Silent Myocardial Perfusion Abnormalities Detected by Stress Cardiovascular Magnetic Resonance in Antiphospholipid Syndrome: A Case-Control Study
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Cardiovascular Magnetic Resonance Imaging Technique
2.3. Cardiovascular Magnetic Resonance Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APS | antiphospholipid syndrome |
aPL | antiphospholipid antibodies |
CMR | cardiovascular magnetic resonance |
CAD | coronary artery disease |
CVD | cardiovascular disease |
MPRI | Myocardial perfusion reserve index |
LGE | late gadolinium enhancement |
MBF | myocardial blood flow |
LV | left ventricular |
LVEDV | left ventricular end diastolic volume |
LVESV | left ventricular end systolic volume |
LVEF | left ventricular ejection fraction |
RVEDV | right ventricular end diastolic volume |
RVESV | right ventricular end systolic volume; |
RVEF | right ventricular ejection fraction |
hs-CRP | high-sensitivity CRP |
hs-TnT | high-sensitivity troponin T |
References
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.H.W.M.; Derksen, R.H.; de Groot, P.G.; Koike, T.; Meroni, P.L.; et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Cervera, R.; Serrano, R.; Pons-Estel, G.J.; Ceberio-Hualde, L.; Shoenfeld, Y.; de Ramón, E.; Buonaiuto, V.; Jacobsen, S.; Zeher, M.M.; Tarr, T.; et al. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: A multicentre prospective study of 1000 patients. Ann. Rheum. Dis. 2015, 74, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Denas, G.; Jose, S.P.; Bracco, A.; Zoppellaro, G.; Pengo, V. Antiphospholipid syndrome and the heart: A case series and literature review. Autoimmun. Rev. 2015, 14, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Cervera, R.; Tektonidou, M.G.; Espinosa, G.; Cabral, A.R.; González, E.B.; Erkan, D.; Vadya, S.; Adrogué, H.E.; Solomon, M.; Zandman-Goddard, G.; et al. Task Force on Catastrophic Antiphospholipid Syndrome (APS) and Non-criteria APS Manifestations (I): Catastrophic APS, APS nephropathy and heart valve lesions. Lupus 2011, 20, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Kampolis, C.; Tektonidou, M.; Moyssakis, I.; Tzelepis, G.E.; Moutsopoulos, H.; Vlachoyiannopoulos, P.G. Evolution of cardiac dysfunction in patients with antiphospholipid antibodies and/or antiphospholipid syndrome: A 10-year followup study. Semin. Arthritis Rheum. 2014, 43, 558–565. [Google Scholar] [CrossRef]
- Yedlapati, N.; Paladugu, N.; Spevack, D.M. Prinzmetal’s angina in patients with antiphospholipid syndrome. Coron. Artery Dis. 2011, 22, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Sangle, S.R.; D’Cruz, D.P.; Syndrome, X. (angina pectoris with normal coronary arteries) and myocardial infarction in patients with anti-phospholipid (Hughes) syndrome. Lupus 2008, 17, 83–85. [Google Scholar] [CrossRef]
- Onea, R.; Germain, P.; Zimmermann, A. Coronary microvasculopathy and intracardiac thrombosis in antiphospholipid syndrome. Arch. Cardiovasc. Dis. 2012, 105, 461–462. [Google Scholar] [CrossRef] [Green Version]
- Azeem, T.; Vassallo, M.; Samani, N.J. Images in cardiology. Endomyocardial fibrosis associated with antiphospholipid syndrome. Heart 2000, 84, 156. [Google Scholar] [CrossRef]
