Comparison of Glucose Tolerance between Kidney Transplant Recipients and Healthy Controls
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design and Participants
2.2. Immunosuppressive Regimen
2.3. Data Collection
2.4. Glucose Intolerance, Insulin Resistance, and β Cell Function
2.5. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Insulin Secretion and Resistance in Subjects with NGT and Glucose Intolerance
3.3. Comparison of Prevalence of Glucose Intolerance by Multivariate Logistic Regression Analysis
3.4. Comparison of FPG and 2 h Plasma Glucose Levels by Multivariate Logistic Regression Analysis
3.5. Comparison of HOMA-R and HOMA-β by Multivariate Logistic Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Kasiske, B.L.; Snyder, J.J.; Gilbertson, D.; Matas, A.J. Diabetes mellitus after kidney transplantation in the United States. Am. J. Transplant. 2003, 3, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Krentz, A.J.; Wheeler, D.C. New-onset diabetes after transplantation: A threat to graft and patient survival. Lancet. 2005, 365, 640–642. [Google Scholar] [CrossRef]
- Cosio, F.G.; Kudva, Y.; van der Velde, M.; Larson, T.S.; Textor, S.C.; Griffin, M.D.; Stegall, M.D. New onset hyperglycemia and diabetes are associated with increased cardiovascular risk after kidney transplantation. Kidney Int. 2005, 67, 2415–2421. [Google Scholar] [CrossRef] [Green Version]
- Ekstrand, A.V.; Eriksson, J.G.; Grönhagen-Riska, C.; Ahonen, P.J.; Groop, L.C. Insulin resistance and insulin deficiency in the pathogenesis of posttransplantation diabetes in man. Transplantation 1992, 53, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.H.; Mun, J.I.; Kim, S.I.; Kang, S.W.; Choi, K.H.; Park, K.; Ahn, C.W.; Cha, B.S.; Song, Y.D.; Lim, S.K.; et al. beta-Cell dysfunction rather than insulin resistance is the main contributing factor for the development of postrenal transplantation diabetes mellitus. Transplantation 2001, 71, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, P.; Sharif, A.; Ravindran, V.; Baboolal, K. Long-term progression of abnormal glucose tolerance and its relationship with the metabolic syndrome after kidney transplantation. Transplantation 2014, 97, 576–581. [Google Scholar] [CrossRef]
- Lee, H.C. Post-renal transplant diabetes mellitus in korean subjects: Superimposition of transplant-related immunosuppressant factors on genetic and type 2 diabetic risk factors. Diabetes Metab. J. 2012, 36, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Unwin, N.; Shaw, J.; Zimmet, P.; Alberti, K.G. Impaired glucose tolerance and impaired fasting glycaemia: The current status on definition and intervention. Diabet. Med. 2002, 19, 708–723. [Google Scholar]
- Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 26, S5–S20. [Google Scholar] [CrossRef]
- Sharif, A.; Moore, R.H.; Baboolal, K. The use of oral glucose tolerance tests to risk stratify for new-onset diabetes after transplantation: An underdiagnosed phenomenon. Transplantation 2006, 82, 1667–1672. [Google Scholar] [CrossRef]
