Current Practices and Potential Nanotechnology Perspectives for Pain Related to Cystic Fibrosis
Abstract
:1. Introduction
2. Pain in CF
2.1. Pain Assessment Tools
2.2. Prevalence and Location of Pain
2.3. Gastrointestinal Indicators and Abdominal Pain
Mechanisms of Pain Occurrence
2.4. Pulmonary Indicators and Chest Pain
2.5. Musculoskeletal Pain
2.6. Pain Associated with Medical Procedures
3. Inflammation and Pain Aspects
4. Pain and CF Patients’ Quality of Life
5. Pain and CF Management
5.1. CF Treatment Perspectives
5.2. Nanotechnology Perspectives on CF
5.3. Current Practices in CF-Related Pain
5.4. Nanotechnology Potential in CF-Related Pain Management
6. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
Alg | Alginate |
CS | Chitosan |
Chol | Cholesterol |
DC | Dimethylaminoethane-carbamoyl |
DMPE | Dimyristoyl phosphatidyethanolamine |
DMPG | Dimyristoyl phosphatidylglycerol |
DNA | Deoxyribonucleic acid |
DODAG | N′, N′, -dioctadecyl-N-4,8-diaza-10-aminodecanoylglycine amide |
DOPE | Dioleoyl-phosphati-dylethanolamine |
DOTAP | 1,2-dioleoyloxy-3-trimethylammoniumpropaneDPPC: Dipalmitoyl phosphatidylcholine |
DSPC | Disteraoyl phosphatidylcholine |
DSPE | 1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine |
FAP-B | Fibronectin receptor |
HA | hyaluronic acid |
HSPC | Hydrogenated soy phosphatidylcholine |
PC | Phosphatidylcholine |
PEI | Polyethyleneimine |
PEG | Polyethylene glycol |
PLGA | Poly (lactic-co-glycolic acid) |
PS | Polystyrene |
PSA | Poly (sebacic acid) |
PVA | Poly (vinyl alcohol) |
RNA | Ribonucleic acid |
References
- Lee, A.L.; Rawlings, S.; Bennett, K.A.; Amstrong, D. Pain and its clinical associations in individuals with cystic fibrosis: A systematic review. Chron. Respir. Dis. 2016, 13, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tana, A.; Shankar, A. Cystic fibrosis- What are the prospects for a cure? Eur. J. Intern. Med. 2014, 25, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Bowen, S.J.; Hull, J. The basic science of cystic fibrosis. Paediatr. Child Health 2015, 25, 159–164. [Google Scholar] [CrossRef]
- Cystic Fibrosis Mutation Database. Available online: http://www.genet.sickkids.on.ca/cftr (accessed on 21 March 2019).
- Corvol, H.; Thompson, K.E.; Tabary, O.; LeRouzic, P.; Guillot, L. Translating the genetics of cystic fibrosis to personalized medicine. Transl. Res. 2016, 168, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, S.; Elston, C. Cystic fibrosis. Medicine 2016, 44, 321–325. [Google Scholar] [CrossRef]
- World Health Organization, Genes and Human Disease-Cystic Fibrosis. Geneva, Switzerland, 2018. Available online: http://www.who.int/genomics/public/geneticdiseases/en/index2.html#CF (accessed on 25 February 2019).
- Cystic Fibrosis Foundation (CFF), About Cystic Fibrosis. Available online: https://www.cff.org/What-is-CF/About-Cystic-Fibrosis/ (accessed on 19 March 2019).
- Scotet, V.; Duguépéroux, I.; Saliou, P.; Rault, G.; Roussey, M.; Audrézet, M.P.; Férec, C. Evidence for decline in the incidence of cystic fibrosis: A 35-year observational study in Brittany, France. Orphanet. J. Rare Dis. 2012, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Agarwal, A.; Mehta, D.; Sikachi, R.R.; Du, D.; Wang, J. Nation wide trends of hospitalizations for cystic fibrosis in the United States from 2003 to 2013. Intractable Rare Dis. Res. 2017, 6, 191–198. [Google Scholar] [CrossRef]
- Blackwell, L.S.; Quittner, A.L. Daily pain in adolescents with CF: Effects on adherence, psychological symptoms, and health-related quality of life. Pediatr. Pulmonol. 2015, 50, 244–251. [Google Scholar] [CrossRef]
- Kelemen, L.; Lee, A.L.; Button, B.M.; Presnell, S.; Wilson, J.W.; Holland, A.E. Pain impacts on quality of life and interferes with treatment in adults with cystic fibrosis. Physiother. Res. Int. 2012, 17, 132–141. [Google Scholar] [CrossRef]
- Sermet-Gaudelus, I.; De Villartay, P.; de Dreuzy, P.; Clairicia, M.; Vrielynck, S.; Canoui, P.; Kirszenbaum, M.; Singh-Mali, I.; Agrario, L.; Salort, M.; et al. Pain in children and adults with cystic fibrosis: A comparative study. J. Pain Symptom Manage. 2009, 38, 281–290. [Google Scholar] [CrossRef]
- Koh, J.L.; Harrison, D.; Palermo, T.M.; Turner, H.; McGraw, T. Assessment of acute and chronic pain symptoms in children with cystic fibrosis. Pediatr. Pulmonol. 2005, 40, 330–335. [Google Scholar] [CrossRef] [PubMed]
- IASP-Task-Force-On-Taxonomy. IASP-Task-Force-On-Taxonomy. IASP Pain Terminology. In Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms; Merskey, H., Nikolai, B., Eds.; IASP Press: Seattle, DC, USA, 1994; pp. 209–224. [Google Scholar]
- Schiavenato, M.; Craig, K.D. Pain assessment as a social transaction: Beyond the “gold standard”. Clin. J. Pain 2010, 26, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Karcioglu, O.; Topacoglu, H.; Dikme, O.; Dikme, O. A systematic review of the pain scales in adults: Which to use? Am. J. Emerg. Med. 2018, 36, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Hawker, G.A.; Mian, S.; Kendzerska, T.A.; French, M. Measures of Adult Pain. Arthritis Care Res. 2011, 63, S240–S252. [Google Scholar] [CrossRef] [PubMed]
- Green, L.; McGhie, J. Assessment of acute and chronic pain. Anaesth. Intensive Care Med. 2011, 12, 9–11. [Google Scholar] [CrossRef]
- Ravilly, S.; Robinson, W.; Suresh, S.; Wohl, M.E.; Berde, C.B. Chronic pain in cystic fibrosis. Pediatrics 1996, 98, 741–747. [Google Scholar] [PubMed]
- Epker, J.; Maddrey, A.M.; Rosenblatt, R. Pain and pain-related impairment in adults with cystic fibrosis. J. Clin. Psychol. Med. Settings 1999, 6, 393–403. [Google Scholar] [CrossRef]
- Havermans, T.; Colpaert, K.; De Boeck, K.; Dupont, L.; Abbott, J. Pain in CF: Review of the literature. J. Cyst. Fibros. 2013, 12, 423–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munck, A.; Pesle, A.; Cunin-Roy, C.; Gerardin, M.; Ignace, I.; Delaisi, B.; Wood, C. Recurrent abdominal pain in children with cystic fibrosis: A pilot prospective longitudinal evaluation of characteristics and management. J. Cyst. Fibros. 2012, 11, 46–48. [Google Scholar] [CrossRef]