- American College of Cardiology Foundation Task Force on Expert Consensus Documents; Hundley, W.G.; Bluemke, D.A.; Finn, J.P.; Flamm, S.D.; Fogel, M.A.; Friedrich, M.G.; Ho, V.B.; Jerosch-Herold, M.; Kramer, C.M.; et al. CCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J. Am. Coll. Cardiol. 2010, 121, 2462–2508. [Google Scholar]
- Mavrogeni, S.I.; Sfikakis, P.P.; Koutsogeorgopoulou, L.; Markousis-Mavrogenis, G.; Dimitroulas, T.; Kolovou, G.; Kitas, G.D. Cardiac Tissue Characterization and Imaging in Autoimmune Rheumatic Diseases. JACC Cardiovasc. Imaging 2017, 10, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Sacré, K.; Brihaye, B.; Hyafil, F.; Serfaty, J.M.; Escoubet, B.; Zennaro, M.C.; Lidove, O.; Laissy, J.P.; Papo, T. Asymptomatic myocardial ischemic disease in antiphospholipid syndrome: A controlled cardiac magnetic resonance imaging study. Arthritis Rheum. 2010, 62, 2093–2100. [Google Scholar] [PubMed]
- Ponte, M.; Bettencourt, N.; Pereira, E.; Ferreira, N.D.; Chiribiri, A.; Schuster, A.; Albuquerque, A.; Gama, V.; Nagel, E. Anatomical versus functional assessment of coronary artery disease: Direct comparison of computed tomography coronary angiography and magnetic resonance myocardial perfusion imaging in patients with intermediate pre-test probability. Int. J. Cardiovasc. Imaging 2014, 30, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- Schwitter, J.; Nanz, D.; Kneifel, S.; Bertschinger, K.; Buchi, M.; Knusel, P.R.; Marincek, B.; Luscher, T.F.; von Schulthess, G.K. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: A comparison with positron emission tomography and coronary angiography. Circulation 2001, 103, 2230–2235. [Google Scholar] [CrossRef]
- Bernhardt, P.; Levenson, B.; Albrecht, A.; Engels, T.; Strohm, O. Detection of cardiac small vessel disease by adenosine-stress magnetic resonance. Int. J. Cardiol. 2007, 121, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Panting, J.R.; Gatehouse, P.D.; Yang, G.Z.; Grothues, F.; Firmin, D.N.; Collins, P.; Pennell, D.J. Abnormal Subendocardial Perfusion in Cardiac Syndrome X Detected by Cardiovascular Magnetic Resonance Imaging. New Engl. J. Med. 2002, 346, 1948–1953. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Bratis, K.; Koutsogeorgopoulou, L.; Karabela, G.; Savropoulos, E.; Katsifis, G.; Raftakis, J.; Markousis-Mavrogenis, G.; Kolovou, G. Myocardial perfusion in peripheral Raynaud’s phenomenon. Evaluation using stress cardiovascular magnetic resonance. Int. J. Cardiol. 2017, 228, 444–448. [Google Scholar] [CrossRef]
- Ishimori, M.L.; Martin, R.; Berman, D.S.; Goykhman, P.; Shaw, L.J.; Shufelt, C.; Slomka, P.J.; Thomson, L.E.; Schapira, J.; Yang, Y.; et al. Myocardial ischemia in the absence of obstructive coronary artery disease in systemic lupus erythematosus. JACC Cardiovasc. Imaging 2011, 4, 27–33. [Google Scholar] [CrossRef]
- Greenwood, J.P.; Maredia, N.; Younger, J.F.; Brown, J.M.; Nixon, J.; Everett, C.C.; Bijsterveld, P.; Ridgway, J.P.; Radjenovic, A.; Dickinson, C.J.; et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): A prospective trial. Lancet 2012, 379, 453–460. [Google Scholar] [CrossRef]