- Uchida, J.; Iwai, T.; Kuwabara, N.; Machida, Y.; Iguchi, T.; Naganuma, T.; Kumada, N.; Kawashima, H.; Nakatani, T. Glucose intolerance in renal transplant recipients is associated with increased urinary albumin excretion. Transpl. Immunol. 2011, 24, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.C.; Matthews, D.R.; Hermans, M.P. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998, 21, 2191–2192. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Gabir, M.M.; Hanson, R.L.; Dabelea, D.; Imperatore, G.; Roumain, J.; Bennett, P.H.; Knowler, W.C. The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care 2000, 23, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Cole, E.H.; Johnston, O.; Rose, C.L.; Gill, J.S. Impact of acute rejection and new-onset diabetes on long-term transplant graft and patient survival. Clin. J. Am. Soc. Nephrol. 2008, 3, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Bloom, R.D.; Crutchlow, M.F. New-onset diabetes mellitus in the kidney recipient: Diagnosis and management strategies. Clin. J. Am. Soc. Nephrol. 2008, 3, S38–S48. [Google Scholar] [CrossRef]
- Briggs, J.D. Causes of death after renal transplantation. Nephrol. Dial. Transplant. 2001, 16, 1545–1549. [Google Scholar] [CrossRef] [Green Version]
- Levitan, E.B.; Song, Y.; Ford, E.S.; Liu, S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch. Intern. Med. 2004, 164, 2147–2155. [Google Scholar] [CrossRef]
- Stattin, P.; Björ, O.; Ferrari, P.; Lukanova, A.; Lenner, P.; Lindahl, B.; Hallmans, G.; Kaaks, R. Prospective study of hyperglycemia and cancer risk. Diabetes Care 2007, 30, 561–567. [Google Scholar] [CrossRef]
- de Vegt, F.; Dekker, J.M.; Ruhé, H.G.; Stehouwer, C.D.; Nijpels, G.; Bouter, L.M.; Heine, R.J. Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: The Hoorn Study. Diabetologia 1999, 42, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.T.; Pham, P.M.; Pham, S.V.; Pham, P.A.; Pham, P.C. New onset diabetes after transplantation (NODAT): An overview. Diabetes Metab. Syndr. Obes. 2011, 4, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Shivaswamy, V.; Boerner, B.; Larsen, J. Post-Transplant Diabetes Mellitus: Causes, Treatment, and Impact on Outcomes. Endocr. Rev. 2016, 37, 37–61. [Google Scholar] [CrossRef] [PubMed]
Variables | KTR Group | HC Group | p |
---|---|---|---|
Median [IQR] or % | Median [IQR] or % | ||
n = 94 | n = 134 | ||
Age (years) | 47 (37, 58) | 57 (49, 65) | <0.001 |
Male gender (%) | 48.9 | 39.6 | 0.176 |
Body mass index (kg/m2) | 20.36 (18.52, 22.52) | 22.36 (20.74, 24.61) | <0.001 |
Serum creatinine (mg/dL) | 1.21 (0.93, 1.43) | 0.68 (0.59, 0.79) | <0.001 |
eGFR (mL/min/1.73 m2) | 47.02 (40.69, 55.65) | 78.08 (69.93, 87.55) | <0.001 |
Hemoglobin (g/dL) | 12.1 (11.1, 13.2) | 13.8 (13.0, 14.8) | <0.001 |
Hematocrit (%) | 36.35 (34.03, 39.08) | 41.35 (39.23, 43.95) | <0.001 |
HbA1c (%) | 5.4 (5.2, 5.8) | 5.7 (5.5, 5.9) | <0.001 |
Triglycerides (mg/dL) | 99 (74, 137) | 94 (69, 138) | 0.823 |
Total cholesterol (mg/dL) | 197 (179, 217) | 202 (181, 223) | 0.231 |
HDL cholesterol (mg/dL) | 66 (57, 74) | 61 (50, 72) | 0.077 |
LDL cholesterol (mg/dL) | 111 (92, 128) | 116 (101, 138) | 0.036 |
Dyslipidemia (%) | 38.3 | 43.3 | 0.494 |
Systolic blood pressure (mmHg) | 120 (112, 126) | 117 (106, 131) | 0.478 |
Diastolic blood pressure (mmHg) | 74 (68, 80) | 71 (64, 78) | 0.127 |
Hypertension (%) | 76.6 | 15.7 | <0.001 |
Administration of ARB (%) | 53.2 | 12.7 | <0.001 |
Administration of ACEi (%) | 23.6 | 0.7 | <0.001 |
Administration of β-blocker (%) | 8.5 | 0 | <0.001 |
Administration of calcium channel blocker (%) | 44.7 | 8.2 | <0.001 |
Administration of thiazide diuretics (%) | 5.3 | 0.7 | 0.084 |
