Non-Invasive Biomarkers for Celiac Disease
Abstract
:1. Introduction
2. Serological Biomarkers
2.1. Anti-Gliadin Antibodies
2.2. Anti-Endomysial Antibody
2.3. Anti-Tissues Transglutaminase Antibody
2.4. Anti-Deamidated Gliadin Peptides
2.5. Point-of-Care Test
2.6. Limitations of Serological Tests
3. Genetic Markers
Human Leukocyte Antigen (HLA) DQ Haplotyping
4. Biomarkers to Predict Presence of Enteropathy
4.1. Cytochrome P450 3A4
4.2. Plasma Citrulline
4.3. Intestinal-Fatty Acid Binding Proteins
4.4. Regenerating Gene1α
5. High-Throughput Technologies for Biomarker Discovery
5.1. Transcriptomics Approaches
5.2. Proteomics Approach
5.3. Metabolomics Approaches
6. Biomarker to Predict Dietary Adherence
6.1. Gluten Immunogenic Peptide
6.2. Mean Platelet Volume
7. Miscellaneous Biomarkers
7.1. MicroRNAs
7.2. Biomarkers for Assessment of Intestinal Permeability
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ludvigsson, J.F.; Leffler, D.A.; Bai, J.C.; Biagi, F.; Fasano, A.; Green, P.H.; Hadjivassiliou, M.; Kaukinen, K.; Kelly, C.P.; Leonard, J.N.; et al. The Oslo definitions for coeliac disease and related terms. Gut 2013, 62, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Lohi, S.; Mustalahti, K.; Kaukinen, K.; Laurila, K.; Collin, P.; Rissanen, H.; Lohi, O.; Bravi, E.; Gasparin, M.; Reunanen, A.; et al. Increasing prevalence of coeliac disease over time. Aliment. Pharmacol. Ther. 2007, 26, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- McMillan, S.A.; Watson, R.P.; McCrum, E.E.; Evans, A.E. Factors associated with serum antibodies to reticulin, endomysium, and gliadin in an adult population. Gut 1996, 39, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Werkstetter, K.J.; Korponay-Szabó, I.R.; Popp, A.; Villanacci, V.; Salemme, M.; Heilig, G.; Lillevang, S.T.; Mearin, M.L.; Ribes-Koninckx, C.; Thomas, A.; et al. Accuracy in Diagnosis of Celiac Disease Without Biopsies in Clinical Practice. Gastroenterology 2017, 153, 924–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronson, J.K.; Ferner, R.E. Biomarkers-A General Review. Curr. Protoc. Pharmacol. 2017, 76, 1–9. [Google Scholar]
- Cichewicz, A.B.; Mearns, E.S.; Taylor, A.; Boulanger, T.; Gerber, M.; Leffler, D.A.; Drahos, J.; Sanders, D.S.; Thomas Craig, K.J.; Lebwohl, B. Diagnosis and Treatment Patterns in Celiac Disease. Dig. Dis. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Kivel, R.M.; Kearns, D.H.; Liebowitz, D. Significance of antibodies to dietary proteins in the serums of patients with nontropical sprue. N. Engl. J. Med. 1964, 271, 769–772. [Google Scholar] [CrossRef]
- Ladinser, B.; Rossipal, E.; Pittschieler, K. Endomysium antibodies in coeliac disease: An improved method. Gut 1994, 35, 776–778. [Google Scholar] [CrossRef]
- Salmaso, C.; Ocmant, A.; Pesce, G.; Altrinetti, V.; Montagna, P.; Descalzi, D.; Martino, S.; Bagnasco, M.; Mascart, F. Comparison of ELISA for tissue trans-glutaminase autoantibodies with antiendomysium antibodies in pediatric and adult patients with celiac disease. Allergy 2001, 56, 544–547. [Google Scholar] [CrossRef]
- Barcia, G.; Posar, A.; Santucci, M.; Parmeggiani, A. Autism and coeliac disease. J. Autism Dev. Disord. 2008, 38, 407–408. [Google Scholar] [CrossRef] [PubMed]
- Villalta, D.; Tonutti, E.; Prause, C.; Koletzko, S.; Uhlig, H.H.; Vermeersch, P.; Bossuyt, X.; Stern, M.; Laass, M.W.; Ellis, J.H.; et al. IgG antibodies against deamidated gliadin peptides for diagnosis of celiac disease in patients with IgA deficiency. Clin. Chem. 2010, 56, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Volta, U.; Bellentani, S.; Bianchi, F.B.; Brandi, G.; De Franceschi, L.; Miglioli, L.; Granito, A.; Balli, F.; Tiribelli, C. High prevalence of celiac disease in Italian general population. Dig. Dis. Sci. 2001, 46, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