- Mavrogeni, S.I.; Sfikakis, P.P.; Kitas, G.D.; Kolovou, G.; Tektonidou, M.G. Cardiac involvement in antiphospholipid syndrome: The diagnostic role of noninvasive cardiac imaging. Semin. Arthritis Rheum. 2016, 45, 611–616. [Google Scholar] [CrossRef]
- Hochberg, M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef] [PubMed]
- Schwitter, J.; Wacker, C.M.; Wilke, N.; Al-Saadi, N.; Sauer, E.; Huettle, K.; Schönberg, S.O.; Debl, K.; Strohm, O.; Ahlstrom, H.; et al. Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: The secondary endpoints of the multicenter multivendor MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessm. J. Cardiovasc. Magn. Reson. 2012, 14, 61. [Google Scholar] [CrossRef] [PubMed]
- Grothues, F.; Moon, J.C.; Bellenger, N.G.; Smith, G.S.; Klein, H.U.; Pennell, D.J. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am. Heart J. 2004, 147, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Maceira, A.M.; Prasad, S.K.; Khan, M.; Pennell, D.J. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2006, 8, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aty, H.; Boyé, P.; Zagrosek, A.; Wassmuth, R.; Kumar, A.; Messroghli, D.; Bock, P.; Dietz, R.; Friedrich, M.G.; Schulz-Menger, J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: Comparison of different approaches. J. Am. Coll. Cardiol. 2005, 45, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.V.; Aneja, A.; Jarjour, W.N. CMR in inflammatory vasculitis. J. Cardiovasc. Magn. Reson. 2012, 14, 82. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.E.; Kitagawa, K.; Kato, S.; Nakajima, H.; Kurita, T.; Dohi, K.; Ito, M.; Sakuma, H. Prognostic value of unrecognised myocardial infarction detected by late gadolinium-enhanced MRI in diabetic patients with normal global and regional left ventricular systolic function. Eur. Radiol. 2013, 23, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- Pavlik, G.; Bakács, E.; Csajági, E.; Bakács, T.; Noe, J.; Kirschner, R. Improved cardiorespiratory fitness following moderate exercise may encourage inactive people for doable and sustainable behavioral change. J. Sports Med. Phys. Fit. 2019, 59, 502–509. [Google Scholar] [CrossRef]
- Giles, J.T.; Malayeri, A.A.; Fernandes, V.; Post, W.; Blumenthal, R.S.; Bluemke, D.; Vogel-Claussen, J.; Szklo, M.; Petri, M.; Gelber, A.C.; et al. Left ventricular structure and function in patients with rheumatoid arthritis, as assessed by cardiac magnetic resonance imaging. Arthritis Rheum. 2010, 62, 940–951. [Google Scholar] [CrossRef] [Green Version]
- Espinola-Zavaleta, N.; Alexanderson-Rosas, E.; Granados, N.; Soto, Μ.; Amigo, M. Myocardial perfusion defects in patients with autoimmune diseases: A prospective study. Analysis of two diagnostic tests. Lupus 2006, 15, 38–43. [Google Scholar] [CrossRef]
- Padjas, A.; Płazak, W.; Celińska-Lowenhoff, M.; Mazurek, A.; Perricone, C.; Podolec, P.; Musiał, J. Myocardial Ischaemia, Coronary Atherosclerosis and Pulmonary Pressure Elevation in Antiphospholipid Syndrome Patients. Adv. Clin. Exp. Med. 2016, 25, 1199–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexánderson, E.; Gómez-León, A.; Vargas, A.; Romero, J.L.; Sierra Fernandez, C.; Rodriguez Valero, M.; García-Rojas, L.; Meave, A.; Amigo, M.C. Myocardial ischaemia in patients with primary APS: A 13N-ammonia PET assessment. Rheumatology 2008, 47, 894–896. [Google Scholar] [CrossRef] [PubMed]
