Flow Cytometry-Based Quantification of Neutrophil Extracellular Traps Shows an Association with Hypercoagulation in Septic Shock and Hypocoagulation in Postsurgical Systemic Inflammation—A Proof-of-Concept Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design
2.2. Flow Cytometry
2.3. Fluorescence Microscopy
2.4. ELISA
2.5. Coagulatory Analyses
2.6. Statistical Analysis
3. Results
3.1. Quantification of Free Circulating NETs
3.2. Association of NETs to Inflammatory Parameters
3.3. Association of NETs to Coagulatory Parameters
3.4. Association of NETs to Outcome Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Lyons, P.G.; Micek, S.T.; Hampton, N.; Kollef, M.H. Sepsis-Associated Coagulopathy Severity Predicts Hospital Mortality. Crit. Care Med. 2018, 46, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.B.; Winfield, R.D.; Aibiki, M.; Neal, M.D. Is Coagulopathy an Appropriate Therapeutic Target During Critical Illness Such as Trauma or Sepsis? Shock 2017, 48, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Yatabe, T.; Inoue, S.; Sakamoto, S.; Sumi, Y.; Nishida, O.; Hayashida, K.; Hara, Y.; Fukuda, T.; Matsushima, A.; Matsuda, A.; et al. The anticoagulant treatment for sepsis induced disseminated intravascular coagulation; network meta-analysis. Thromb. Res. 2018, 171, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Lai, P.S.; Matteau, A.; Iddriss, A.; Hawes, J.C.L.; Ranieri, V.; Thompson, B.T. An updated meta-analysis to understand the variable efficacy of drotrecogin alfa (activated) in severe sepsis and septic shock. Minerva Anestesiol. 2013, 79, 33–43. [Google Scholar]
- Ranieri, V.M.; Thompson, B.T.; Barie, P.S.; Dhainaut, J.-F.; Douglas, I.S.; Finfer, S.; Gårdlund, B.; Marshall, J.C.; Rhodes, A.; Artigas, A.; et al. Drotrecogin alfa (activated) in adults with septic shock. N. Engl. J. Med. 2012, 366, 2055–2064. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Wang, Z.; Lin, Y.; Liu, B.; Zhang, Z.; Ma, X. Comparison of a new criteria for sepsis-induced coagulopathy and International Society on Thrombosis and Haemostasis disseminated intravascular coagulation score in critically ill patients with sepsis 3.0: a retrospective study. Blood Coagul. Fibrinolysis 2018, 29, 551–558. [Google Scholar] [CrossRef]
- Wada, H.; Thachil, J.; Di Nisio, M.; Mathew, P.; Kurosawa, S.; Gando, S.; Kim, H.K.; Nielsen, J.D.; Dempfle, C.-E.; Levi, M.; et al. Guidance for diagnosis and treatment of DIC from harmonization of the recommendations from three guidelines. J. Thromb. Haemost. 2013. [Google Scholar] [CrossRef]