- Chorzelski, T.P.; Sulej, J.; Tchorzewska, H.; Jablonska, S.; Beutner, E.H.; Kumar, V. IgA class endomysium antibodies in dermatitis herpetiformis and coeliac disease. Ann. N. Y. Acad. Sci. 1983, 420, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Carroccio, A.; Cavataio, F.; Iacono, G.; Agate, V.; Ippolito, S.; Kazmierska, I.; Campagna, P.; Soresi, M.; Montalto, G. IgA antiendomysial antibodies on the umbilical cord in diagnosing celiac disease. Sensitivity, specificity, and comparative evaluation with the traditional kit. Scand. J. Gastroenterol. 1996, 31, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Bougatsos, C.; Blazina, I.; Mackey, K.; Grusing, S.; Selph, S. Screening for Celiac Disease: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2017, 317, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Carroccio, A.; Vitale, G.; Di Prima, L.; Chifari, N.; Napoli, S.; La Russa, C.; Gulotta, G.; Averna, M.R.; Montalto, G.; Mansueto, S.; et al. Comparison of anti-transglutaminase ELISAs and an anti-endomysial antibody assay in the diagnosis of celiac disease: A prospective study. Clin. Chem. 2002, 48, 1546–1550. [Google Scholar] [PubMed]
- Dieterich, W.; Ehnis, T.; Bauer, M.; Donner, P.; Volta, U.; Riecken, E.O.; Schuppan, D. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 1997, 3, 797–801. [Google Scholar] [CrossRef]
- Candi, E.; Schmidt, R.; Melino, G. The cornified envelope: A model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005, 6, 328–340. [Google Scholar] [CrossRef]
- Eckert, R.L.; Kaartinen, M.T.; Nurminskaya, M.; Belkin, A.M.; Colak, G.; Johnson, G.V.; Mehta, K. Transglutaminase regulation of cell function. Physiol. Rev. 2014, 94, 383–417. [Google Scholar] [CrossRef]
- Tursi, A.; Brandimarte, G.; Giorgetti, G.M. Prevalence of antitissue transglutaminase antibodies in different degrees of intestinal damage in celiac disease. J. Clin. Gastroenterol. 2003, 36, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Nardecchia, S.; Auricchio, R.; Discepolo, V.; Troncone, R. Extra-Intestinal Manifestations of Coeliac Disease in Children: Clinical Features and Mechanisms. Front. Pediatr. 2019, 7, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seah, P.P.; Fry, L.; Hoffbrand, A.V.; Holborow, E.J. Tissue antibodies in dermatitis herpetiformis and adult coeliac disease. Lancet 1971, 1, 834–836. [Google Scholar] [CrossRef]
- Jackson, J.R.; Eaton, W.W.; Cascella, N.G.; Fasano, A.; Kelly, D.L. Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity. Psychiatr. Q. 2012, 83, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Hadjivassiliou, M.; Mäki, M.; Sanders, D.S.; Williamson, C.A.; Grünewald, R.A.; Woodroofe, N.M.; Korponay-Szabó, I.R. Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology 2006, 66, 373–377. [Google Scholar] [CrossRef] [PubMed]
- De Leo, L.; Aeschlimann, D.; Hadjivassiliou, M.; Aeschlimann, P.; Salce, N.; Vatta, S.; Ziberna, F.; Cozzi, G.; Martelossi, S.; Ventura, A.; et al. Anti-transglutaminase 6 Antibody Development in Children With Celiac Disease Correlates With Duration of Gluten Exposure. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 64–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadjivassiliou, M.; Aeschlimann, P.; Sanders, D.S.; Mäki, M.; Kaukinen, K.; Grünewald, R.A.; Bandmann, O.; Woodroofe, N.; Haddock, G.; Aeschlimann, D.P. Transglutaminase 6 antibodies in the diagnosis of gluten ataxia. Neurology 2013, 80, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Volta, U.; Granito, A.; Parisi, C.; Fabbri, A.; Fiorini, E.; Piscaglia, M.; Tovoli, F.; Grasso, V.; Muratori, P.; Pappas, G.; et al. Deamidated gliadin peptide antibodies as a routine test for celiac disease: A prospective analysis. J. Clin. Gastroenterol. 2010, 44, 186–190. [Google Scholar] [CrossRef]