- Kotu, L.P.; Engan, K.; Borhani, R.; Katsaggelos, A.K.; Ørn, S.; Woie, L.; Eftestøl, T. Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients. Artif. Intell. Med. 2015, 64, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Bourantas, C.V.; Nikitin, N.P.; Loh, H.P.; Lukaschuk, E.I.; Sherwi, N.; de Silva, R.; Tweddel, A.C.; Alamgir, M.F.; Wong, K.; Gupta, S.; et al. Prevalence of scarred and dysfunctional myocardium in patients with heart failure of ischaemic origin: A cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2011, 13, 53. [Google Scholar] [CrossRef] [PubMed]
- Perl, L.; Netzer, A.; Rechavia, E.; Bental, T.; Assali, A.; Codner, P.; Mager, A.; Battler, A.; Kornowski, R.; Lev, E.I. Long-term outcome of patients with antiphospholipid syndrome who undergo percutaneous coronary intervention. Cardiology 2012, 122, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.; Tektonidou, M. Emerging Therapies in Antiphospholipid Syndrome. Curr. Rheumatol. Rep. 2016, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.M.; Danowski, A.; Wahl, D.G.; Amigo, M.C.; Tektonidou, M.; Pacheco, M.S.; Fleming, N.; Domingues, V.; Sciascia, S.; Lyra, J.O.; et al. The relevance of “non-criteria” clinical manifestations of antiphospholipid syndrome: 14th International Congress on Antiphospholipid Antibodies Technical Task Force Report on Antiphospholipid Syndrome Clinical Features. Autoimmun. Rev. 2015, 14, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.R.; Cheezum, M.K.; Veeranna, V.; Horgan, S.J.; Taqueti, V.R.; Murthy, V.L.; Foster, C.; Hainer, J.; Daniels, K.M.; Rivero, J.; et al. Ranolazine in symptomatic diabetic patients without obstructive coronary artery disease: Impact on microvascular and diastolic function. J. Am. Heart Assoc. 2017, 6, e005027. [Google Scholar] [CrossRef]
- Tektonidou, M.G.; Andreoli, L.; Limper, M.; Amoura, Z.; Cervera, R.; Costedoat-Chalumeau, N.; Cuadrado, M.J.; Dörner, T.; Ferrer-Oliveras, R.; Hambly, K.; et al. EULAR Recommendations for the management of Antiphospholipid Syndrome in adults. Ann. Rheum. Dis. 2019. [Google Scholar] [CrossRef]
- Tektonidou, M.G.; Andreoli, L.; Limper, M.; Tincani, A.; Ward, M.M. Management of thrombotic and obstetric antiphospholipid syndrome: A systematic literature review informing the EULAR recommendations for the management of antiphospholipid syndrome in adults. RMD Open 2019, 5, e000924. [Google Scholar] [CrossRef]
- Winau, L.; Baydes, R.H.; Braner, A.; Drott, U.; Burkhardt, H.; Sangle, S.; D’cruz, D.P.; Carr-White, G.; Marber, M.; Schnoes, K.; et al. High-sensitive troponin is associated with subclinical imaging biosignature of inflammatory cardiovascular involvement in systemic lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
Variable | All APS Patients | Primary APS | SLE/APS | p-Value |
---|---|---|---|---|
Number of participants | 44.000 | 22.000 | 22.000 | N/A |
Demographics: | ||||
Age (years) | 44.0 (12.9) | 45.9 (12.5) | 42.0 (13.2) | 0.320 |
Female gender | 28 (64%) | 12 (55%) | 16 (73%) | 0.210 |
BMI (kg/m2) | 28.5 (5.2) | 29.1 (4.3) | 27.8 (6.1) | 0.420 |