- Lee, A.; Holdsworth, M.; Holland, A.; Button, B. The immediate effect of musculoskeletal physiotherapy techniques and massage on pain and ease of breathing in adults with cystic fibrosis. J. Cyst. Fibros. 2009, 8, 79–81. [Google Scholar] [CrossRef] [Green Version]
- Stenekes, S.J.; Hughes, A.; Grégoire, M.C.; Frager, G.; Robinson, W.M.; McGrath, P.J. Frequency and self-management of pain, dyspnea, and cough in cystic fibrosis. J. Pain Symptom Manage. 2009, 38, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, P.A.; Broome, M.E.; Antia, L.A. Pain, coping, and disability in adolescents and young adults with cystic fibrosis: A Web-based study. Pediatr. Nurs. 2005, 31, 82–86. [Google Scholar] [PubMed]
- Flume, P.A.; Ciolino, J.; Gray, S.; Lester, M.K. Patient-reported pain and impaired sleep quality in adult patients with cystic fibrosis. J. Cyst. Fibros. 2009, 8, 321–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomaszek, L.; Dębska, G.; Cepuch, G.; Kulpa, M.; Pawlik, L.; Broniatowska, E. Evaluation of quality of life predictors in adolescents and young adults with cystic fibrosis. Heart Lung 2018, 48, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Maras, D.; Balfour, L.; Tasca, G.A.; Gaudet, E.; Aaron, S.D.; Cameron, W.D.; Pakhale, S. Breathlessness catastrophizing relates to poorer quality of life in adults with cystic fibrosis. J. Cyst. Fibros. 2019, 18, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Flewelling, K.D.; Sellers, D.E.; Sawicki, G.S.; Robinson, W.; Dill, E.J. Social support is associated with fewer reported symptoms and decreased treatment burden in adults with cystic fibrosis. J. Cyst. Fibros. 2019, 18, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Palermo, T.; Harrison, D.; Koh, J. Effect of disease-related pain on the health-related quality of life of children and adolescents with cystic fibrosis. Clin. J. Pain 2006, 22, 532–537. [Google Scholar] [CrossRef]
- Lechtzin, N.; Allgood, S.; Hong, G.; Riekert, K.; Haythornthwaite, J.A.; Mogayzel, P.; Hankinson, J.; Yaster, M. The association between pain and clinical outcomes in adolescents with cystic fibrosis. J. Pain Symptom. Manage. 2016, 52, 681–687. [Google Scholar] [CrossRef]
- Hayes, M.; Yaster, M.; Haythorthwaite, J.; Riekert, K.A.; Nelson McMillan, K.; White, E.; Mogayzel, P.J., Jr.; Lechtzin, N. Pain is a common problem affecting clinical outcomes in adults with cystic fibrosis. Chest 2011, 140, 1598–1603. [Google Scholar] [CrossRef]
- Festini, F.; Ballarin, S.; Codamo, T.; Doro, R.; Loganes, C. Prevalence of pain in adults with cystic fibrosis. J. Cyst. Fibros. 2004, 3, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Michel-Cherqui, M.; Ley, L.; Szekely, B.; Dreyfus, J.F.; Fischler, M. Prevalence and characteristics of pain in patients awaiting lung transplantation. J. Pain Symptom. Manage. 2015, 49, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Apley, J.; Naish, N. Recurrent abdominal pains: A field survey of 1,000 school children. Arch. Dis. Child. 1958, 33, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Ooi, C.Y.; Durie, P.R. Cystic fibrosis from the gastroenterologist’s perspective. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Sabharwal, S. Gastrointestinal manifestations of cystic fibrosis. Gastroenterol. Hepatol. 2016, 12, 43–47. [Google Scholar]
- Kelly, T.; Buxbaum, J. Gastrointestinal manifestations of cystic fibrosis. Dig. Dis. Sci. 2015, 60, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Agrons, G.A.; Corse, W.R.; Markowitz, R.I.; Suarez, E.S.; Perry, D.R. Gastrointestinal manifestations of cystic fibrosis: Radiologic-pathologic correlation. Radiographics 1996, 16, 871–893. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, V.S. Gastrointestinal complications in cystic fibrosis. Semin. Respir. Crit. Care Med. 1985, 6, 299–307. [Google Scholar] [CrossRef]
- Littlewood, J.M. Cystic fibrosis: Gastrointestinal complications. Br. Med. Bull. 1992, 48, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Akata, D.; Akhan, O.; Ozcelik, U.; Ozmen, M.N.; Oguzkurt, L.; Haliloglu, M.; Göcmen, A. Hepatobiliary manifestations of cystic fibrosis in children: Correlation of CT and US findings. Eur. J. Radiol. 2002, 41, 26–33. [Google Scholar] [CrossRef]
- King, L.J.; Scurr, E.D.; Murugan, N.; Williams, S.G.; Westaby, D.; Healy, J.C. Hepatobiliary and pancreatic manifestations of cystic fibrosis: MR imaging appearances. Radiographics 2000, 20, 767–777. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.; Aster, J. Robbins & Cotran Pathologic Basis of Disease, 9th ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2014. [Google Scholar]
- Ehre, C.; Ridley, C.; Thornton, D.J. Cystic fibrosis: An inherited disease affecting mucin-producing organs. Int. J. Biochem. Cell Biol. 2014, 52, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Hodson, M.; Geddes, D.; Bush, A. Hodson and Geddes’s Cystic Fibrosis, 4th ed.; Hodder Arnold: London, UK, 2013. [Google Scholar]
- Nascimento, F.S.; Sena, N.A.; Ferreira, T.D.A.; Marques, C.D.F.; Silva, L.R.; Souza, E.L. Hepatobiliary disease in children and adolescents with cystic fibrosis. J. Pediatr. 2018, 94, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Parisi, G.F.; Di Dio, G.; Franzonello, C.; Gennaro, A.; Rotolo, N.; Lionetti, E.; Leonardi, S. Liver disease in cystic fibrosis: An update. Hepat. Mon. 2013, 13, e11215. [Google Scholar] [CrossRef] [PubMed]
- Ciucă, I.M.; Pop, L.; Tămaş, L.; Tăban, S. Cystic fibrosis liver disease—From diagnosis to risk factors. Rom. J. Morphol. Embryol. 2014, 55, 91–95. [Google Scholar]
- Lusman, S.S.; Grand, R. Approach to chronic abdominal pain in Cystic Fibrosis. J. Cyst. Fibros. 2017, 16, S24–S31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavelle, L.P.; McEvoy, S.H.; Ni Mhurchu, E.; Gibney, R.G.; McMahon, C.J.; Heffernan, E.J.; Malone, D.E. Cystic Fibrosis below the Diaphragm: Abdominal Findings in Adult Patients. Radiographics 2015, 35, 680–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littlewood, J.M. Abdominal pain in cystic fibrosis. J. R. Soc. Med. 1995, 88, 9–17. [Google Scholar]