- Volta, U.; Granito, A.; Fiorini, E.; Parisi, C.; Piscaglia, M.; Pappas, G.; Muratori, P.; Bianchi, F.B. Usefulness of antibodies to deamidated gliadin peptides in celiac disease diagnosis and follow up. Dig. Dis. Sci. 2008, 53, 1582–1588. [Google Scholar] [CrossRef]
- Lewis, N.R.; Scott, B.B. Meta-analysis: Deamidated gliadin peptide antibody and tissue transglutaminase antibody compared as screening tests for coeliac disease. Aliment. Pharmacol. Ther. 2010, 31, 73–81. [Google Scholar] [CrossRef]
- Raivio, T.; Korponay-Szabó, I.; Collin, P.; Laurila, K.; Huhtala, H.; Kaartinen, T.; Partanen, J.; Mäki, M.; Kaukinen, K. Performance of a new rapid whole blood coeliac test in adult patients with low prevalence of endomysial antibodies. Dig. Liver Dis. 2007, 39, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Korponay-Szabó, I.R.; Raivio, T.; Laurila, K.; Opre, J.; Király, R.; Kovács, J.B.; Kaukinen, K.; Fésüs, L.; Mäki, M. Coeliac disease case finding and diet monitoring by point-of-care testing. Aliment. Pharmacol. Ther. 2005, 22, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Wadhwa, N.; Chaturvedi, M.K.; Bhatia, V.; Saini, S.; Tandon, N.; Makharia, G.K.; Maki, M.; Not, T.; Phillips, A.; et al. Validation of point-of-care testing for coeliac disease in children in a tertiary hospital in north India. Arch. Dis. Child. 2014, 99, 1004–1008. [Google Scholar] [CrossRef]
- Raivio, T.; Kaukinen, K.; Nemes, E.; Laurila, K.; Collin, P.; Kovács, J.B.; Mäki, M.; Korponay-Szabó, I.R. Self transglutaminase-based rapid coeliac disease antibody detection by a lateral flow method. Aliment. Pharmacol. Ther. 2006, 24, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Mooney, P.D.; Wong, S.H.; Johnston, A.J.; Kurien, M.; Avgerinos, A.; Sanders, D.S. Increased Detection of Celiac Disease with Measurement of Deamidated Gliadin Peptide Antibody Before Endoscopy. Clin. Gastroenterol. Hepatol. 2015, 13, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Mäki, M.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Diagnostic Accuracy of Point of Care Tests for Diagnosing Celiac Disease: A Systematic Review and Meta-Analysis. J. Clin. Gastroenterol. 2018. [Google Scholar] [CrossRef]
- Castillo, N.E.; Theethira, T.G.; Leffler, D.A. The present and the future in the diagnosis and management of celiac disease. Gastroenterol. Rep. 2015, 3, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Tapia, A.; Hill, I.D.; Kelly, C.P.; Calderwood, A.H.; Murray, J.A. American College of Gastroenterology. ACG clinical guidelines: Diagnosis and management of celiac disease. Am. J. Gastroenterol. 2013, 108, 656–676. [Google Scholar] [CrossRef]
- Vilppula, A.; Kaukinen, K.; Luostarinen, L.; Krekelä, I.; Patrikainen, H.; Valve, R.; Mäki, M.; Collin, P. Increasing prevalence and high incidence of celiac disease in elderly people: A population-based study. BMC Gastroenterol. 2009, 9, 49. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, P.; Agnihotri, A.; Das, P.; Mishra, A.; Verma, A.K.; Ahuja, A.; Sreenivas, V.; Khadgawat, R.; Gupta, S.D.; et al. Celiac disease: A disease with varied manifestations in adults and adolescents. J. Dig. Dis. 2013, 14, 518–525. [Google Scholar] [CrossRef]
- Singh, P.; Agnihotri, A.; Jindal, G.; Sharma, P.K.; Sharma, M.; Das, P.; Gupta, D.; Makharia, G.K. Celiac disease and chronic liver disease: Is there a relationship? Indian J. Gastroenterol. 2013, 32, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.A.; Van Dyke, C.; Plevak, M.F.; Dierkhising, R.A.; Zinsmeister, A.R.; Melton, L.J., 3rd. Trends in the identification and clinical features of celiac disease in a North American community, 1950–2001. Clin. Gastroenterol. Hepatol. 2003, 1, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Sharma, P.K.; Agnihotri, A.; Jyotsna, V.P.; Das, P.; Gupta, S.D.; Makharia, G.K.; Khadgawat, R. Coeliac disease in patients with short stature: A tertiary care centre experience. Natl. Med. J. India 2015, 28, 176–180. [Google Scholar] [PubMed]