- Gando, S.; Saitoh, D.; Ogura, H.; Fujishima, S.; Mayumi, T.; Araki, T.; Ikeda, H.; Kotani, J.; Kushimoto, S.; Miki, Y.; et al. A multicenter, prospective validation study of the Japanese Association for Acute Medicine disseminated intravascular coagulation scoring system in patients with severe sepsis. Crit. Care 2013, 17, R111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delabranche, X.; Quenot, J.-P.; Lavigne, T.; Mercier, E.; François, B.; Severac, F.; Grunebaum, L.; Mehdi, M.; Zobairi, F.; Toti, F.; et al. Early Detection of Disseminated Intravascular Coagulation During Septic Shock: A Multicenter Prospective Study. Crit. Care Med. 2016, 44, e930–e939. [Google Scholar] [CrossRef] [PubMed]
- Delabranche, X.; Boisramé-Helms, J.; Asfar, P.; Berger, A.; Mootien, Y.; Lavigne, T.; Grunebaum, L.; Lanza, F.; Gachet, C.; Freyssinet, J.-M.; et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 2013, 39, 1695–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delabranche, X.; Helms, J.; Meziani, F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann. Intensive Care 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef]
- Kimball, A.S.; Obi, A.T.; Diaz, J.A.; Henke, P.K. The Emerging Role of NETs in Venous Thrombosis and Immunothrombosis. Front. Immunol. 2016, 7, 236. [Google Scholar] [CrossRef] [Green Version]
- Gould, T.J.; Lysov, Z.; Liaw, P.C. Extracellular DNA and histones: double-edged swords in immunothrombosis. J. Thromb. Haemost. 2015, 13 (Suppl 1), S82–S91. [Google Scholar] [CrossRef]
- Abrams, S.T.; Mbchb, B.M.; Alhamdi, Y.; Alsabani, M.; Lane, S.; Welters, I.D.; Wang, G.; Toh, C. A Novel Assay for Neutrophil Extracellular Traps (NETs) Formation Independently Predicts Disseminated Intravascular Coagulation and Mortality in Critically Ill Patients Correspondence. Am. J. Respir. Crit. Care Med. 2019, 200, 869–880. [Google Scholar] [CrossRef]
- Yang, S.; Qi, H.; Kan, K.; Chen, J.; Xie, H.; Guo, X.; Zhang, L. Neutrophil Extracellular Traps Promote Hypercoagulability in Patients With Sepsis. SHOCK 2017, 47, 132–139. [Google Scholar] [CrossRef]
- Delabranche, X.; Stiel, L.; Severac, F.; Galoisy, A.-C.; Mauvieux, L.; Zobairi, F.; Lavigne, T.; Toti, F.; Anglès-Cano, E.; Meziani, F.; et al. Evidence of Netosis in Septic Shock-Induced Disseminated Intravascular Coagulation. SHOCK 2017, 47, 313–317. [Google Scholar] [CrossRef]
- Clark, S.R.; Ma, A.C.; Tavener, S.A.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; McAvoy, E.; Sinclair, G.D.; et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007, 13, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Kambas, K.; Mitroulis, I.; Apostolidou, E.; Girod, A.; Chrysanthopoulou, A.; Pneumatikos, I.; Skendros, P.; Kourtzelis, I.; Koffa, M.; Kotsianidis, I.; et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS ONE 2012, 7, e45427. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Miki, T.; Hashiguchi, N.; Tabe, Y.; Nagaoka, I. Is the neutrophil a “prima donna” in the procoagulant process during sepsis? Crit. Care 2014, 18, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, T.A.; Bhandari, A.A.; Wagner, D.D. Histones induce rapid and profound thrombocytopenia in mice. Blood 2011, 118, 3708–3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, B.; Davis, R.P.; Kim, S.-J.; Tse, M.; Esmon, C.T.; Kolaczkowska, E.; Jenne, C.N. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017, 129, 1357–1368. [Google Scholar] [CrossRef] [Green Version]