- Gillespie, C.D.; O’Reilly, M.K.; Allen, G.N.; McDermott, S.; Chan, V.O.; Ridge, C.A. Imaging the Abdominal Manifestations of Cystic Fibrosis. Int. J. Hepatol. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Maisonneuve, P.; FitzSimmons, S.C.; Neglia, J.P.; Campbell, P.W.; Lowenfels, A.B. Cancer risk in nontransplanted and transplanted cystic fibrosis patients: A 10-year study. J. Natl. Cancer Inst. 2003, 95, 381–387. [Google Scholar] [CrossRef]
- Maisonneuve, P.; Marshall, B.C.; Knapp, E.A.; Lowenfels, A.B. Cancer risk in cystic fibrosis: A 20-year nationwide study from the United States. J. Natl. Cancer Inst. 2013, 105, 122–129. [Google Scholar] [CrossRef]
- Martínez-Alemán, S.R.; Campos-García, L.; Palma-Nicolas, J.P.; Hernández-Bello, R.; González, G.M.; Sánchez-González, A. Understanding the Entanglement: Neutrophil Extracellular Traps (NETs) in Cystic Fibrosis. Front. Cell. Infect. Microbiol. 2017, 7, 104. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, B.; Wang, H.; Liu, Q. Prognostic significance of pulmonary hypertension in patients with cystic fibrosis: A systematic review and meta-analysis. Medicine 2018, 97, e9708. [Google Scholar] [CrossRef] [PubMed]
- Conway, S.; Balfour-Lynn, I.; De Rijcke, K.; Drevinek, P.; Foweraker, J.; Havermans, T.; Heijerman, H.; Lannefors, L.; Lindblad, A.; Macek, M.; et al. European CF society standards of care: Framework for the cystic fibrosis centre. J. Cyst. Fibros. 2014, 13, S3–S22. [Google Scholar] [CrossRef] [PubMed]
- Orenstein, D.M. Cystic fibrosis: A guide for patient and family, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- Chin, M.; Aaron, S.D.; Bell, S.C. The treatment of the pulmonary and extrapulmonary manifestations of cystic fibrosis. Presse Méd. 2017, 46, e139–e164. [Google Scholar] [CrossRef] [PubMed]
- Sermet-Gaudelus, I.; Bianchi, M.L.; Garabedian, M.; Aris, R.M.; Morton, A.; Hardin, D.S.; Elkin, S.L.; Compston, J.E.; Conway, S.P.; Castanet, M.; et al. European cystic fibrosis bone mineralisation guidelines. J. Cyst. Fibros. 2011, 10, S16–S23. [Google Scholar] [CrossRef] [Green Version]
- Stalvey, M.; Clines, M. Cystic Fibrosis-Related Bone Disease: Insights into a Growing Problem. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Manger, B.; Lindner, A.; Manger, K.; Wacker, J.; Schett, G. Hypertrophic osteoarthropathy. Bamberger-Marie disease. Z. Rheumatol. 2011, 70, 554–560. [Google Scholar] [CrossRef]
- Tabori, A.H.; Jaudszus, A.; Arnold, C.; Mentzel, H.-J.; Lorenz, M.; Michl, R.K.; Lehmann, T.; Renz, D.M.; Mainz, J.G. Relation of Ultrasound Findings and Abdominal Symptoms obtained with the CFAbd-Score in Cystic Fibrosis Patients. Sci. Rep. 2017, 7, 17465. [Google Scholar] [CrossRef] [Green Version]
- Jaffé, A.; Bush, A. Cystic fibrosis: Review of the decade. Monaldi Arch. Chest Dis. 2001, 56, 240–247. [Google Scholar]
- Bilton, D. Cystic fibrosis. Medicine 2008, 36, 273–278. [Google Scholar] [CrossRef]
- Cantin, A.M.; Hartl, D.; Konstan, M.W.; Chmiel, J.F. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J. Cyst. Fibros. 2015, 14, 419–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantin, A.M.; Bilodeau, G.; Ouellet, C.; Liao, J.; Hanrahan, J. W Oxidant stress suppresses CFTR expression. Am. J. Physiol. Cell Physiol. 2006, 290, C262–C270. [Google Scholar] [CrossRef] [PubMed]
- Palaniyar, N.; Mall, M.A.; Taube, C.; Worgall, S.; Grasemann, H. New Developments in cystic fibrosis airway inflammation. Mediat. Inflamm. 2015, 2015, 769425. [Google Scholar] [CrossRef] [PubMed]
- Bonfield, T.L.; Panuska, J.R.; Konstan, M.W.; Hilliard, K.A.; Hilliard, J.B.; Ghnaim, H.; Berger, M. “Inflammatory cytokines in cystic fibrosis lungs. Am. J. Respir. Crit. Care Med. 1995, 152, 2111–2118. [Google Scholar] [CrossRef] [PubMed]
- Roussel, L.; Farias, R.; Rousseau, S. IL-33 is expressed in epithelia from patients with cystic fibrosis and potentiates neutrophil recruitment. J. Allergy Clin. Immunol. 2013, 131, 913–916. [Google Scholar] [CrossRef]
- Iannitti, R.G.; Napolioni, V.; Oikonomou, V.; De Luca, A.; Galosi, C.; Pariano, M.; Massi-Benedetti, C.; Borghi, M.; Puccetti, M.; Lucidi, V.; et al. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nat. Commun. 2016, 7, 10791. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.P.; Chmiel, J.F. Inflammation and its genesis in cystic fibrosis. Pediatr. Pulmonol. 2015, 50, S39–S56. [Google Scholar] [CrossRef]
- Mhanna, M.J.; Ferkol, T.; Martin, R.J.; Dreshaj, I.A.; van Heeckeren, A.M.; Kelley, T.J.; Haxhiu, M.A. Nitric oxide deficiency contributes to impairment of airway relaxation in cystic fibrosis mice. Am. J. Respir. Cell Mol. Biol. 2001, 24, 621–626. [Google Scholar] [CrossRef]
- Karp, C.L.; Flick, L.M.; Park, K.W.; Softic, S.; Greer, T.M.; Keledjian, R.; Yang, R.; Uddin, J.; Guggino, W.B.; Atabani, S.F.; et al. Defective lipoxin-mediated anti inflammatory activity in the cystic fibrosis airway. Nat. Immunol. 2004, 5, 388–392. [Google Scholar] [CrossRef]
- Uceyler, N.; Valenza, R.; Stock, M.; Schedel, R.; Sprotte, G.; Sommer, C. Reduced levels of antiinflammatory cytokines in patients with chronic widespread pain. Arthritis Rheum. 2006, 54, 2656–2664. [Google Scholar] [CrossRef]
- Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Van der Doef, H.P.J.; Kokke, F.T.M.; van der Ent, C.K.; Houwen, R.H.J. Intestinal obstruction syndromes in cystic fibrosis: Meconium ileus, distal intestinal obstruction syndrome, and constipation. Curr. Gastroenterol. Rep. 2011, 13, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Leach, S.T.; Katz, T.; Day, A.S.; Jaffe, A.; Ooi, C.Y. Update of Faecal Markers of Inflammation in Children with Cystic Fibrosis. Mediat. Inflamm. 2012, 2012, 948367. [Google Scholar] [CrossRef] [PubMed]
