PubMed ID | Markers | Source and Type of Tumor | AUC | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Kim JO [28] | 25862841 | miR-21, miR-143, miR-155, miR-210, miR372 | - BAL and sputum - 21 NSCLC patients vs. 10 controls | n.a. | 0.86 * 0.68 ** | 1.0 * 0.90 ** |
Li W [29] | 26237047 | miR-486 | - Plasma and tissue - 11 NSCLC patients vs. 11 controls | 0.926 (miR-486) # | 0.91 # | 0.82 # |
Xing L [30] | 25593345 | miR-21, miR-31, miR-210 | - Sputum - 203 NSCLC patients vs. 210 patients with benign nodule | 0.919 | 0.83 | 0.88 |
Razzak R [31] | 27122989 | miR-21, miR-210, miR-372 | - Sputum - 21 early and 22 advanced NSCLC patients vs. 10 controls | n.a. | 0.67 ◦ 0.64 ◦◦ | 0.90 ◦ 1.0 ◦◦ |
Zhang Y [32] | 28498428 | miR-205, miR-3917, miR-27a-5p, miR-30a-3p, miR-30a-5p, miR-30c-2-3p, miR-30d-5 | - Tissue - 81 NSCLC vs. adjacent normal tissues | 0.919 | n.a. | n.a. |
Sui J [33] | 28791371 | miR-30a-3p, miR-96-5p, miR-182-5p, miR-30c-2-3p, miR-221-5p | - Tissue - 53 AC vs. adjacent normal tissues | 0.837 (miR-30a-3p) 0.819 (miR-96-5p) 0.835 (miR-182-5p) 0.674 (miR-30c-2-3p) 0.546 (miR-221-5p) | n.a. | n.a. |
Kim JE [34] | 29806739 | miR-7, miR-17, miR-19, miR-21, miR-126, Let-7a | - Exosomes from BAL - 4 Tissue samples - 13 AC vs. 15 controls | n.a. | n.a. | n.a. |
Powrozek T [35] | 29496309 | Pri-miR-944 miR-944 | - Tissue - 58 NSCLC vs. adjacent normal tissues - SCC vs. AC; SCC vs. normal | 0.978 ◊ 0.992 ◊◊ | 0.93 ◊ 0.93 ◊◊ | 1.0 ◊ 1.0 ◊◊ |
Bagheri A [36] | 30485511 | miR-7, miR-126, miR-145 | - Sputum - 30 NSCLC patients vs. 30 controls - SCC vs. AC | 0.93 | 0.9 | 0.9 |
Authors | PubMed ID | Markers | Source and Type of Tumor | AUC | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Uribarri M [38] | 25105437 | APOA1, CO4A, CRP, GSTP1, SAMP | - BAL - 139 lung cancer vs. 49 controls - 43 SCLC vs. 96 NSCLC | 0.94 | 0.95 | 0.81 |
Almatroodi SA [39] | 25560643 | 33 proteins | - BAL - 8 AC vs. 8 controls | n.a. | n.a | n.a |
Kato Y [40] | 26162278 | 70 proteins for LPIA 15 proteins for MIA 26 proteins for AIS | - Tissue - 3 AIS vs. 3 MIA vs. 3 LPIA | n.a | n.a | n.a |
Tenzer S [41] | 26930711 | 12 proteins in tumor tissue; 3 proteins in controls | - Tissue - 21 NSCLC vs. adjacent normal tissue - 11 AC vs. 10 SCC | 0.92–0.00 | n.a | n.a |
Hsu CH [42] | 27161446 | EROL1, PABPC4, RPS25, TARS, NARS, RCC1 | - Tissue - 14 AC vs. adjacent normal tissue | n.a | n.a | n.a |
Ortea I [43] | 26917472 | 44 proteins | - BAL - 12 AC vs. 10 controls | 0.917–0.525 | n.a | n.a |
Carvalho AS [44] | 28169345 | 133 proteins | - BAL - 90 suspected lung cancer prospectivelyt followed for two years | n.a | n.a | n.a |
Codreanu SG [45] | 28731711 | 7 proteins | - Tissue - 34 benign nodules vs. 24 AC, vs. 5 normal bronchial vs. 5 normal alveolar epithelium | 0.96–0.61 | n.a | n.a |
Nan Y [46] | 26809240 | 10 proteins | - Tissue - 6 AC vs. 7 SCC | n.a | n.a | n.a |
Authors | PubMed ID | Markers | Source and Type of Tumor | AUC | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Li T [47] | 26404114 | choline, [PC(38:2) + Na]+, [PC(16:0/20:4) + Na]+, and [PC(36:3) + Na]+, [PC(34:1) + K]+, [PC(18:1/20:3) + Na]+ | - Tissues - 52 NSCLC vs. 21 adjacent normal tissues - 37 AC vs. 15 SCC | 0.968 | 0.94 | 1.0 |
Wikoff WR [48] | 25657018 | 20 annotated and 22 structurally unknown metabolites | - Tissues - 39 early stage AC vs. adjacent normal tissues | 0.885 | 0.923 | 0.846 |
Chen W [49] | 27002768 | Lactate, lipids, myo-inositol and valine | - Tissues - 14 AC; 16 SCC; 4 others | 0.90–0.60 | n.a. | n.a. |
Cameron SJ [50] | 26973212 | Hexenal, cysteic acid, hydroxypyruvic acid, cholesterol ester with an acyl group CE | - Sputum - 23 lung cancer (16 NSCLC, 6 SCLC, 1 radiological dg), vs. 11 non neoplastic but suspected lung cancer vs. 33 controls | >0.80 | n.a. | n.a. |
Callejon-Leblic B [51] | 27255828 | 42 altered metabolites | - BAL - 24 lung cancer vs. 31 controls | 0.87–0.50 | n.a. | n.a. |
Moreno P [52] | 30099851 | AC: 5,6 dihydrouracil, Inosine, Adenosine 5′ monophosphate, Xanthosine, 2′ deoxyinosine SCC: 2′ O methylguanosine, 5 methyluridine, 5,6 dihydrothymine, 2′ deoxyuridine, 2′ deoxyinosine | - Tissues - 68 lung cancers vs. 68 normal tissue - 33 AC vs. 35 SCC | - | 0.79–0.90 0.94–1.0 | 0.79–0.90 0.97–1.0 |