- Hirose, T.; Hamaguchi, S.; Matsumoto, N.; Irisawa, T.; Seki, M. Presence of Neutrophil Extracellular Traps and Citrullinated Histone H3 in the Bloodstream of Critically Ill Patients. PLoS ONE 2014, 9, e111755. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, S.; Hirose, T.; Akeda, Y.; Matsumoto, N.; Irisawa, T.; Seki, M.; Hosotsubo, H.; Tasaki, O.; Oishi, K.; Shimazu, T.; et al. Identification of neutrophil extracellular traps in the blood of patients with systemic inflammatory response syndrome. J. Int. Med. Res. 2013, 41, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Döring, Y.; Soehnlein, O.; Weber, C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ. Res. 2017, 120, 736–743. [Google Scholar] [CrossRef] [Green Version]
- Bendib, I.; de Chaisemartin, L.; Dessap, A.M.; Chollet-Martin, S.; de Prost, N. Understanding the Role of Neutrophil Extracellular Traps in Patients With Severe Pneumonia and ARDS. Chest 2019, 156, 1278–1280. [Google Scholar] [CrossRef] [Green Version]
- Jorch, S.K.; Kubes, P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 2017, 23, 279–287. [Google Scholar] [CrossRef]
- Czaikoski, P.G.; Mota, J.M.S.C.; Nascimento, D.C.; Sônego, F.; Castanheira, F.V.E.S.; Melo, P.H.; Scortegagna, G.T.; Silva, R.L.; Barroso-Sousa, R.; Souto, F.O.; et al. Neutrophil Extracellular Traps Induce Organ Damage during Experimental and Clinical Sepsis. PLoS ONE 2016, 11, e0148142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Rizo, V.; Martínez-Guzmán, M.A.; Iñiguez-Gutierrez, L.; García-Orozco, A.; Alvarado-Navarro, A.; Fafutis-Morris, M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front. Immunol. 2017, 8, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruchi, Y.; Tsuda, M.; Mori, H.; Takenaka, N.; Gocho, T.; Huq, M.A. Plasma myeloperoxidase-conjugated DNA level predicts outcomes and organ dysfunction in patients with septic shock. Crit. Care 2018, 22, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paunel-Görgülü, A.; Wacker, M.; El Aita, M.; Hassan, S.; Deppe, A.; Choi, Y.; Kuhn, E.; Mehler, T.O. cfDNA correlates with endothelial damage after cardiac surgery with prolonged cardiopulmonary bypass and amplifies NETosis in an intracellular TLR9-independent manner. Sci. Rep. 2017, 7, 1–13. [Google Scholar]
- Sandler, N.; Kaczmarek, E.; Itagaki, K.; Zheng, Y.; Otterbein, L.; Khabbaz, K.; Liu, D.; Senthilnathan, V.; Gruen, R.L.; Hauser, C.J. Mitochondrial DAMPs Are Released During Cardiopulmonary Bypass Surgery and Are Associated With Postoperative Atrial Fibrillation. Heart. Lung Circ. 2017, 29, 697. [Google Scholar] [CrossRef] [Green Version]