- Smyth, R.L.; Croft, N.M.; O’Hea, U.; Marshall, T.G.; Ferguson, A. Intestinal inflammation in cystic fibrosis. Arch. Dis. Child. 2000, 82, 394–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raia, V.; Maiuri, L.; de Ritis, G.; de Vizia, B.; Vacca, L.; Conte, R.; Auricchio, S.; Londei, M. Evidence of chronic inflammation in morphologically normal small intestine of cystic fibrosis patients. Pediatr. Res. 2000, 47, 344–350. [Google Scholar] [CrossRef]
- Bruzzese, E.; Raia, V.; Gaudiello, G.; Polito, G.; Buccigrossi, V.; Formicola, V.; Guarino, A. Intestinal inflammation is a frequent feature of cystic fibrosis and is reduced by probiotic administration. Aliment. Pharmacol. Ther. 2004, 20, 813–819. [Google Scholar] [CrossRef]
- Chastain, D. Chronic pain in CF: Associated beliefs and behaviours. Pediatr. Pulmonol. 2000, 20, 116–117. [Google Scholar]
- D’Angelo, I.; Conte, C.; La Rotonda, M.I.; Miro, A.; Quaglia, F.; Ungaro, F. Improving the efficacy of inhaled drugs in cystic fibrosis: Challenges and emerging drug delivery strategies. Adv. Drug Deliv. Rev. 2014, 75, 92–111. [Google Scholar] [CrossRef]
- Accurso, F.J.; Van Goor, F.; Zha, J.; Stone, A.J.; Dong, Q.; Ordonez, C.L.; Rowe, S.M.; Clancy, J.P.; Konstan, M.W.; Hoch, H.E.; et al. Sweat chloride as a biomarker of CFTR activity: Proof of concept and ivacaftor clinical trial data. J. Cyst. Fibros. 2014, 13, 139–147. [Google Scholar] [CrossRef]
- Fajac, I.; De Boeck, K. New horizons for cystic fibrosis treatment. Pharmacol. Ther. 2017, 170, 205–211. [Google Scholar] [CrossRef]
- Zaman, K.; Sawczak, V.; Zaidi, A.; Butler, M.; Bennett, D.; Getsy, P.; Zeinomar, M.; Greenberg, Z.; Forbes, M.; Rehman, S.; et al. Augmentation of CFTR maturation by S-nitrosoglutathione reductase. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 310, L263–L270. [Google Scholar] [CrossRef] [PubMed]
- Mall, M.A.; Galietta, L.J. Targeting ion channels in cystic fibrosis. J. Cyst. Fibros. 2015, 14, 561–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, C.S.; Brown, A.W.; Aryal, S.; Ahmad, K.; Donaldson, S. Critical Care of the Adult Patient With Cystic Fibrosis. Chest 2019, 155, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Leso, V.; Fontana, L.; Iavicoli, I. Biomedical nanotechnology: Occupational views. Nano Today 2019, 24, 10–14. [Google Scholar] [CrossRef]
- Yhee, J.Y.; Im, J.; Nho, R.S. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery. J. Clin. Med. 2016, 5, 82. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.J.; Cemlyn-Jones, J.; Robalo Cordeiro, C. Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev. Port. Pneumol. 2013, 19, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 2010, 392, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Omri, A.; Beaulac, C.; Bouhajib, M.; Montplaisir, S.; Sharkawi, M.; Lagacé, J. Pulmonary retention of free and liposome-encapsulated tobramycin after intratracheal administration in uninfected rats and rats infected with Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1994, 38, 1090–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulac, C.; Clément-Major, S.; Hawari, J.; Lagacé, J. Eradication of mucoid Pseudomonas aeruginosa with fluid liposome-encapsulated tobramycin in an animal model of chronic pulmonary infection. Antimicrob. Agents Chemother. 1996, 40, 665–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halwani, M.; Yebio, B.; Suntres, Z.E.; Alipour, M.; Azghani, A.O.; Omri, A. Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2008, 62, 1291–1297. [Google Scholar] [CrossRef] [Green Version]
- Halwani, M.; Hebert, S.; Suntres, Z.E.; Lafrenie, R.M.; Azghani, A.O.; Omri, A. Bismuth-thiol incorporation enhances biological activities of liposomal tobramycin against bacterial biofilm and quorum sensing molecules production by Pseudomonas aeruginosa. Int. J. Pharm. 2009, 373, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Suntres, Z.E.; Lafrenie, R.M.; Omri, A. Attenuation of Pseudomonas aeruginosa virulence factors and biofilms by co-encapsulation of bismuth-ethanedithiol with tobramycin in liposomes. J. Antimicrob. Chemother. 2010, 65, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Meers, P.; Neville, M.; Malinin, V.; Scotto, A.W.; Sardaryan, G.; Kurumunda, R.; Mackinson, C.; James, G.; Fisher, S.; Perkins, W.R. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 2008, 61, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Okusanya, O.O.; Bhavnani, S.M.; Hammel, J.; Minic, P.; Dupont, L.J.; Forrest, A.; Mulder, G.J.; Mackinson, C.; Ambrose, P.G.; Gupta, R. Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob. Agents Chemother. 2009, 53, 3847–3854. [Google Scholar] [CrossRef] [PubMed]
- Okusanya, O.O.; Bhavnani, S.M.; Hammel, J.P.; Forrest, A.; Bulik, C.C.; Ambrose, P.G.; Gupta, R. Evaluation of the pharmacokinetics and pharmacodynamics of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infections using data from two phase 2 clinical studies. Antimicrob. Agents Chemother. 2014, 58, 5005–5015. [Google Scholar] [CrossRef]
- Middleton, P.G.; Caplen, N.J.; Gao, X.; Huang, L.; Gaya, H.; Geddes, D.M.; Alton, E.W. Nasal application of the cationic liposome DC-Chol:DOPE does not alter ion transport, lung function or bacterial growth. Eur. Respir. J. 1994, 7, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Porteous, D.J.; Dorin, J.R.; McLachlan, G.; Davidson-Smith, H.; Davidson, H.; Stevenson, B.J.; Carothers, A.D.; Wallace, W.A.; Moralee, S.; Hoenes, C.; et al. Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 1997, 4, 210–218. [Google Scholar] [CrossRef]
- Aissaoui, A.; Chami, M.; Hussein, M.; Miller, A.D. Efficient topical delivery of plasmid DNA to lung in vivo mediated by putative triggered, PEGylated pDNA nanoparticles. J. Control. Release 2011, 154, 275–284. [Google Scholar] [CrossRef]
- Eastman, S.J.; Lukason, M.J.; Tousignant, J.D.; Murray, H.; Lane, M.D.; St George, J.A.; Akita, G.Y.; Cherry, M.; Cheng, S.H.; Scheule, R.K. A concentrated and stable aerosol formulation of cationic lipid:DNA complexes giving high-level gene expression in mouse lung. Hum. Gene Ther. 1997, 8, 765–773. [Google Scholar] [CrossRef]