Authors | PubMed ID | Markers | Source and Type of Tumor | AUC | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Yu G [55] | 27468850 | Proteobacteria, Thermus, Legionella | - Tissues - 165 non neoplastic lung tissue from cancer patients (97 AC, 63 SCC, 5 mixed type) | - | - | - |
Liu et al. [56] | 29023689 | Streptococcus | - Tissue - 19 NSCLC (12 AC, 7 SCC) vs. 5 SCLC; vs. 18 controls | 0.693 | 87.5% | 55.6% |
Greathouse KL [57] | 30143034 | Acidovarax | - Tissue - 143 lung cancer vs. 33 controls 67 AC vs. 47 SCC vs. 29 other | - | - | - |
Yan X [58] | 26693063 | Capnocytophaga, Veillonella | - Saliva - 61 NSCLC vs. 25 controls - 38 AC vs. 23 SCC | 0.86 * | 84.6% * | 86.7% * |
0.80 ** | 78.6% ** | 80.0% ** | ||||
Cameron SJS [59] | 28542458 | Granulicatella adiacens | - Sputum - 10 patient with lung cancer-like symptoms (6 LC-, 4 LC+) | - | - | - |
Lee SH [60] | 27987594 | Veillonella, Megasphaera | - BAL - 18 NSCLC (13 AC, 5 SCC) vs. 2 SCLC vs. 8 benign mass-like lesion | 0.888 | 70.0–95.0% | 75.0–100% |
Authors | PubMed ID | Markers | Study Population |
---|---|---|---|
Hofman V [66] | 21098695 | CTCs | 208 NSCLC patients and 39 healthy subjects |
Hofman V [67] | 21128227 | CTCs | 210 NSCLC patients |
Xue Y [68] | 30589049 | CTCs | 72 NSCLC patients |
Ilie [69] | 25360587 | CTCs | 168 COPD patients and 77 healthy subjects |
Shen J [70] | 21864403 | miRNAs | 108 patients with malignant nodules and 113 patients with benign lung nodules |
Yu H [71] | 30259714 | miRNAs | Meta-analysis of 17 studies |
Boeri M [72] | 21300873 | miRNAs | Training set = 38 lung cancer patients and validation set = 53 lung cancer patients |
Sozzi G [73] | 24419137 | miRNAs | 939 participants including 69 patients with lung cancer and 870 disease-free individuals |
Sozzi G [74] | 18787214 | Plasma DNA | 1035 subjects, 956 cancer free 38 with lung cancer, and 41 with other tumors |
Hulbert A [19] | 27729459 | Plasma DNA and Sputum | 150 lung cancer patients and 60 healthy subjects |
Boyle P [75] | 20675559 | Plasma antibodies | 525 lung cancer patients |
Zhong L [76] | 17409910 | Plasma antibodies | 23 lung cancer patients and 23 healthy subjects |
Guida F [77] | 30003238 | Plasma proteins | 108 ever-smoking patients with lung cancer diagnosed within 1 year after blood collection and samples from 216 smoking-matched controls |
Vykoukal J [78] | 29221141 | Plasma-derived extracellular vesicle proteins | 13 lung adenocarcinoma and 15 controls |
Cazzoli A [79] | 23945385 | MicroRNAs from circulating exosomes | Training set: 10 adenocarcinomas, 10 lung granulomas and 10 healthy former smokers Validation set: 50 adenocarcinomas, 30 lung granulomas, 25 healthy former smokers |
JinX [80] | 28606918 | Exosomal miRNAs | 46 stage I NSCLC patients and 42 healthy individuals |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calabrese, F.; Lunardi, F.; Pezzuto, F.; Fortarezza, F.; Vuljan, S.E.; Marquette, C.; Hofman, P. Are There New Biomarkers in Tissue and Liquid Biopsies for the Early Detection of Non-Small Cell Lung Cancer? J. Clin. Med. 2019, 8, 414. https://doi.org/10.3390/jcm8030414
Calabrese F, Lunardi F, Pezzuto F, Fortarezza F, Vuljan SE, Marquette C, Hofman P. Are There New Biomarkers in Tissue and Liquid Biopsies for the Early Detection of Non-Small Cell Lung Cancer? Journal of Clinical Medicine. 2019; 8(3):414. https://doi.org/10.3390/jcm8030414
Chicago/Turabian StyleCalabrese, Fiorella, Francesca Lunardi, Federica Pezzuto, Francesco Fortarezza, Stefania Edith Vuljan, Charles Marquette, and Paul Hofman. 2019. "Are There New Biomarkers in Tissue and Liquid Biopsies for the Early Detection of Non-Small Cell Lung Cancer?" Journal of Clinical Medicine 8, no. 3: 414. https://doi.org/10.3390/jcm8030414
APA StyleCalabrese, F., Lunardi, F., Pezzuto, F., Fortarezza, F., Vuljan, S. E., Marquette, C., & Hofman, P. (2019). Are There New Biomarkers in Tissue and Liquid Biopsies for the Early Detection of Non-Small Cell Lung Cancer? Journal of Clinical Medicine, 8(3), 414. https://doi.org/10.3390/jcm8030414