- Camicia, G.; Pozner, R.; de Larrañaga, G. Neutrophil extracellular traps in sepsis. Shock 2014, 42, 286–294. [Google Scholar] [CrossRef]
- Larsen, F.F.; Petersen, J.A. Novel biomarkers for sepsis: A narrative review. Eur. J. Intern. Med. 2017, 45, 46–50. [Google Scholar] [CrossRef]
- Simpson, S.Q. SIRS in the Time of Sepsis-3. Chest 2018, 153, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Fogg, D.K.; Kaplan, M.J. A novel image-based quantitative method for the characterization of NETosis. J. Immunol. Methods 2015, 423, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Gavillet, M.; Martinod, K.; Renella, R.; Harris, C.; Shapiro, N.I.; Wagner, D.D.; Williams, D.A. Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples. Am. J. Hematol. 2015, 90, 1155–1158. [Google Scholar] [CrossRef] [Green Version]
- Manda-Handzlik, A.; Ciepiela, O.; Ostafin, M.; Bystrzycka, W.; Sieczkowska, S.; Moskalik, A.; Demkow, U. Flow cytometric quantification of neutrophil extracellular traps: Limitations of the methodological approach. Am. J. Hematol. 2016, 91, E9–E10. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.A.; Gavillet, M. Response to correspondence: Flow cytometric quantification of neutrophil extracellular traps: Limitations of the methodological approach by Ciepiela et al. Am. J. Hematol. 2016, 91, E10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.H.; Cavanaugh, L.; Leung, H.; Yan, F.; Ahmadi, Z.; Chong, B.H.; Passam, F. Quantification of NETs-associated markers by flow cytometry and serum assays in patients with thrombosis and sepsis. Int. J. Lab. Hematol. 2018, 40, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012. Crit. Care Med. 2013, 41, 580–637. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.D.; Lucas, C.D.; MacKellar, A.; Li, F.; Hiersemenzel, K.; Haslett, C.; Davidson, D.J.; Rossi, A.G. Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps. J. Inflamm. 2013, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Yamakawa, K.; Yoshimura, J.; Ito, T.; Hayakawa, M.; Hamasaki, T.; Fujimi, S. External Validation of the Two Newly Proposed Criteria for Assessing Coagulopathy in Sepsis. Thromb. Haemost. 2019, 119, 203–212. [Google Scholar] [CrossRef]
- Gelijns, A.C.; Moskowitz, A.J.; Acker, M.A.; Argenziano, M.; Geller, N.L.; Puskas, J.D.; Perrault, L.P.; Smith, P.K.; Kron, I.L.; Michler, R.E.; et al. Management practices and major infections after cardiac surgery. J. Am. Coll. Cardiol. 2014, 64, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Maugeri, N.; Campana, L.; Gavina, M.; Covino, C.; De Metrio, M.; Panciroli, C.; Maiuri, L.; Maseri, A.; D’Angelo, A.; Bianchi, M.E.; et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost. 2014, 12, 2074–2088. [Google Scholar] [CrossRef]
- Spicer, J.C.J.; Najmeh, S.; Ferri, L. Neutrophil extracellular traps in cancer progression. Cell Mol. Life Sci. 2014, 71, 4179–4194. [Google Scholar]