- Hill, I.D.; Dirks, M.H.; Liptak, G.S.; Colletti, R.B.; Fasano, A.; Guandalini, S.; Hoffenberg, E.J.; Horvath, K.; Murray, J.A.; Pivor, M.; et al. Guideline for the diagnosis and treatment of celiac disease in children: Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2005, 40, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Gatti, S.; Lionetti, E.; Galeazzi, T.; Monachesi, C.; Franceschini, E.; Balanzoni, L.; Scattolo, N.; Cinquetti, M.; Catassi, C. Comparison of Diagnostic Performance of the IgA Anti-tTG Test vs. IgA Anti-Native Gliadin Antibodies Test in Detection of Celiac Disease in the General Population. Clin. Gastroenterol. Hepatol. 2018, 16, 1997–1998. [Google Scholar] [CrossRef] [PubMed]
- Vader, W.; Stepniak, D.; Kooy, Y.; Mearin, L.; Thompson, A.; van Rood, J.J.; Spaenij, L.; Koning, F. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc. Natl. Acad. Sci. USA 2003, 100, 12390–12395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, B.; Braschi, B.; Gray, K.A.; Seal, R.L.; Tweedie, S.; Bruford, E.A. Genenames.org: The HGNC and VGNC resources in 2017. Nucleic Acids Res. 2017, 45, 619–625. [Google Scholar]
- Ludvigsson, J.F.; Bai, J.C.; Biagi, F.; Card, T.R.; Ciacci, C.; Ciclitira, P.J.; Green, P.H.; Hadjivassiliou, M.; Holdoway, A.; van Heel, D.A.; et al. Diagnosis and management of adult coeliac disease: Guidelines from the British Society of Gastroenterology. Gut 2014, 63, 1210–1228. [Google Scholar] [CrossRef] [PubMed]
- Wolters, V.M.; Wijmenga, C. Genetic background of celiac disease and its clinical implications. Am. J. Gastroenterol. 2008, 103, 190–195. [Google Scholar] [CrossRef]
- Dubois, P.C.; Trynka, G.; Franke, L.; Hunt, K.A.; Romanos, J.; Curtotti, A.; Zhernakova, A.; Heap, G.A.; Adány, R.; Aromaa, A.; et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 2010, 42, 295–302. [Google Scholar] [CrossRef]
- Diosdado, B.; Wapenaar, M.C.; Franke, L.; Duran, K.J.; Goerres, M.J.; Hadithi, M.; Crusius, J.B.; Meijer, J.W.; Duggan, D.J.; Mulder, C.J.; et al. A microarray screen for novel candidate genes in coeliac disease pathogenesis. Gut 2004, 53, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.C.; Ciacci, C.; Melberg, J. World Gastroenterology Organisation Global Guidelines: Celiac Disease. J. Clin. Gastroenterol. 2017, 51, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Kaukinen, K.; Partanen, J.; Mäki, M.; Collin, P. HLA-DQ typing in the diagnosis of celiac disease. Am. J. Gastroenterol. 2002, 97, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, B.S.; Makharia, G.K.; Chetri, K.; Dutta, S.; Mathur, P.; Ahuja, V.; Amarchand, R.; Balamurugan, R.; Chowdhury, S.D.; Daniel, D.; et al. Prevalence of Adult Celiac Disease in India: Regional Variations and Associations. Am. J. Gastroenterol. 2016, 111, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.A.; Barker, N. Gastrointestinal stem cells in self-renewal and cancer. J. Gastroenterol. 2011, 46, 1039–1055. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Leblond, C.P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am. J. Anat. 1974, 141, 537–561. [Google Scholar] [CrossRef] [PubMed]
- Bjerknes, M.; Cheng, H. Intestinal epithelial stem cells and progenitors. Methods Enzymol. 2006, 419, 337–383. [Google Scholar]
- Stem, J.; Flickinger, J.C., Jr.; Merlino, D.; Caparosa, E.M.; Snook, A.E.; Waldman, S.A. Therapeutic targeting of gastrointestinal cancer stem cells. Regen. Med. 2019. [Google Scholar] [CrossRef]