Administration of loop diuretics (%) | 3.2 | 0 | 0.069 |
Post-transplant duration (years) | 5.4 (2.8, 9.6) | - | - |
Donor type (cadaver) (%) | 16.0 | - | - |
CNI (Tacrolimus) (%) | 39.4 | - | - |
Variables | KTR Group | HC Group | p |
---|---|---|---|
Median [IQR] or % | Median [IQR] or % | ||
n = 94 | n = 134 | ||
Fasting plasma glucose (mg/dL) | 95 (88, 99) | 95 (90, 101) | 0.471 |
2 h plasma glucose (mg/dL) | 113 (96, 132) | 114 (96, 129) | 0.911 |
Fasting IRI (μU/mL) | 6.5 (5.3, 8.7) | 5.6 (4.0, 8.4) | 0.027 |
Glucose intolerance (%) | 19.4 | 20.1 | 1.000 |
HOMA-R (mIU/mmol L-2) | 1.59 (1.15, 1.98) | 1.37 (0.89, 2.00) | 0.051 |
HOMA-β (mIU/mmol) | 73.78 (53.65, 105.65) | 64.02 (47.25, 92.59) | 0.027 |
Insulinogenic Index (μU 10/mg) | 0.80 (0.49, 1.22) | 0.78 (0.39, 1.26) | 0.804 |
OR | 95% CI | p | |
---|---|---|---|
Unadjusted Model: KTR (vs. HC) | 0.939 | 0.483, 1.825 | 0.852 |
Model 1: KTR (vs. HC) adjusted for age, gender, and BMI | 1.374 | 0.645, 2.927 | 0.410 |
Model 2: KTR (vs. HC) adjusted for Model 1 and eGFR | 3.544 | 1.143, 10.986 | 0.028 |
Model 3: KTR (vs. HC) adjusted for Model 2 and SBP | 3.794 | 1.200, 11.996 | 0.023 |
FPG | 2-hPG | |||||
---|---|---|---|---|---|---|
B | S.E. | p | B | S.E. | p | |
Unadjusted Model: KTR (vs. HC) | –0.349 | 1.439 | 0.809 | 2.101 | 4.604 | 0.649 |
Model 1: KTR (vs. HC) adjusted for age, gender, and BMI | 1.254 | 1.488 | 0.400 | 10.713 | 4.861 | 0.029 |
Model 2: KTR (vs. HC) adjusted for Model 1 and eGFR | 4.062 | 2.226 | 0.069 | 15.079 | 7.311 | 0.040 |
Model 3: KTR (vs. HC) adjusted for Model 2 and SBP | 4.068 | 2.229 | 0.069 | 15.091 | 7.329 | 0.041 |
HOMA-R | HOMA-β | |||||
---|---|---|---|---|---|---|
B | S.E. | p | B | S.E. | p | |
Unadjusted Model: KTR (vs. HC) | 0.205 | 0.170 | 0.229 | 15.850 | 6.341 | 0.013 |
Model 1: KTR (vs. HC) adjusted for age, gender, and BMI | 0.516 | 0.170 | 0.003 | 24.581 | 6.417 | <0.001 |
Model 2: KTR (vs. HC) adjusted for Model 1 and eGFR | 0.615 | 0.256 | 0.017 | 28.699 | 9.658 | 0.003 |
Model 3: KTR (vs. HC) adjusted for Model 2 and SBP | 0.616 | 0.256 | 0.017 | 28.715 | 9.689 | 0.003 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimada, H.; Uchida, J.; Nishide, S.; Kabei, K.; Kosoku, A.; Maeda, K.; Iwai, T.; Naganuma, T.; Takemoto, Y.; Nakatani, T. Comparison of Glucose Tolerance between Kidney Transplant Recipients and Healthy Controls. J. Clin. Med. 2019, 8, 920. https://doi.org/10.3390/jcm8070920
Shimada H, Uchida J, Nishide S, Kabei K, Kosoku A, Maeda K, Iwai T, Naganuma T, Takemoto Y, Nakatani T. Comparison of Glucose Tolerance between Kidney Transplant Recipients and Healthy Controls. Journal of Clinical Medicine. 2019; 8(7):920. https://doi.org/10.3390/jcm8070920
Chicago/Turabian StyleShimada, Hisao, Junji Uchida, Shunji Nishide, Kazuya Kabei, Akihiro Kosoku, Keiko Maeda, Tomoaki Iwai, Toshihide Naganuma, Yoshiaki Takemoto, and Tatsuya Nakatani. 2019. "Comparison of Glucose Tolerance between Kidney Transplant Recipients and Healthy Controls" Journal of Clinical Medicine 8, no. 7: 920. https://doi.org/10.3390/jcm8070920
APA StyleShimada, H., Uchida, J., Nishide, S., Kabei, K., Kosoku, A., Maeda, K., Iwai, T., Naganuma, T., Takemoto, Y., & Nakatani, T. (2019). Comparison of Glucose Tolerance between Kidney Transplant Recipients and Healthy Controls. Journal of Clinical Medicine, 8(7), 920. https://doi.org/10.3390/jcm8070920