Disease Duration (Years) | 12.0 (5.5, 21.0) | 10.5 (6.0, 19.0) | 14.5 (5.0, 21) | 0.638 |
APS Characteristics: | ||||
Obstetric APS (females only): | ||||
Absent | 17 (39%) | 6 (27%) | 11 (50%) | 0.278 |
Present | 11 (25%) | 6 (27%) | 5 (23%) | |
Anticardiolipin antibodies | 35 (80%) | 17 (77%) | 18 (82%) | 0.710 |
Anti β2-glycoprotein I antibodies | 29 (66%) | 16 (73%) | 13 (59%) | 0.340 |
Lupus anticoagulant | 35 (80%) | 18 (82%) | 17 (77%) | 0.710 |
Double-positive aPL | 15 (34%) | 8 (36%) | 7 (32%) | 0.750 |
Triple-positive aPL | 20 (45%) | 11 (50%) | 9 (41%) | 0.540 |
Cardiovascular risk factors: | ||||
Family History of CAD | 4 (9%) | 2 (9%) | 2 (9%) | 0.999 |
Smoking: | ||||
Non-smoker | 20 (45%) | 11 (50%) | 9 (41%) | |
Smoker (past) | 12 (27%) | 5 (23%) | 7 (32%) | 0.770 |
Smoker (present) | 12 (27%) | 6 (27%) | 6 (27%) | |
Diabetes | 2 (5%) | 0 (0%) | 2 (9%) | 0.150 |
Hypertension | 6 (14%) | 4 (18%) | 2 (9%) | 0.380 |
Dyslipidaemia | 6 (14%) | 4 (18%) | 2 (9%) | 0.380 |
Number of CVD Risk Factors | 2.0 (1.0, 2.0) | 2.0 (1.0, 3.0) | 1.5 (1.0, 2.0) | 0.160 |
Cardiovascular Medications: | ||||
ACE inhibitors | 7 (16%) | 3 (14%) | 4 (18%) | 0.680 |
Angiotensin receptor antagonists | 3 (7%) | 1 (5%) | 2 (9%) | 0.550 |
Calcium channel blockers | 3 (7%) | 2 (9%) | 1 (5%) | 0.550 |
Diuretics | 2 (5%) | 1 (5%) | 1 (5%) | 0.999 |
β-adrenoreceptor blockers | 6 (14%) | 4 (18%) | 2 (9%) | 0.380 |
Statins | 5 (11%) | 3 (14%) | 2 (9%) | 0.630 |
Anticoagulants | 41 (93%) | 22 (100%) | 19 (86%) | 0.073 |
Acetylsalicylic acid | 17 (39%) | 9 (41%) | 8 (36%) | 0.096 |
Immunosupressive Medications: | ||||
Corticosteroids | 14 (32%) | 1 (5%) | 13 (59%) | <0.001 |
Hydroxychloroquine | 26 (59%) | 8 (36%) | 18 (82%) | 0.002 |
Azathioprine | 5 (11%) | 4 (18%) | 1 (5%) | 0.154 |
Methotrexate | 4 (9%) | 1 (5%) | 3 (14%) | 0.290 |
Mycophenolate Mofetil | 4 (9%) | 0 (0%) | 4 (18%) | 0.036 |
Mycophenolic Acid | 1 (2%) | 0 (0%) | 1 (5%) | 0.310 |
Previous Vascular Events: | ||||
Stroke | 5 (11%) | 5 (23%) | 0 (0%) | 0.018 |
Arterial thrombosis | 19 (43%) | 12 (55%) | 7 (32%) | 0.130 |
Venous thrombosis | 30 (68%) | 15 (68%) | 15 (68%) | 0.999 |
Recurrent thrombosis | 17 (39%) | 12 (55%) | 5 (23%) | 0.030 |
Recurrence on Anticoagulants | 11 (26%) | 7 (32%) | 4 (19%) | 0.340 |
CMR Variables: | ||||
LV end diastolic volume (mL) | 131.5 (110.0, 160.5) | 131.5 (120.0, 172.0) | 131.5 (104.0, 159.0) | 0.310 |
LV end systolic volume (mL) | 47.5 (38.5, 61.5) | 49.5 (40.0, 69.0) | 45.0 (33.0, 57.0) | 0.250 |
LV ejection fraction (%) | 63.5 (60.0, 67.0) | 63.0 (60.0, 67.0) | 64.0 (60.0, 67.0) | 0.800 |
LV mass (g) | 81.0 (65.5, 98.5) | 86.0 (67.0, 106.0) | 78.0 (60.0, 89.0) | 0.150 |
RV end diastolic volume (mL) | 109.0 (84.0, 126.5) | 114.5 (89.0, 129.0) | 103.5 (70.0, 116.0) | 0.330 |
RV end systolic volume (mL) | 38.5 (29.0, 48.5) | 40.5 (32.0, 49.0) | 36.0 (24.0, 46.0) | 0.400 |
RV ejection fraction (%) | 64.0 (59.5, 67.0) | 63.0 (59.0, 66.0) | 65.0 (60.0, 69.0) | 0.450 |
LGE (present/absent) | 16 (36%) | 8 (36%) | 8 (36%) | 0.400 |
LGE as % LV mass (only if LGE is present) | 4.5 (3.5–7.5) | 6.5 (3.0, 15.0) | 4.0 (3.5, 5.5) | 0.290 |
Myocardial perfusion reserve index (MPRI) | 1.5 (0.9, 1.9) | 1.4 (0.9, 1.8) | 1.5 (0.9, 2.1) | 0.999 |