- Potten, C.S. A comprehensive study of the radiobiological response of the murine(BDF1) small intestine. Int. J. Radiat. Biol. 1990, 58, 925–973. [Google Scholar] [CrossRef]
- Shalimar, D.M.; Das, P.; Sreenivas, V.; Gupta, S.D.; Panda, S.K.; Makharia, G.K. Mechanism of villous atrophy in celiac disease: Role of apoptosis and epithelial regeneration. Arch. Pathol. Lab. Med. 2013, 137, 1262–1269. [Google Scholar] [CrossRef]
- Kolars, J.C.; Lown, K.S.; Schmiedlin-Ren, P.; Ghosh, M.; Fang, C.; Wrighton, S.A.; Merion, R.M.; Watkins, P.B. CYP3A gene expression in human gut epithelium. Pharmacogenetics 1994, 4, 247–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, C.C.; Brown, R.M.; Kinirons, M.T.; Deathridge, M.A.; Guengerich, F.P.; Kelleher, D.; O’Briain, D.S.; Ghishan, F.K.; Wood, A.J. Decreased intestinal CYP3A in celiac disease: Reversal after successful gluten-free diet: A potential source of interindividual variability in first-pass drug metabolism. Clin. Pharmacol. Ther. 1996, 59, 41–46. [Google Scholar] [CrossRef]
- Bragde, H.; Jansson, U.; Jarlsfelt, I.; Söderman, J. Gene expression profiling of duodenal biopsies discriminates celiac disease mucosa from normal mucosa. Pediatr. Res. 2011, 69, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Knabe, D.A.; Flynn, N.E. Synthesis of citrulline from glutamine in pig enterocytes. Biochem. J. 1994, 299, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crenn, P.; Coudray-Lucas, C.; Thuillier, F.; Cynober, L.; Messing, B. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology 2000, 119, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- Gondolesi, G.; Fishbein, T.; Chehade, M.; Tschernia, A.; Magid, M.; Kaufman, S.; Raymond, K.; Sansaricq, C.; LeLeiko, N. Serum citrulline is a potential marker for rejection of intestinal allografts. Transplant. Proc. 2002, 34, 918–920. [Google Scholar] [CrossRef]
- Fragkos, K.C.; Forbes, A. Citrulline as a marker of intestinal function and absorption in clinical settings: A systematic review and meta-analysis. United Eur. Gastroenterol. J. 2018, 6, 181–191. [Google Scholar] [CrossRef]
- Sarkar-Banerjee, S.; Chowdhury, S.; Sanyal, D.; Mitra, T.; Roy, S.S.; Chattopadhyay, K. The Role of Intestinal Fatty Acid Binding Proteins in Protecting Cells from Fatty Acid Induced Impairment of Mitochondrial Dynamics and Apoptosis. Cell. Physiol. Biochem. 2018, 51, 1658–1678. [Google Scholar] [CrossRef]
- Ockner, R.K.; Manning, J.A.; Poppenhausen, R.B.; Ho, W.K. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 1972, 177, 56–58. [Google Scholar] [CrossRef]
- Chan, C.P.; Wan, T.S.; Watkins, K.L.; Pelsers, M.M.; Van der Voort, D.; Tang, F.P.; Lam, K.H.; Mill, J.; Yuan, Y.; Lehmann, M.; et al. Rapid analysis of fatty acid-binding proteins with immunosensors and immunotests for early monitoring of tissue injury. Biosens. Bioelectron. 2005, 20, 2566–2580. [Google Scholar] [CrossRef]
- Guthmann, F.; Börchers, T.; Wolfrum, C.; Wustrack, T.; Bartholomäus, S.; Spener, F. Plasma concentration of intestinal- and liver-FABP in neonates suffering from necrotizing enterocolitis and in healthy preterm neonates. Mol. Cell. Biochem. 2002, 239, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Holmes, J.H., 4th; Lieberman, J.M.; Probert, C.B.; Marks, W.H.; Hill, M.E.; Paull, D.L.; Guyton, S.W.; Sacchettini, J.; Hall, R.A. Elevated intestinal fatty acid binding protein and gastrointestinal complications following cardiopulmonary bypass: A preliminary analysis. J. Surg. Res. 2001, 100, 192–196. [Google Scholar] [PubMed]