- Qi, H.; Yang, S.; Zhang, L. Neutrophil Extracellular Traps and Endothelial Dysfunction in Atherosclerosis and Thrombosis. Front. Immunol. 2017, 8, 928. [Google Scholar] [CrossRef]
- Qin, C.; Gu, J.; Hu, J.; Qian, H.; Fei, X.; Li, Y.; Liu, R.; Meng, W.; Kirklin, J.; Dushane, J.; et al. Platelets activation is associated with elevated plasma mitochondrial DNA during cardiopulmonary bypass. J. Cardiothorac. Surg. 2016, 11, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, B.; Urrutia, R.; Yipp, B.G.; Jenne, C.N.; Kubes, P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 2012, 12, 324–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Luo, L.; Braun, O.Ö.; Westman, J.; Madhi, R.; Herwald, H.; Mörgelin, M.; Thorlacius, H. Neutrophil extracellular trap- microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice. Sci. Rep. 2018, 8, 4020. [Google Scholar] [CrossRef] [PubMed]
- Grässle, S.; Huck, V.; Pappelbaum, K.I.; Gorzelanny, C.; Aponte-Santamaría, C.; Baldauf, C.; Gräter, F.; Schneppenheim, R.; Obser, T.; Schneider, S.W. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1382–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massberg, S.; Grahl, L.; von Bruehl, M.-L.; Manukyan, D.; Pfeiler, S.; Goosmann, C.; Brinkmann, V.; Lorenz, M.; Bidzhekov, K.; Khandagale, A.B.; et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 2010, 16, 887–896. [Google Scholar] [CrossRef]
- Noubouossie, D.F.; Whelihan, M.F.; Yu, Y.-B.; Sparkenbaugh, E.; Pawlinski, R.; Monroe, D.M.; Key, N.S. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 2017, 129, 1021–1029. [Google Scholar] [CrossRef]
- Schneck, E.; Samara, O.; Koch, C.; Hecker, A.; Padberg, W.; Lichtenstern, C.; Weigand, M.A.; Uhle, F. Plasma DNA and RNA differentially impact coagulation during abdominal sepsis—an explorative study. J. Surg. Res. 2017, 210, 231–243. [Google Scholar] [CrossRef]
- Teng, N.; Maghzal, G.J.; Talib, J.; Rashid, I.; Lau, A.K.; Stocker, R. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep. 2017, 22, 51–73. [Google Scholar] [CrossRef] [Green Version]
- Baldus, S.; Rudolph, V.; Roiss, M.; Ito, W.D.; Rudolph, T.K.; Eiserich, J.P.; Sydow, K.; Lau, D.; Szöcs, K.; Klinke, A.; et al. Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase. Circulation 2006, 113, 1871–1878. [Google Scholar] [CrossRef] [Green Version]
- Sterling, S.A.; Puskarich, M.A.; Glass, A.F.; Guirgis, F.; Jones, A.E. The Impact of the Sepsis-3 Septic Shock Definition on Previously Defined Septic Shock Patients. Crit. Care Med. 2017, 45, 1436–1442. [Google Scholar] [CrossRef]
- van Breda, S.V.; Vokalova, L.; Neugebauer, C.; Rossi, S.W.; Hahn, S.; Hasler, P. Computational Methodologies for the in vitro and in situ Quantification of Neutrophil Extracellular Traps. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
Septic Shock (n = 20) | Cardiac Surgery (CABG, n = 20) | Major Abdominal Surgery (MAS, n = 20) | Control Patients (CTRL, n = 20) | |
---|---|---|---|---|