Biomarkers: | ||||
High-sensitivity C-reactive protein (mg/L) | 2.4 (1.2, 5.0) | 1.7 (1.1, 5.0) | 2.6 (1.2, 4.9) | 0.760 |
High-sensitivity Troponin-T below lowest limit of detection | 27 (61%) | 15 (68%) | 12 (55%) | 0.350 |
High-sensitivity Troponin-T (pg/mL)–within detection range | 7.8 (5.6, 19.6) | 19.5 (7.0, 36.0) | 6.7 (4.3, 9.0) | 0.040 |
Parameters | Descriptive Statistics (APS Patients) | Descriptive Statistics (Matched Controls) | p-Value |
---|---|---|---|
Number of participants | 44 | 44 | N/A |
LVEDV (mL) | 131.5 (110.0, 160.5) | 140.0 (123.0, 160.0) | 0.628 |
LVESV (mL) | 47.5 (38.5, 61.5) | 51.0 (44.0, 63.5) | 0.517 |
LVEF (%) | 63.5 (60.0, 67.0) | 63.0 (58.0, 66.0) | 0.607 |
LV Mass (g) | 81.0 (65.5, 98.5) | 121.5 (112.0, 140.0) | <0.001 |
RVEDV (mL) | 109.0 (84.0, 126.5) | 125.0 (120.0, 150.0) | <0.001 |
RVESV (mL) | 38.5 (29.0, 48.5) | 45.0 (40.0, 48.0) | 0.057 |
RVEF (%) | 64.0 (59.5, 67.0) | 60.0 (58.0, 64.0) | 0.079 |
LGE | 16 (36%) | 0 (0%) | <0.001 |
MPRI | 1.5 (0.9, 1.9) | 2.7 (2.2, 3.2) | <0.001 |
Variable | MPRI below Median | MPRI above Median | p-Value |
---|---|---|---|
Number of participants | 24 | 20 | |
Demographics: | |||
Age (years) | 43.4 (13.3) | 44.7 (12.6) | 0.750 |
Female gender | 13 (54%) | 15 (75%) | 0.153 |
BMI (kg/m2) | 27.6 (5.9) | 29.5 (4.2) | 0.230 |
Disease Duration (Years) | 14.0 (6.5, 21.0) | 9.0 (4.0, 20.0) | 0.395 |
APS Characteristics: | |||
Primary APS | 13 (54%) | 9 (45%) | 0.540 |
Obstetric APS (females only): | |||
Absent | 5 (21%) | 12 (60%) | 0.029 |
Present | 8 (33%) | 3 (15%) | |
Anticardiolipin antibodies | 18 (75%) | 17 (85%) | 0.410 |
anti β2-glycoprotein I antibodies | 15 (63%) | 14 (70%) | 0.600 |
Lupus anticoagulant | 20 (83%) | 15 (75%) | 0.500 |
Double-positive aPL | 7 (29%) | 8 (40%) | 0.450 |
Triple-positive aPL | 11 (46%) | 9 (45%) | 0.960 |
Cardiovascular risk factors: | |||
Family History of CAD | 2 (8%) | 2 (10%) | 0.850 |
Smoking: | |||
Non-smoker | 10 (42%) | 10 (50%) | |
Smoker (past) | 6 (25%) | 6 (30%) | 0.610 |
Smoker (present) | 8 (33%) | 4 (20%) | |
Diabetes | 1 (4%) | 1 (5%) | 0.890 |
Hypertension | 3 (13%) | 3 (15%) | 0.810 |
Dyslipidaemia | 2 (8%) | 4 (20%) | 0.260 |
Number of CVD Risk Factors | 2.0 (0.0, 2.0) | 2.0 (1.0, 2.0) | 0.300 |
Cardiovascular Medications: | |||
ACE inhibitors | 4 (17%) | 3 (15%) | 0.880 |
Angiotensin receptor antagonists | 1 (4%) | 2 (10%) | 0.440 |
Calcium channel blockers | 2 (8%) | 1 (5%) | 0.660 |
Diuretics | 2 (8%) | 0 (0%) | 0.190 |
β-Adrenoreceptor blockers | 4 (17%) | 2 (10%) | 0.520 |
Statins | 2 (8%) | 3 (15%) | 0.490 |
Anticoagulants | 23 (96%) | 18 (90%) | 0.440 |
Acetylsalicylic acid | 12 (50%) | 5 (25%) | 0.090 |
Immunosupressive Medications: | |||
Corticosteroids | 5 (21%) | 9 (45%) | 0.087 |
Hydroxychloroquine | 13 (54%) | 13 (65%) | 0.470 |
Azathioprine | 2 (8%) | 2 (8%) | 0.488 |
Methotrexate | 3 (13%) | 1 (5%) | 0.390 |
Mycophenolate Mofetil | 2 (8%) | 2 (10%) | 0.850 |
Mycophenolic Acid | 0 (0%) | 1 (5%) | 0.270 |
Previous Vascular Events: | |||
Stroke | 2 (8%) | 3 (14%) | 0.490 |
Arterial thrombosis | 10 (42%) | 9 (45%) | 0.820 |
Venous thrombosis | 15 (63%) | 15 (75%) | 0.380 |