- Kanda, T.; Fujii, H.; Fujita, M.; Sakai, Y.; Ono, T.; Hatakeyama, K. Intestinal fatty acid binding protein is available for diagnosis of intestinal ischaemia:immunochemical analysis of two patients with ischaemic intestinal diseases. Gut 1995, 36, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Fujii, H.; Tani, T.; Murakami, H.; Suda, T.; Sakai, Y.; Ono, T.; Hatakeyama, K. Intestinal fatty acid-binding protein is a useful diagnostic marker for mesenteric infarction in humans. Gastroenterology 1996, 110, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Edelson, M.B.; Sonnino, R.E.; Bagwell, C.E.; Lieberman, J.M.; Marks, W.H.; Rozycki, H.J. Plasma intestinal fatty acid binding protein in neonates with necrotizing enterocolitis: A pilot study. J. Pediatr. Surg. 1999, 34, 1453–1457. [Google Scholar] [CrossRef]
- Adriaanse, M.P.; Tack, G.J.; Passos, V.L.; Damoiseaux, J.G.; Schreurs, M.W.; van Wijck, K.; Riedl, R.G.; Masclee, A.A.; Buurman, W.A.; Mulder, C.J.; et al. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment. Pharmacol. Ther. 2013, 37, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Adriaanse, M.P.; Leffler, D.A.; Kelly, C.P.; Schuppan, D.; Najarian, R.M.; Goldsmith, J.D.; Buurman, W.A.; Vreugdenhil, A.C. Serum I-FABP Detects Gluten Responsiveness in Adult Celiac Disease Patients on a Short-Term Gluten Challenge. Am. J. Gastroenterol. 2016, 11, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Kittaka, H.; Akimoto, H.; Takeshita, H.; Funaoka, H.; Hazui, H.; Okamoto, M.; Kobata, H.; Ohishi, Y. Usefulness of intestinal fatty acid-binding protein in predicting strangulated small bowel obstruction. PLoS ONE 2014, 9, e99915. [Google Scholar] [CrossRef]
- Terazono, K.; Yamamoto, H.; Takasawa, S.; Shiga, K.; Yonemura, Y.; Tochino, Y.; Okamoto, H. A novel gene activated in regenerating islets. J. Biol. Chem. 1988, 263, 2111–2114. [Google Scholar] [PubMed]
- Schiesser, M.; Bimmler, D.; Frick, T.W.; Graf, R. Conformational changes of pancreatitis-associated protein (PAP) activated by trypsin lead to insoluble protein aggregates. Pancreas 2001, 22, 186–192. [Google Scholar] [CrossRef]
- Planas, R.; Pujol-Autonell, I.; Ruiz, E.; Montraveta, M.; Cabre, E.; Lucas-Martin, A.; Pujol-Borrell, R.; Martinez-Caceres, E.; Vives-Pi, M. Regenerating gene Iα is a biomarker for diagnosis and monitoring of celiac disease: A preliminary study. Transl. Res. 2011, 158, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Sekikawa, A.; Fukui, H.; Fujii, S.; Ichikawa, K.; Tomita, S.; Imura, J.; Chiba, T.; Fujimori, T. REG Ialpha protein mediates an anti-apoptotic effect of STAT3 signaling in gastric cancer cells. Carcinogenesis 2008, 29, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Tapia, A.; Rahim, M.W.; See, J.A.; Lahr, B.D.; Wu, T.T.; Murray, J.A. Mucosal recovery and mortality in adults with celiac disease after treatment with a gluten-free diet. Am. J. Gastroenterol. 2010, 105, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Raine, T.; Liu, J.Z.; Anderson, C.A.; Parkes, M.; Kaser, A. Generation of primary human intestinal T cell transcriptomes reveals differential expression at genetic risk loci for immune-mediated disease. Gut 2015, 64, 250–259. [Google Scholar] [PubMed]
- Garrote, J.A.; Gómez-González, E.; Bernardo, D.; Arranz, E.; Chirdo, F. Celiac disease pathogenesis: The proinflammatory cytokine network. J. Pediatr. Gastroenterol. Nutr. 2008, 47 (Suppl. 1), S27–S32. [Google Scholar] [CrossRef] [PubMed]
- Pietz, G.; De, R.; Hedberg, M.; Sjöberg, V.; Sandström, O.; Hernell, O.; Hammarström, S.; Hammarström, M.L. Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells. PLoS ONE 2017, 12, e0185025. [Google Scholar]
- Galatola, M.; Izzo, V.; Cielo, D.; Morelli, M.; Gambino, G.; Zanzi, D.; Strisciuglio, C.; Sperandeo, M.P.; Greco, L.; Auricchio, R. Gene expression profile of peripheral blood monocytes: A step towards the molecular diagnosis of celiac disease? PLoS ONE 2013, 8, e74747. [Google Scholar] [CrossRef] [PubMed]