- Hyde, S.C.; Pringle, I.A.; Abdullah, S.; Lawton, A.E.; Davies, L.A.; Varathalingam, A.; Nunez-Alonso, G.; Green, A.M.; Bazzani, R.P.; Sumner-Jones, S.G.; et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat. Biotechnol. 2008, 26, 549–551. [Google Scholar] [CrossRef]
- Alton, E.W.; Boyd, A.C.; Cheng, S.H.; Cunningham, S.; Davies, J.C.; Gill, D.R.; Griesenbach, U.; Higgins, T.; Hyde, S.C.; Innes, J.A.; et al. A randomised, double-blind, placebo-controlled phase IIB clinical trial of repeated application of gene therapy in patients with cystic fibrosis. Thorax 2013, 68, 1075–1077. [Google Scholar] [CrossRef] [PubMed]
- Alton, E.W.; Boyd, A.C.; Porteous, D.J.; Davies, G.; Davies, J.C.; Griesenbach, U.; Higgins, T.E.; Gill, D.R.; Hyde, S.C.; Innes, J.A. A phase I/IIa safety and efficacy study of nebulized liposome-mediated gene therapy for cystic Fibrosis supports a multidose trial. Am. J. Respir. Crit. Care Med. 2015, 192, 1389–1392. [Google Scholar] [CrossRef] [PubMed]
- Alton, E.W.; Armstrong, D.K.; Ashby, D.; Bayfield, K.J.; Bilton, D.; Bloomfield, E.V.; Boyd, A.C.; Brand, J.; Buchan, R.; Calcedo, R.; et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: A randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 2015, 3, 684–691. [Google Scholar] [CrossRef]
- Caretti, A.; Bragonzi, A.; Facchini, M.; De Fino, I.; Riva, C.; Gasco, P.; Musicanti, C.; Casas, J.; Fabriàs, G.; Ghidoni, R.; et al. Anti-inflammatory action of lipid nanocarrier-delivered myriocin: Therapeutic potential in cystic fibrosis. Biochim. Biophys. Acta. 2014, 1840, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Pilcer, G.; Sebti, T.; Amighi, K. Formulation and characterization of lipid-coated tobramycin particles for dry powder inhalation. Pharm. Res. 2006, 23, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Pilcer, G.; Goole, J.; Van Gansbeke, B.; Blocklet, D.; Knoop, C.; Vanderbist, F.; Amighi, K. Pharmacoscintigraphic and pharmacokinetic evaluation of tobramycin DPI formulations in cystic fibrosis patients. Eur. J. Pharm. Biopharm. 2008, 68, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Geller, D.E.; Weers, J.; Heuerding, S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere™ technology. J. Aerosol. Med. Pulm. Drug Deliv. 2011, 24, 175–182. [Google Scholar] [CrossRef]
- Stass, H.; Weimann, B.; Nagelschmitz, J.; Rolinck-Werninghaus, C.; Staab, D. Tolerability and pharmacokinetic properties of ciprofloxacin dry powder for inhalation in patients with cystic fibrosis: A phase I, randomized, dose-escalation study. Clin. Ther. 2013, 35, 1571–1581. [Google Scholar] [CrossRef]
- Suk, J.S.; Lai, S.K.; Wang, Y.-Y.; Ensign, L.M.; Zeitlin, P.L.; Boyle, M.P.; Hanes, J. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 2009, 30, 2591–2597. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.C.; Dawson, M.; Lai, S.K.; Wang, Y.Y.; Suk, J.S.; Yang, M.; Zeitlin, P.; Boyle, M.P.; Fu, J.; Hanes, J. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc. Natl. Acad. Sci. USA 2009, 106, 19268–19273. [Google Scholar] [CrossRef] [Green Version]
- Ungaro, F.; d’Angelo, I.; Coletta, C.; d’Emmanuele di Villa Bianca, R.; Sorrentino, R.; Perfetto, B.; Tufano, M.A.; Miro, A.; La Rotonda, M.I.; Quaglia, F. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: Modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J. Control. Release 2012, 157, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, R.; Redente, E.F.; Thakur, A.; Riches, D.W.; Kompella, U.B. Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice. Nanotechnology 2012, 23, 505101. [Google Scholar] [CrossRef] [PubMed]
- Vij, N.; Min, T.; Marasigan, R.; Belcher, C.N.; Mazur, S.; Ding, H.; Yong, K.-T.; Roy, I. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J. Nanobiotechnol. 2010, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Truong-Le, V.L.; Walsh, S.M.; Schweibert, E.; Mao, H.Q.; Guggino, W.B.; August, J.T.; Leong, K.W. Gene transfer by DNA-gelatin nanospheres. Arch. Biochem. Biophys. 1999, 361, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Dorkoosh, F.A.; Hosseinkhani, S.; Gilani, K.; Amini, T.; Najafabadi, A.R.; Tehrani, M.R. In vivo transfection study of chitosan-DNA-FAP-B nanoparticles as a new non viral vector for gene delivery to the lung. Int. J. Pharm. 2011, 421, 183–188. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, P.J.; Cunningham, O.; Greene, C.M.; Cryan, S.A. Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. Int. J. Nanomed. 2013, 8, 3907–3915. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, B.M.; Park, S.; Han, B.; Yeo, Y. A strategy to deliver genes to cystic fibrosis lungs: A battle with environment. J. Control. Release 2011, 155, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.A.; Hyde, S.C.; Nunez-Alonso, G.; Bazzani, R.P.; Harding-Smith, R.; Pringle, I.A.; Lawton, A.E.; Abdullah, S.; Roberts, T.C.; McCormick, D.; et al. The use of CpG-free plasmids to mediate persistent gene expression following repeated aerosol delivery of pDNA/PEI complexes. Biomaterials 2012, 33, 5618–5627. [Google Scholar] [CrossRef] [PubMed]
- Boylan, N.J.; Suk, J.S.; Lai, S.K.; Jelinek, R.; Boyle, M.P.; Cooper, M.J.; Hanes, J. Highly compacted DNA nanoparticles with low MW PEG coatings: In vitro, ex vivo and in vivo evaluation. J. Control. Release 2012, 157, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Suk, J.S.; Kim, A.J.; Trehan, K.; Schneider, C.S.; Cebotaru, L.; Woodward, O.M.; Boylan, N.J.; Boyle, M.P.; Lai, S.K.; Guggino, W.B.; et al. Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. J. Control. Release 2014, 178, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.L.; Santos, R.S.; Xisto, D.G.; Alonso Sdel, V.; Morales, M.M.; Rocco, P.R. Nanoparticle-based therapy for respiratory diseases. An. Acad. Bras. Cienc. 2013, 85, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Weers, J. Inhaled antimicrobial therapy—Barriers to effective treatment. Adv. Drug Deliv. Rev. 2015, 85, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Roy, I.; Vij, N. Nanodelivery in airway diseases: Challenges and therapeutic applications. Nanomedicine 2010, 6, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, J.K.L.; Mohseni, R.; Hamidieh, A.A.; MacLaren, R.E.; Habib, N.; Seifalian, A.M. Will Nanotechnology Bring New Hope for Gene Delivery? Trends Biotechnol. 2017, 35, 434–451. [Google Scholar] [CrossRef] [PubMed]