Recurrent thrombosis | 9 (38%) | 8 (40%) | 0.870 |
Recurrence on Anticoagulants | 5 (21%) | 6 (32%) | 0.420 |
CMR Parameters: | |||
Left ventricular end diastolic volume (mL) | 129.0 (112.5, 158.5) | 142.5 (110.0, 162.0) | 0.800 |
Left ventricular end systolic volume (mL) | 48.0 (39.5, 66.5) | 47.0 (38.5, 60.5) | 0.690 |
Left ventricular ejection fraction (%) | 61.5 (58.5, 65.0) | 64.5 (62.5, 68.0) | 0.041 |
Left ventricular mass (g) | 88.0 (66.5, 103.0) | 76.0 (59.5, 84.0) | 0.110 |
Right ventricular end diastolic volume (mL) | 103.5 (79.0, 124.0) | 115.5 (84.5, 129.5) | 0.500 |
Right ventricular end systolic volume (mL) | 38.5 (29.5, 48.5) | 38.5 (28.5, 48.5) | 0.970 |
Right ventricular ejection fraction (%) | 62.5 (56.0, 66.0) | 65.0 (62.0, 69.0) | 0.073 |
LGE as % LV mass (only if LGE is present) | 5.0 (3.0, 8.0) | 4.0 (4.0, 7.0) | 0.950 |
Late gadolinium enhancement (present/absent) | 11 (46%) | 5 (25%) | 0.150 |
Biomarkers: | |||
High-sensitivity C-reactive protein (mg/L) | 3.0 (0.8, 5.8) | 2.2 (1.2, 2.7) | 0.350 |
High-sensitivity Troponin-T below lowest limit of detection | 14 (58%) | 13 (65%) | 0.650 |
High-sensitivity Troponin-T (pg/mL)–within detection range | 7.3 (4.3, 21.3) | 9.0 (5.8, 19.5) | 0.490 |
Variable | Coefficient [95% Confidence Interval] | p-Value |
---|---|---|
Female gender | −0.0167 [−0.48, 0.45] | 0.943 |
LVEF (%) | −0.0081 [−0.024, 0.041] | 0.615 |
RVEF (%) | 0.024 [−0.18, 0.067] | 0.251 |
Corticosteroids | 0.445 [−0.027, 0.918] | 0.064 |
Acetylsalicylic acid | −2.651 [−0.67, 0.14] | 0.196 |
Variable | LGE Absent | LGE Present | p-Value |
---|---|---|---|
Number of participants | 28 | 16 | |
Demographics: | |||
Age (years) | 44.4 (12.8) | 43.1 (13.3) | 0.750 |
Female gender | 18 (64%) | 10 (63%) | 0.906 |
BMI (kg/m2) | 29.3 (4.9) | 27.0 (5.6) | 0.170 |
Disease Duration (Years) | 10.5 (6.5, 20.5) | 14.0 (4.5, 22.0) | 0.660 |
APS Characteristics: | |||
Primary APS | 14 (50%) | 8 (50%) | 0.999 |
Obstetric APS (females only): | |||
Absent | 9 (32%) | 8 (50%) | 0.298 |
Present | 9 (32%) | 2 (12.5%) | |
Anticardiolipin antibodies | 23 (82%) | 12 (75%) | 0.570 |
Anti β2-glycoprotein I antibodies | 21 (75%) | 8 (50%) | 0.092 |
Lupus anticoagulant | 21 (75%) | 14 (88%) | 0.320 |
Double-positive aPL | 11 (39%) | 4 (25%) | 0.336 |
Triple-positive aPL | 13 (46%) | 7 (44%) | 0.860 |
Cardiovascular risk factors: | |||
Family History of CAD | 2 (7%) | 2 (13%) | 0.550 |
Smoking: | |||
Non-smoker | 10 (36%) | 10 (63%) | |
Smoker (past) | 11 (39%) | 1 (6%) | 0.054 |
Smoker (present) | 7 (25%) | 5 (31%) | |
Diabetes | 1 (4%) | 1 (6%) | 0.680 |
Hypertension | 5 (18%) | 1 (6%) | 0.280 |
Dyslipidaemia | 4 (14%) | 2 (13%) | 0.870 |
Number of CVD Risk Factors | 2.0 (1.0, 2.0) | 1.0 (0.0, 2.0) | 0.029 |
Cardiovascular Medications: | |||
ACE inhibitors | 3 (11%) | 4 (25%) | 0.210 |
Angiotensin receptor antagonists | 3 (11%) | 0 (0%) | 0.170 |
Calcium channel blockers | 2 (7%) | 1 (6%) | 0.910 |
Diuretics | 0 (0%) | 2 (13%) | 0.056 |
β-Adrenoreceptor blockers | 2 (7%) | 4 (25%) | 0.097 |
Statins | 4 (14%) | 1 (6%) | 0.420 |
Anticoagulants | 26 (93%) | 15 (94%) | 0.910 |
Acetylsalicylic acid | 12 (43%) | 5 (31%) | 0.450 |
Immunosupressive Medications: | |||
Corticosteroids | 9 (32%) | 5 (31%) | 0.950 |