- Galatola, M.; Cielo, D.; Panico, C.; Stellato, P.; Malamisura, B.; Carbone, L.; Gianfrani, C.; Troncone, R.; Greco, L.; Auricchio, R. Presymptomatic Diagnosis of Celiac Disease in Predisposed Children: The Role of Gene Expression Profile. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 314–320. [Google Scholar] [CrossRef]
- Bragde, H.; Jansson, U.; Fredrikson, M.; Grodzinsky, E.; Söderman, J. Celiac disease biomarkers identified by transcriptome analysis of small intestinal biopsies. Cell. Mol. Life Sci. 2018, 75, 4385–4401. [Google Scholar] [Green Version]
- Tutturen, A.E.V.; Dørum, S.; Clancy, T.; Reims, H.M.; Christophersen, A.; Lundin, K.E.A.; Sollid, L.M.; de Souza, G.A.; Stamnaes, J. Characterization of the Small Intestinal Lesion in Celiac Disease by Label-Free Quantitative Mass Spectrometry. Am. J. Pathol. 2018, 188, 1563–1579. [Google Scholar] [CrossRef] [Green Version]
- Stulík, J.; Hernychová, L.; Porkertová, S.; Pozler, O.; Tucková, L.; Sánchez, D.; Bures, J. Identification of new celiac disease autoantigens using proteomic analysis. Proteomics 2003, 3, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Gundamaraju, R.; Vemuri, R.; Eri, R.; Ishiki, H.M.; Coy-Barrera, E.; Yarla, N.S.; Dos Santos, S.G.; Alves, M.F.; Barbosa Filho, J.M.; Diniz, M.F.F.M.; et al. Metabolomics as a Functional Tool in Screening Gastro Intestinal Diseases: Where are we in High Throughput Screening? Comb. Chem. High Throughput Screen. 2017, 20, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Bertini, I.; Calabrò, A.; De Carli, V.; Luchinat, C.; Nepi, S.; Porfirio, B.; Renzi, D.; Saccenti, E.; Tenori, L. The metabonomic signature of celiac disease. J. Proteome Res. 2009, 8, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Bernini, P.; Bertini, I.; Calabrò, A.; la Marca, G.; Lami, G.; Luchinat, C.; Renzi, D.; Tenori, L. Are patients with potential celiac disease really potential? The answer of metabonomics. J. Proteome Res. 2011, 10, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, D.; Peña, A.S. Developing strategies to improve the quality of life of patients with gluten intolerance in patients with and without coeliac disease. Eur. J. Intern. Med. 2012, 23, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Bethune, M.T.; Crespo-Bosque, M.; Bergseng, E.; Mazumdar, K.; Doyle, L.; Sestak, K.; Sollid, L.M.; Khosla, C. Noninflammatory gluten peptide analogs as biomarkers for celiac sprue. Chem Biol. 2009, 16, 868–881. [Google Scholar] [CrossRef] [PubMed]
- Tye-Din, J.A.; Stewart, J.A.; Dromey, J.A.; Beissbarth, T.; van Heel, D.A.; Tatham, A.; Henderson, K.; Mannering, S.I.; Gianfrani, C.; Jewell, D.P.; et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Transl. Med. 2010, 2, 41ra51. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.F.; Sugai, E.; Temprano, M.P.; Niveloni, S.I.; Vázquez, H.; Moreno, M.L.; Domínguez-Flores, M.R.; Muñoz-Suano, A.; Smecuol, E.; Stefanolo, J.P.; et al. Gluten immunogenic peptide excretion detects dietary transgressions in treated celiac disease patients. World J. Gastroenterol. 2019, 25, 1409–1420. [Google Scholar] [CrossRef] [PubMed]
- Gerasimidis, K.; Zafeiropoulou, K.; Mackinder, M.; Ijaz, U.Z.; Duncan, H.; Buchanan, E.; Cardigan, T.; Edwards, C.A.; McGrogan, P.; Russell, R.K. Comparison of Clinical Methods with the Faecal Gluten Immunogenic Peptide to Assess Gluten Intake in Coeliac Disease. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 356–360. [Google Scholar] [CrossRef]