- Alton, E.W.; Boyd, A.C.; Davies, J.C.; Gill, D.R.; Griesenbach, U.; Harrison, P.T.; Henig, N.; Higgins, T.; Hyde, S.C.; Innes, J.A.; et al. Genetic medicines for CF: Hype versus reality. Pediatr. Pulmonol. 2016, 51, S5–S17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vij, N.; Fang, S.; Zeitlin, P.L. Selective inhibition of endoplasmic reticulum-associated degradation rescues {Delta} F508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: Therapeutic implications. J. Biol. Chem. 2006, 281, 17369–17378. [Google Scholar] [CrossRef] [PubMed]
- Cholon, D.M.; Gentzsch, M. Recent progress in translational cystic fibrosis research using precision medicine strategies. J. Cyst. Fibros. 2018, 17, S52–S60. [Google Scholar] [CrossRef] [Green Version]
- Alexa, T.; Marza, A.; Voloseniuc, T.; Tamba, B.I. Enhanced analgesic effects of tramadol and common trace element co-administration in mice. J. Neurosci. Res. 2015, 93, 1534–1541. [Google Scholar] [CrossRef]
- McNamara, C.; Johnson, M.; Read, L.; Vander Velden, H.; Thygeson, M.; Liu, M.; Gandrud, L.; McNamara, J. Yoga Therapy in Children with Cystic Fibrosis Decreases Immediate Anxiety and Joint Pain. Evid. Based Complement. Altern. Med. 2016, 2016, 9429504. [Google Scholar] [CrossRef]
- Beiranvand, S.; Sorori, M.M. Pain management using nanotechnology approaches. Artif. Cells Nanomed. Biotechnol. 2019, 47, 462–468. [Google Scholar] [CrossRef]
- Moradkhani, M.R.; Karimi, A.; Negahdari, B. Nanotechnology application for pain therapy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Koning, G.A.; Schiffelers, R.M.; Storm, G. Endothelial cells at inflammatory sites as target for therapeutic intervention. Endothelium 2002, 9, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, K.V.; Boehm, F.J.; Christo, P.J. Nanotechnology: A Promising New Paradigm for the Control of Pain. Pain Med. 2018, 19, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Avnir, Y.; Ulmansky, R.; Wasserman, V.; Even-Chen, S.; Broyer, M.; Barenholz, Y.; Naparstek, Y. Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle dog: A novel approach to treating autoimmune arthritis. Arthritis Rheum. 2008, 58, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Raffin, R.P.; Lima, A.; Lorenzoni, R.; Antonow, M.B.; Turra, C.; Alves, M.P.; Fagan, S.B. Natural lipid nanoparticles containing nimesulide: Synthesis, characterization and in vivo antiedematogenic and antinociceptive activities. J. Biomed. Nanotechnol. 2012, 8, 309–315. [Google Scholar] [CrossRef]
- Dong, J.; Jiang, D.; Wang, Z.; Wu, G.; Miao, L.; Huang, L. Intra-articular delivery of liposomal celecoxib-hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int. J. Pharm. 2013, 441, 285–290. [Google Scholar] [CrossRef]
- Gorfine, S.R.; Onel, E.; Patou, G.; Krivokapic, Z.V. Bupivacaine extended-release liposome injection for prolonged postsurgical analgesia in patients undergoing hemorrhoidectomy: A multicenter, randomized, double-blind, placebo-controlled trial. Dis. Colon. Rectum. 2011, 54, 1552–1559. [Google Scholar] [CrossRef]
- Hua, S.; Cabot, P.J. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: A potential novel treatment of acute and chronic pain condition. Pain Physician 2013, 16, E199–E216. [Google Scholar]
- Ward, B.B.; Huang, B.; Desai, A.; Cheng, X.M.; Vartanian, M.; Zong, H.; Shi, X.; Thomas, T.P.; Kotlyar, A.E.; Van Der Spek, A.; et al. Sustained analgesia achieved through esterase-activated morphine prodrugs complexed with PAMAM dendrimer. Pharm. Res. 2013, 30, 247–256. [Google Scholar] [CrossRef]
- Liu, H.; Ni, J.; Wang, R. In vitro release performance and analgesic activity of endomorphin-1 loaded nanoparticles. Pharmazie 2006, 61, 450–452. [Google Scholar]
- Tseng, Y.Y.; Liao, J.Y.; Chen, W.A.; Kao, Y.C.; Liu, S.J. Biodegradable poly([D,L]-lactide-co-glycolide) nanofibers for the sustainable delivery of lidocaine into the epidural space after laminectomy. Nanomedicine 2014, 9, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Ngawhirunpat, T.; Opanasopit, P.; Rojanarata, T.; Akkaramongkolporn, P.; Ruktanonchai, U.; Supaphol, P. Development of meloxicam-loaded electrospun polyvinyl alcohol mats as a transdermal therapeutic agent. Pharm. Dev. Technol. 2009, 14, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Ganta, S.; Amiji, M. Coadministration of Paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol. Pharm. 2009, 6, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Jurj, A.; Braicu, C.; Pop, L.A.; Tomuleasa, C.; Gherman, C.D.; Berindan-Neagoe, I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Dev. Ther. 2017, 11, 2871–2890. [Google Scholar] [CrossRef] [PubMed]
- Park, K. Nanotechnology: What it can do for drug delivery. J. Control. Release 2007, 120, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pain location | Prevalence in Children/Adolescents | Prevalence in Adults |
---|---|---|
Abdominal pain | 42–100% [11,14,13,23,30,31,32] | 19–50% [13,20,27,33,34,35] |
Gastrointestinal pain | 10% (stomach) [13] | 10–51% [13] |
Chest pain | 10–38% [11,13,14,23,32] | 9–72% [12,13,20,26,27,33,35] |
Back pain (mid-back, lower back and/or both) | 6–16% [13,32] | 19–70% [12,13,20,27,33] |
Head and neck pain | 13–42% [11,14,23,32] | 6–64% [12,13,20,27,33,34,35] |
Cervical | 3% [13] | 10–28% [13,34] |
Limbs (upper and/or lower limp pain) | 11–19% [13,32] | 6–27% [12,20,27,35] |
Musculoskeletal pain | 3–19% [13,32] | 6–44% [13,34,35] |
Organ | Complication | References | |
---|---|---|---|
Pancreas | Exocrine pancreatic insufficiency; Pancreatitis; | Chronic pancreatitis; Pancreatic lithiasis; Malignancy; | [38] |