General Characteristics | ||||
Age (years) | 69 (64.3–74) | 70 (62–79) | 68 (54–70) | 69 (66.3–74.3) |
Sex (% male) | 70 | 75 | 60 | 70 |
BMI (kg·m−2) | 27.9 (21.7–32.6) | 30 (27.6–36.5) | 24 (22.4–26.9) | 27 (23.2–29.2) |
ASA I II III IV V | 0 0 10 (50%) 9 (45%) 1 (5%) | 0 0 18 (90%) 2 (10%) 0 | 1 (5%) 8 (40%) 11 (55%) 0 0 | 1 (5%) 6 (30%) 13 (65%) 0 0 |
SOFA onset | 10.5 (10–12.5) | NA | NA | NA |
SOFA 24 h | 11.5 (8–13) | 3 (1–3.8) | 2 (0–3) | NA |
SOFA 72 h | 9 (5.5–14.5) | 3.5 (1–4.8) | 3.5 (1.8–4.8) | NA |
Focus of infection Abdominal Pulmonary Urological Soft tissue | 12 (60%) 3 (15%) 3 (15%) 2 (10%) | NA | NA | NA |
Type of abdominal surgery Whipple Procedure Open Partial colectomy Esophagus resection Other major abdominal surgery | NA | NA | 8 (40%) 4 (20%) 4 (20%) 4 (20%) | NA |
Duration of Cardiopulmonary bypass | NA | 93 (74.8–111) | NA | NA |
In-hospital death (%) | 35 | 0 | 5 | 0 |
Preexisting Diseases | ||||
Diabetes mellitus | 9 (45%) | 12 (60%) | 1 (5%) | 8 (40%) |
Chronic kidney failure | 4 (20%) | 5 (25%) | 1 (5%) | 3 (15%) |
Arteriosclerosis | 14 (70%) | 20 (100%) | 5 (25%) | 14 (70%) |
Malignant cancerous disease | 7 (35%) | 0 | 13 (65%) | 7 (35%) |
Anticoagulatory Therapy | ||||
Prophylactic heparinization onset/preoperative | 10 (50%) | 20 (100%) | 20 (100%) | 15 (75%) |
Prophylactic heparinization postoperative | 0 | 0 | ||
Prophylactic heparinization 24 h | 12 (60%) | 18 (90%) | 18 (90%) | |
Prophylactic heparinization 72 h | 11 (55%) | 16 (80%) | 18 (90%) | |
Therapeutic heparinization onset/preoperative | 8 (40%) | 0 | 0 | 5 |
Therapeutic heparinization postoperative | 0 | 1 (5%) | ||
Therapeutic heparinization 24 h | 6 (30%) | 2 (10%) | 1 (5%) | |
Therapeutic heparinization 72 h | 7 (35%) | 3 (15%) | 1 (5%) |
Septic Shock (n = 20) | Cardiac Surgery (CABG, n = 20) | Major Abdominal Surgery (MAS, n = 20) | Control Patients (CTRL, n = 20) | |||||
---|---|---|---|---|---|---|---|---|
Leucocytes (L−1) | onset 24 h 72 h | 11.9 (7.1–19.7) 13.5 (9.3–20.9) 14.2 (10.7–17.3) | Preop Postop 24 h 72 h | 8.1 (6.6–9.4) 11 (7.9–15) 10.7 (8.2–12.2) 10.6 (8.2–11.8) | Preop Postop 24 h 72 h | 7.6 (6–9] 10.3 (9.4–12.5) 11.5 (9.3–12.9) 7.4 (6.5–11.6) | Ctrl | 5.9 (5.3–7.9) |
CRP (mg/L) | onset 24 h 72 h | 229.5 (117.2–277.3) 244.6 (166.5–287.7) 236.5 (139.5–268.8) | Preop Postop 24 h 72 h | 3.8 (1.9–10.6) 4.3 (2.6–9.2) 75.1 (67.2–109.8) 202.4 (156.3–241.2) | Preop Postop 24 h 72 h | 5.1 (1.7–10.3) 6.5 (2.5–11.4) 68 (46.6–88.5) 149 (115.7–200) | Ctrl | 1.1 (0–6.4) |
PCT (µg/L) | onset 24 h 72 h | 9.2 (5.2–38.1) 10.4 (4.9–29.2) 7 (2.2–25.6) | Preop Postop 24 h 72 h | 0.2 (0.1–0.2) N.A. N.A 1.6 (1.6) | Preop Postop 24 h 72 h | N.A. 0.6 (0.4–0.7) 0.7 (0.3–0.9) 0.8 (0.4–0.9) | Ctrl | N.A. |
NETs (%) | onset 24 h 72 h | 3.2 (2.3–4.2) 2.5 (1.8–3.7) 2.3 (1–3.8) | Preop Postop 24 h 72 h | 2 (1.7–2.6) 3.5 (2.7–4.6) 2.7 (2.1–3.5) 2.8 (2.1–3.8) | Preop Postop 24 h 72 h | 2.6 (1.7–3.3) 2.9 (2.3–5.2) 2.6 (2–3.8) 2.7 (2.3–3.9) | Ctrl | 1.6 (1–2) |