Hydroxychloroquine | 16 (57%) | 10 (63%) | 0.730 |
Azathioprine | 2 (%) | 1 (%) | 0.910 |
Methotrexate | 3 (11%) | 1 (6%) | 0.620 |
Mycophenolate Mofetil | 0 (0%) | 1 (6%) | 0.180 |
Mycophenolic Acid | 2 (7%) | 2 (13%) | 0.550 |
Previous Vascular Events: | |||
Stroke | 4 (%) | 1 (%) | 0.420 |
Arterial thrombosis | 14 (50%) | 5 (31%) | 0.230 |
Venous thrombosis | 18 (64%) | 12 (75%) | 0.460 |
Recurrent thrombosis | 12 (43%) | 5 (31%) | 0.450 |
Recurrence on Anticoagulants | 7 (26%) | 4 (25%) | 0.950 |
CMR Parameters: | |||
Left ventricular end diastolic volume (mL) | 126.5 (104.5, 147.5) | 158.5 (123.5, 185.5) | 0.071 |
Left ventricular end systolic volume (mL) | 47.5 (36.5, 55.0) | 52.0 (41.5, 80.5) | 0.120 |
Left ventricular ejection fraction (%) | 64.0 (61.0, 66.5) | 61.0 (53.0, 67.5) | 0.240 |
Left ventricular mass (g) | 77.0 (61.5, 95.0) | 85.5 (67.0, 107.0) | 0.280 |
Right ventricular end diastolic volume (mL) | 110.0 (84.0, 126.5) | 104.5 (80.0, 127.0) | 0.970 |
Right ventricular end systolic volume (mL) | 38.5 (28.5, 49.5) | 38.5 (30.0, 46.5) | 0.760 |
Right ventricular ejection fraction (%) | 65.0 (60.5, 68.5) | 62.5 (55.0, 65.5) | 0.092 |
Biomarkers: | |||
High-sensitivity C-reactive protein (mg/L) | 2.2 (1.1, 3.3) | 3.5 (1.2, 5.6) | 0.407 |
High-sensitivity Troponin-T below lowest limit of detection | 18 (64%) | 9 (56%) | 0.600 |
High-sensitivity Troponin-T (pg/mL)–within detection range | 7.3 (5.6, 18.4) | 9.0 (4.6, 36.0) | 0.380 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavrogeni, S.I.; Markousis-Mavrogenis, G.; Karapanagiotou, O.; Toutouzas, K.; Argyriou, P.; Velitsista, S.; Kanoupakis, G.; Apostolou, D.; Hautemann, D.; Sfikakis, P.P.; et al. Silent Myocardial Perfusion Abnormalities Detected by Stress Cardiovascular Magnetic Resonance in Antiphospholipid Syndrome: A Case-Control Study. J. Clin. Med. 2019, 8, 1084. https://doi.org/10.3390/jcm8071084
Mavrogeni SI, Markousis-Mavrogenis G, Karapanagiotou O, Toutouzas K, Argyriou P, Velitsista S, Kanoupakis G, Apostolou D, Hautemann D, Sfikakis PP, et al. Silent Myocardial Perfusion Abnormalities Detected by Stress Cardiovascular Magnetic Resonance in Antiphospholipid Syndrome: A Case-Control Study. Journal of Clinical Medicine. 2019; 8(7):1084. https://doi.org/10.3390/jcm8071084
Chicago/Turabian StyleMavrogeni, Sophie I., George Markousis-Mavrogenis, Olga Karapanagiotou, Konstantinos Toutouzas, Panagiotis Argyriou, Stella Velitsista, George Kanoupakis, Dimitrios Apostolou, David Hautemann, Petros P. Sfikakis, and et al. 2019. "Silent Myocardial Perfusion Abnormalities Detected by Stress Cardiovascular Magnetic Resonance in Antiphospholipid Syndrome: A Case-Control Study" Journal of Clinical Medicine 8, no. 7: 1084. https://doi.org/10.3390/jcm8071084
APA StyleMavrogeni, S. I., Markousis-Mavrogenis, G., Karapanagiotou, O., Toutouzas, K., Argyriou, P., Velitsista, S., Kanoupakis, G., Apostolou, D., Hautemann, D., Sfikakis, P. P., & Tektonidou, M. G. (2019). Silent Myocardial Perfusion Abnormalities Detected by Stress Cardiovascular Magnetic Resonance in Antiphospholipid Syndrome: A Case-Control Study. Journal of Clinical Medicine, 8(7), 1084. https://doi.org/10.3390/jcm8071084