Gastrointestinal tract | Meconium ileus, distal intestinal obstruction syndrome; Rectal prolapse; Constipation; Atresia; Intussusception; Intestinal invagination; Appendiceal abscess; | Gastroesophageal reflux disease; Gastritis, gastroduodenal ulcer; Fibrotic colonopathy; Dysbiosis; Inflammation; Malignancy; | [39,40,41,42] |
Liver | Prolonged physiological jaundice; Multilobular cirrhosis; Portal hypertension; Splenomegaly; Hypersplenism; | Neonatal hepatitis; Hepatic steatosis; Liver enzyme abnormalities; Focal bile fibrosis; | [43,44] |
Gallbladder | Multilobular biliary cirrhosis; Gallbladder abnormalities; | Gallbladder lithiasis, cholecystitis; Malignancies. |
Pain Localization | Embryonic Origin | Anatomic Localization | References |
---|---|---|---|
Epigastrium | Foregut | Proximal to the Treitz ligament, including the hepatobiliary system and the spleen | [51] |
Periumbilical | Midgut | Treitz ligament to the colon’s hepatic angle | |
Hypogastrium | Hindgut | Colonic liver angle up to rectum |
Pain Localization | Aetiology | References |
---|---|---|
Epigastrium | Gastroesophageal reflux disease, gastritis, ulcer, pancreatitis | [52,53] |
Periumbilical | Gastroenteritis, intestinal obstruction syndrome, invagination, appendicitis | |
Right hippocampus | Hepatobiliary disorder, pancreatitis and pneumonia | |
Left hippocampus | Gastritis, pancreatitis, splenic infarction, pneumonia | |
Right iliac fossa | Distal intestinal obstruction syndrome, appendicitis, renal or ovarian disorder | |
Left iliac fossa | Constipation with faecal impaction, kidney or ovarian disease | |
Diffuse abdominal pain | Gastroenteritis, intestinal obstruction syndrome, peritonitis. |
Organ | Complication | References |
---|---|---|
Pulmonary parenchyma | Chronic pulmonary infections (pneumonia, bronchopneumonia); Obstruction of the airways; Haemoptysis; Bronchiectasis; Pulmonary atelectasis; Pulmonary fibrosis; Chronic respiratory failure; | [59,61] |
Pleura | Pleurisy; Pachypleuritis; Pneumothorax; Haemothorax; | |
Sinus | Sinusitis. |
Formulation Type | Materials + Drug | Key Summary | References |
---|---|---|---|
Liposome- encapsulated drugs (aqueous dispersions) | DSPC/DMPG + Tobramycin; | Significant increase of drug residence time within rat lungs infected with Pseudomonas aeruginosa. | [95] |
DPPC/DMPG + Tobramycin; | Efficient bactericidal activity on chronic pulmonary infection caused by mucoid Pseudomonas aeruginosa. | [96] | |
DPPC/DMPG + Gentamycin+Ga (III) nitrate | Optimized and efficient co-delivery, reduced Ga toxicity, antimicrobial activity and complete eradication of antibiotic-resistant clinical isolates of Pseudomonas aeruginosa. | [97] | |
DSPC/Chol + Tobramycin + bismuth-ethanedithiol; | Non-toxic and stable formulations that penetrate sputum, reduce quorum sensing molecule and virulence factors production and inhibit the growth of biofilm-forming clinical strains of Pseudomonas aeruginosa. | [98,99] | |
DPPC/Chol + Amikacin | Sustained and targeted release, biofilm and infected Pseudomonas aeruginosa mucus penetration, superior efficacy on both in vivo and phase II clinical trials of inhaled liposomal amikacin. | [100,101,102] | |
DC-Chol/DOPE + CFTR cDNA | In vivo administration of CFTR cDNA transfection of cationic liposomes corrected the ion transport defect in the airways of the mouse model of CF created by insertional mutagenesis. | [103] | |
DOTAP+ pCMV-CFTR expression vector | Pilot randomised, double-blinded study of cationic liposome complex single-dose administration to the nasal epithelium of eight CF patients; significant gene transfection, no adverse effect and no evidence of inflammation. | [104] | |
DODAG/DOPE/PEG4600-Chol + Plasmid DNA encoding luciferase | New cationic liposome systems mediated efficient transfection of healthy murine lung tissue in vivo without significant inflammation; the obtained carriers could form the basis for nucleic acid therapeutic strategies for CF gene therapy. | [105] | |
GL67A/pGM169 (GL67/DOPE/DMPE-PEG5000 + Plasmid DNA) | Novel cationic lipid-PEG formulation (GL67A) associated with plasmid DNA (pGM169); reduced inflammation and sustained pulmonary gene expression after in vivo aerosol delivery; single-dose phase I and IIa safety and gene expression study of pGM169 or GL67A administered to the nose and lungs on CF patients (ClinicalTrials.gov number: NCT00789867); randomised, double-blind, placebo-controlled, phase IIb clinical trial (ClinicalTrials.gov number NCT01621867). | [106,107,108,109,110] | |
Solid lipid particles (saline solutions or dry powders) | Stearic acid/PC+ Myriocin | Good uptake and delivery of myriocin-loaded nanocarrier, significant reduction of lung infection and reduced inflammation on CF mice. | [111] |
Chol/lecithin + Tobramycin | Formulation and in vitro evaluation: large surface area, low bulk density, good flowability, size and shape suitable for use in carrier-free dry powder inhalers.Pilot study on CF patients: high lung deposition and reduced systemic bioavailability determined by a pharmacoscintigraphic method. | [112,113] | |
DSPC + Tobramycin | PulmoSphere™ porous particles are obtained by spray-drying method in four steps: emulsion-based feedstock preparation by high-pressure homogenization of perfluorooctyl bromide, DSPC, tobramycin and calcium chloride in water; atomization with a twin fluid nozzle into a hot air stream; drying of the emulsion droplets and collection of resulting dry powder comprising porous spheroidal particles. | [114] | |
DSPC + Ciprofloxacin | Phase I, randomized, single-blind, placebo-controlled, dose-escalation study in patients with CF; the formulation was well tolerated, has targeted and sustained release, minimal systemic exposure and no apparent accumulation of ciprofloxacin over seven-day treatment period. | [115] | |
Polymeric nanoparticles (aqueous dispersion or dry powders) | PS-PEG | 200 and 500 nm nanoparticles; the dense surface coating of the 200 nm non-mucoadhesive nanoparticles helped the penetration of CF sputum. | [116] |
PSA-PEG | Biodegradable nanoparticles with an average hydrodynamic diameter of 173 nm, prepared using a conventional solvent diffusion method rapidly penetrated sputum expectorated from the lungs of patients with CF due to a dense surface coating of low PEG. | [117] | |