HMGB1 (pg/mL) | onset 24 h 72 h | 40,332.1 (25,079.6–51,674.9) 32,692.3 (21,563.6–50,421.8) 25,496.2 (23,125.4–33,421.3) | Preop Postop 24 h 72 h | 25,241.3 (20,953.1–46,031.4) 23,982.5 (17,353.2–49,133.1) 30,440.2 (22,238.5–41,098.5) 26,584.3 (20,870.2–38,988.1) | Preop Postop 24 h 72 h | 31,126.8 (20,032.8–38,097.8) 25,343.5 (21,913.1–41,784.2) 28,800.1 (21,687.7–39,665.6) 21,780.6 (16,867–34,755.6) | Ctrl | 26,297.5 (22,149.3–34,710.9) |
MPO (ng/mL) | onset 24 h 72 h | 700,905.7 (285,135.5–886,644) 542,611.2 (303,891–832,728.9) 498,553 (381,058.9–610,573.3) | Preop Postop 24 h 72 h | 392,102.8 (199,581–571,528,04) 438,502.8 (341,657.5–638,995.4) 595,820.4 (275,593.4–892,010.7) 529,317.3 (306,869.6–885,046) | Preop Postop 24 h 72 h | 367,381.5 (187,582–499,310.8) 480,111 (344,182.5–885,513.8) 713,023.1 (433,356.9–913,219.4) 351,888,.5 (235,179.9–711,455.7) | Ctrl | 214,472.6 (136,124.2–296,626.7) |
Interleukin 8 (pg/mL) | onset 24 h 72 h | 470.4 (105.9–1462,30) 206.6 (100.1–489.9) 165.1 (90.2–195.5) | Preop Postop 24 h 72 h | 39.2 (26.1–49) 85.3 (57.7–127.9) 67.1 (40.7–99) 55.2 (42.9–72.2) | Preop Postop 24 h 72 h | 35 (20.4–49.8) 71.1 (58.2–129.1) 60.9 (41.2–110.4) 41.9 (27.1–63.6) | Ctrl | 35.8 (25–40.5) |
Parameter | Septic Shock (n = 20) | Cardiac Surgery (CABG, n = 20) | Major Abdominal Surgery (MAS, n = 20) | Control Patients (CTRL, n = 20) | ||||
---|---|---|---|---|---|---|---|---|
Correlation Coefficient | p-Value | Correlation Coefficient | p-Value | Correlation Coefficient | p-Value | Correlation Coefficient | p-Value | |
Thrombelastography | ||||||||
EXTEM CFT (s) | −0.10 | 0.47 | 0.31 | <0.01 | 0.27 | 0.02 | 0.04 | 0.87 |
FIBTEM CFT (s) | −0.15 | 0.31 | 0.00 | 1.00 | 0.25 | 0.05 | −0.22 | 0.50 |
INTEM CFT (s) | 0.07 | 0.61 | 0.26 | 0.02 | 0.20 | 0.09 | −0.23 | 0.34 |
NATEM CFT (s) | −0.12 | 0.41 | −0.09 | 0.44 | −0.01 | 0.91 | 0.14 | 0.55 |
EXTEM CT (s) | −0.20 | 0.14 | 0.01 | 0.91 | 0.12 | 0.30 | −0.43 | 0.06 |
FIBTEM CT (s) | −0.31 | 0.02 | −0.02 | 0.85 | 0.00 | 0.99 | −0.42 | 0.07 |
INTEM CT (s) | 0.00 | 0.98 | 0.24 | 0.04 | 0.12 | 0.33 | −0.33 | 0.16 |
NATEM CT (s) | −0.04 | 0.80 | −0.10 | 0.38 | −0.04 | 0.74 | −0.06 | 0.80 |
EXTEM LI60 (%) | −0.08 | 0.55 | −0.25 | 0.03 | 0.01 | 0.97 | −0.02 | 0.94 |
FIBTEM LI60 (%) | −0.36 | <0.01 | −0.04 | 0.70 | 0.06 | 0.59 | 0.32 | 0.17 |
INTEM LI60 (%) | −0.12 | 0.38 | −0.21 | 0.06 | 0.02 | 0.85 | 0.12 | 0.62 |
NATEM LI60 (%) | −0.16 | 0.30 | −0.32 | <0.001 | 0.03 | 0.84 | 0.11 | 0.65 |
EXTEM MCF (mm) | 0.15 | 0.27 | −0.38 | <0.001 | −0.28 | <0.01 | −0.25 | 0.28 |
FIBTEM MCF (mm) | 0.37 | ≤0.01 | −0.28 | <0.01 | −0.25 | 0.03 | −0.38 | 0.10 |
INTEM MCF (mm) | 0.18 | 0.19 | −0.41 | <0.001 | −0.32 | <0.01 | −0.21 | 0.38 |
NATEM MCF (mm) | 0.20 | 0.16 | −0.23 | 0.04 | -0.09 | 0.46 | −0.33 | 0.15 |
Impedance Aggregometry | ||||||||