- Comino, I.; Real, A.; Vivas, S.; Síglez, M.Á.; Caminero, A.; Nistal, E.; Casqueiro, J.; Rodríguez-Herrera, A.; Cebolla, A.; Sousa, C. Monitoring of gluten-free diet compliance in celiac patients by assessment of gliadin 33-mer equivalent epitopes in feces. Am. J. Clin. Nutr. 2012, 95, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.L.; Cebolla, Á.; Muñoz-Suano, A.; Carrillo-Carrion, C.; Comino, I.; Pizarro, Á.; León, F.; Rodríguez-Herrera, A.; Sousa, C. Detection of gluten immunogenic peptides in the urine of patients with coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal healing. Gut 2017, 66, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Comino, I.; Fernández-Bañares, F.; Esteve, M.; Ortigosa, L.; Castillejo, G.; Fambuena, B.; Ribes-Koninckx, C.; Sierra, C.; Rodríguez-Herrera, A.; Salazar, J.C.; et al. Fecal Gluten Peptides Reveal Limitations of Serological Tests and Food Questionnaires for Monitoring Gluten-Free Diet in Celiac Disease Patients. Am. J. Gastroenterol. 2016, 111, 1456–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yüksel, O.; Helvaci, K.; Başar, O.; Köklü, S.; Caner, S.; Helvaci, N.; Abayli, E.; Altiparmak, E. An overlooked indicator of disease activity in ulcerative colitis: Mean platelet volume. Platelets 2009, 20, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, S.; Pourafkari, L.; Javadzadegan, H.; Masoumi, N.; Jafarabadi, M.A.; Nader, N.D. Mean platelet volume is a predictor of ST resolution following thrombolysis in acute ST elevation myocardial infarction. Thromb. Res. 2015, 136, 101–106. [Google Scholar] [PubMed]
- Purnak, T.; Efe, C.; Yuksel, O.; Beyazit, Y.; Ozaslan, E.; Altiparmak, E. Mean platelet volume could be a promising biomarker to monitor dietary compliance in celiac disease. Ups. J. Med. Sci. 2011, 116, 208–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bascuñán-Gamboa, K.A.; Araya-Quezada, M.; Pérez-Bravo, F. MicroRNAs: An epigenetic tool to study celiac disease. Rev. Esp. Enferm. Dig. 2014, 106, 325–333. [Google Scholar]
- Amr, K.S.; Bayoumi, F.S.; Eissa, E.; Abu-Zekry, M. Circulating microRNAs as potential non-invasive biomarkers in pediatric patients with celiac disease. Eur. Ann. Allergy Clin. Immunol. 2019. [Google Scholar] [CrossRef]
- Mishra, A.; Makharia, G.K. Techniques of functional and motility test: How to perform and interpret intestinal permeability. J. Neurogastroenterol. Motil. 2012, 18, 443–447. [Google Scholar] [CrossRef]
- Mishra, A.; Prakash, S.; Sreenivas, V.; Das, T.K.; Ahuja, V.; Gupta, S.D.; Makharia, G.K. Structural and Functional Changes in the Tight Junctions of Asymptomatic and Serology-negative First-degree Relatives of Patients with Celiac Disease. J. Clin. Gastroenterol. 2016, 50, 551–560. [Google Scholar] [CrossRef]
Types of Biomarkers | Name of the Biomarker |
---|---|
Serological biomarker | Anti-gliadin antibody (AGA) |
Anti-endomysial antibody (AEA) | |
Anti-tissue transglutaminase (tTG)- TG2, TG6, TG3 | |
Deamidated gliadin peptide (DGP) | |
Synthetic neo-epitopes tTG-DGP complex | |
Genetic marker | HLA-DQ haplotyping |
Biomarkers for the prediction of enteropathy | Cytochrome P450 3A4 (CYP3A4) |
Plasma citrulline | |
Intestinal-fatty acid binding proteins | |
Regenerating gene1α (Reg 1α) | |
Biomarkers to predict dietary adherence | Gluten immunogenic peptide (GIP) |
Mean platelet volume (MPV) | |
Miscellaneous Biomarkers | miRNA Intestinal permeability |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Pramanik, A.; Acharya, P.; Makharia, G.K. Non-Invasive Biomarkers for Celiac Disease. J. Clin. Med. 2019, 8, 885. https://doi.org/10.3390/jcm8060885
Singh A, Pramanik A, Acharya P, Makharia GK. Non-Invasive Biomarkers for Celiac Disease. Journal of Clinical Medicine. 2019; 8(6):885. https://doi.org/10.3390/jcm8060885
Chicago/Turabian StyleSingh, Alka, Atreyi Pramanik, Pragyan Acharya, and Govind K. Makharia. 2019. "Non-Invasive Biomarkers for Celiac Disease" Journal of Clinical Medicine 8, no. 6: 885. https://doi.org/10.3390/jcm8060885
APA StyleSingh, A., Pramanik, A., Acharya, P., & Makharia, G. K. (2019). Non-Invasive Biomarkers for Celiac Disease. Journal of Clinical Medicine, 8(6), 885. https://doi.org/10.3390/jcm8060885