PVA-Alg/PLGA + Tobramycin and CS-Alg/PLGA + Tobramycin | 2 types of PLGA nanoparticles were prepared by a modified emulsion/solvent diffusion technique for the production of dry powders for antibiotic inhalation; the formulations displayed good in vitro antimicrobial activity against Pseudomonas aeruginosa planktonic cells, and differentiated in vivo biodistribution and deposition pattern, dependent on the nanoparticle composition. | [118] | |
PLGA + Pirfenidone | Intratracheal administration of biodegradable pirfenidone nanoparticles in bleomycin-induced pulmonary fibrosis in mice, determined sustained lung delivery and anti-fibrotic enhanced efficacy. | [119] | |
PLGA-PEG + PS-341 | Mono-dispersed and spherical in shape loaded nanoparticles were synthesized using non-polar core of oil-in-water microemulsion technique with PEGylated phospholipid DSPE-mPEG2000 as the emulsifier; the drug delivery system provided controlled and sustained PS-341 delivery for selective inhibition of proteostasis. | [120] | |
Transferrin-gelatine/chloroquine/calcium+ DNA | A plasmid DNA encoding CFTR and gelatine nanoparticle coacervate transfected in the presence of calcium and transferrin, resulted in CFTR expression in over 50% of the cells; effective transport activity. | [121] | |
CS/FAP-B + DNA encoding luciferase | 250 nm nanoparticles nebulized to mice lungs determined 16-fold increase of gene expression compared with CS-DNA NPs without FAP-B receptors. | [122] | |
PEI+ miRNA and CS + miRNA | Non-toxic miRNA-PEI nanoparticles (300 nm) facilitated greater uptake into CFBE41o- cells, and efficient delivery than miRNA-CS nanoparticles (115 nm). | [123] | |
PEI + HA + plasmid DNA encoding luciferase | Inhalable dry microparticle form of mannitol, encapsulating ternary complex composed of plasmid DNA, disulphide-crosslinked low molecular weight linear PEI and HA as a gene carrier, improved CF artificial sputum penetration and transport but with gene transfer agents aggregation. | [124] | |
PEI + DNA encoding luciferase | Aerosol delivery complex with plasmid DNA and branched PEI repeatedly administered to airways of mice showed no detectable toxicity being suitable for treatment of chronic lung diseases. | [125] | |
Poly-l-lysine-PEG + DNA encoding CFTR | Rod-shaped DNA nanoparticles with different PEG molecular weights (2, 5 or 10 kDa) provided partial protection against DNase I digestion and exhibited the highest gene transfer to lung airways following inhalation in BALB/c mice, but were immobilized in freshly expectorated human CF sputum due to inadequate PEG surface coverage. | [126] | |
PEI-PEG + DNA encoding CFTR | Synthetic gene carrier platform composed of PEG (5 kDa) and branched PEI (25 kDa) penetrated human CF mucus due to highly dense PEG coating, achieved uniform airway distribution and prolonged lung retention, and enhanced gene transfer to mouse lung with no inflammatory responses. | [127] |
Formulation Type | Materials + Drug | Key Summary | References |
---|---|---|---|
Liposomes | PEG + Methylprednisolone hemisuccinate; | 80 nm sterically stabilized drug loaded nanoliposomes were used to treat Lewis rats with adjuvant-induced arthritis | [141] |
Shea butter lipid nanoparticles + Nimesulide | 90 nm polydisperse loaded lipid nanoparticles presented significant in vivo antinociceptive activity compared with free nimesulide | [142] | |
Liposomes + Celecoxib+ embedded in hyaluronic acid gel | Celecoxib loaded liposomes showed high efficiency in pain control and cartilage protection on in a rabbit knee osteoarthritis model after intra-articular injection | [143] | |
Lipids+ Bupivacaine | Single dose of the liposomal formulation reduced the pain over 72 h and decreased opioid requirements in 184 patients undergoing haemorrhoidectomy | [144] | |
Nanoparticles | Anti-ICAM-1 (Intercellular Adhesion Molecule 1) + Loperamide HCl | Administration of targeted nanoparticles exerted analgesic and anti-inflammatory effects in peripheral painful inflamed tissue on adult male Wistar rats | [145] |
Poly(amidoamine) (PAMAM) dendrimer + esterase activated morphine prodrugs | Esterase-sensitive prodrugs administration enhanced the sustained release of morphine, which extended the action of morphine-induced analgesia in an animal pain model from 2 to 6 h | [146] | |
Butylcyanoacrylate nanoparticles + polysorbate 80+Endomorphin-1 | Intravenously administered nanoparticles act as an analgesic agent to target the brain | [147] | |
Nanofibers | PLGA nanofibers + Lidocaine | The nanofibers introduced into the epidural space of rats after laminectomy provided a sustained release of lidocaine for more than two weeks | [148] |
PVA + Meloxicam | Nanofiber mats loaded with meloxicam as a transdermal analgesic drug delivery system | [149] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trandafir, L.M.; Leon, M.M.; Frasinariu, O.; Baciu, G.; Dodi, G.; Cojocaru, E. Current Practices and Potential Nanotechnology Perspectives for Pain Related to Cystic Fibrosis. J. Clin. Med. 2019, 8, 1023. https://doi.org/10.3390/jcm8071023
Trandafir LM, Leon MM, Frasinariu O, Baciu G, Dodi G, Cojocaru E. Current Practices and Potential Nanotechnology Perspectives for Pain Related to Cystic Fibrosis. Journal of Clinical Medicine. 2019; 8(7):1023. https://doi.org/10.3390/jcm8071023
Chicago/Turabian StyleTrandafir, Laura M., Magdalena M. Leon, Otilia Frasinariu, Ginel Baciu, Gianina Dodi, and Elena Cojocaru. 2019. "Current Practices and Potential Nanotechnology Perspectives for Pain Related to Cystic Fibrosis" Journal of Clinical Medicine 8, no. 7: 1023. https://doi.org/10.3390/jcm8071023
APA StyleTrandafir, L. M., Leon, M. M., Frasinariu, O., Baciu, G., Dodi, G., & Cojocaru, E. (2019). Current Practices and Potential Nanotechnology Perspectives for Pain Related to Cystic Fibrosis. Journal of Clinical Medicine, 8(7), 1023. https://doi.org/10.3390/jcm8071023