ASPItest (Units) | 0.24 | 0.08 | 0.019 | 0.87 | −0.063 | 0.6 | −0.1 | 0.67 |
TRAPtest (Units) | 0.17 | 0.22 | −0.058 | 0.61 | −0.085 | 0.48 | −0.11 | 0.64 |
ADPtest (Units) | 0.07 | 0.64 | −0.12 | 0.3 | −0.07 | 0.56 | −0.05 | 0.82 |
Global Coagulatory Parameters | ||||||||
PTT (s) | −0.15 | 0.28 | 0.03 | 0.79 | −0.09 | 0.5 | 0.09 | 0.7 |
INR | −0.21 | 0.12 | 0.18 | 0.1 | 0.08 | 0.52 | 0.16 | 0.53 |
Platelet count (L−1) | 0.39 | 0.004 | −0.032 | 0.78 | −0.16 | 0.17 | 0.048 | 0.84 |
Fibrinogen (g/L) | 0.31 | 0.101 | −0.26 | 0.07 | −0.1 | 0.7 | NA | NA |
Inflammatory Parameters | ||||||||
Leucocytes (L−1) | 0.007 | 0.96 | −0.016 | 0.89 | −0.12 | 0.33 | −0.21 | 0.37 |
CRP (mg/L) | −0.1 | 0.47 | −0.14 | 0.24 | −0.12 | 0.34 | −0.51 | 0.32 |
PCT (µg/L) | 0.059 | 0.69 | 0.6 | 0.59 | 0.12 | 0.68 | N.A. | N.A. |
HMGB-1 (pg/mL) | 0.30 | 0.03 | 0.04 | 0.76 | −0.08 | 0.51 | −0.43 | 0.06 |
MPO (ng/mL) | −0.16 | 0.24 | 0.04 | 0.75 | −0.06 | 0.6 | −0.19 | 0.41 |
Interleukin 8 (pg/mL) | 0.01 | 0.93 | 0.16 | 0.16 | 0.04 | 0.70 | −0.21 | 0.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneck, E.; Mallek, F.; Schiederich, J.; Kramer, E.; Markmann, M.; Hecker, M.; Sommer, N.; Weissmann, N.; Pak, O.; Michel, G.; et al. Flow Cytometry-Based Quantification of Neutrophil Extracellular Traps Shows an Association with Hypercoagulation in Septic Shock and Hypocoagulation in Postsurgical Systemic Inflammation—A Proof-of-Concept Study. J. Clin. Med. 2020, 9, 174. https://doi.org/10.3390/jcm9010174
Schneck E, Mallek F, Schiederich J, Kramer E, Markmann M, Hecker M, Sommer N, Weissmann N, Pak O, Michel G, et al. Flow Cytometry-Based Quantification of Neutrophil Extracellular Traps Shows an Association with Hypercoagulation in Septic Shock and Hypocoagulation in Postsurgical Systemic Inflammation—A Proof-of-Concept Study. Journal of Clinical Medicine. 2020; 9(1):174. https://doi.org/10.3390/jcm9010174
Chicago/Turabian StyleSchneck, Emmanuel, Franziska Mallek, Julia Schiederich, Emil Kramer, Melanie Markmann, Matthias Hecker, Natascha Sommer, Norbert Weissmann, Oleg Pak, Gabriela Michel, and et al. 2020. "Flow Cytometry-Based Quantification of Neutrophil Extracellular Traps Shows an Association with Hypercoagulation in Septic Shock and Hypocoagulation in Postsurgical Systemic Inflammation—A Proof-of-Concept Study" Journal of Clinical Medicine 9, no. 1: 174. https://doi.org/10.3390/jcm9010174
APA StyleSchneck, E., Mallek, F., Schiederich, J., Kramer, E., Markmann, M., Hecker, M., Sommer, N., Weissmann, N., Pak, O., Michel, G., Hecker, A., Padberg, W., Boening, A., Sander, M., & Koch, C. (2020). Flow Cytometry-Based Quantification of Neutrophil Extracellular Traps Shows an Association with Hypercoagulation in Septic Shock and Hypocoagulation in Postsurgical Systemic Inflammation—A Proof-of-Concept Study. Journal of Clinical Medicine, 9(1), 174. https://doi.org/10.3390/jcm9010174