Novel Biochemical Markers of Neurovascular Complications in Type 1 Diabetes Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Assessment
2.3. Evaluation of Neurovascular Complications
2.4. Assessment of Other Variables
2.5. Statistical Analysis
3. Results
3.1. General Analysis
3.2. EGF and Neurovascular Complications
3.3. GDF-15 and Neurovascular Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, G.; Yan, Y.; Xu, N.; Yin, D.; Hui, Y. Treatment of type 1 diabetes by regulatory T-cell infusion via regulating the expression of inflammatory cytokines. J. Cell Biochem. 2019. [Google Scholar] [CrossRef]
- Thrailkill, K.M.; Bunn, R.C.; Moreau, C.S.; Cockrell, G.E.; Simpson, P.M.; Coleman, H.N.; Frindik, J.P.; Kemp, S.F.; Fowlkes, J.L. Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care 2007, 30, 2321–2326. [Google Scholar] [CrossRef] [Green Version]
- Wegner, M.; Araszkiewicz, A.; Piorunska-Stolzmann, M.; Wierusz-Wysocka, B.; Zozulinska-Ziolkiewicz, D. Association between IL-6 concentration and diabetes-related variables in DM1 patients with and without microvascular complications. Inflammation 2013, 36, 723–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araszkiewicz, A.; Zozulinska-Ziolkiewicz, D. Retinal Neurodegeneration in the Course of Diabetes-Pathogenesis and Clinical Perspective. Curr. Neuropharmacol. 2016, 14, 805–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Zhang, Y.; Yin, H.; Lu, Y. Topical recombinant human epidermal growth factor for diabetic foot ulcers: A meta-analysis of randomized controlled clinical trials. Ann. Vasc. Surg. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sochett, E.; Noone, D.; Grattan, M.; Slorach, C.; Moineddin, R.; Elia, Y.; Mahmud, F.H.; Dunger, D.B.; Dalton, N.; Cherney, D.; et al. Relationship between serum inflammatory markers and vascular function in a cohort of adolescents with type 1 diabetes. Cytokine 2017, 99, 233–239. [Google Scholar] [CrossRef]
- Ju, X.; Yang, X.; Yan, T.; Chen, H.; Song, Z.; Zhang, Z.; Wu, W.; Wang, Y. EGFR inhibitor, AG1478, inhibits inflammatory infiltration and angiogenesis in mice with diabetic retinopathy. Clin. Exp. Pharmacol. Physiol 2019, 46, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Kempf, T.; Kempf, T.; Eden, M.; Strelau, J.; Naguib, M.; Willenbockel, C.; Tongers, J.; Heineke, J.; Kotlarz, D.; Xu, J.; et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ. Res. 2006, 98, 351–360. [Google Scholar] [CrossRef]
- Lajer, M.; Jorsal, A.; Tarnow, L.; Parving, H.H.; Rossing, P. Plasma growth differentiation factor-15 independently predicts all-cause and cardiovascular mortality as well as deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetes Care 2010, 33, 1567–1572. [Google Scholar] [CrossRef] [Green Version]
- Hellemons, M.E.; Mazagova, M.; Gansevoort, R.T.; Henning, R.H.; de Zeeuw, D.; Bakker, S.J.L.; Lambers-Heerspink, H.J.; Deelman, L.E. Growth-differentiation factor 15 predicts worsening of albuminuria in patients with type 2 diabetes. Diabetes Care 2012, 35, 2340–2346. [Google Scholar] [CrossRef] [Green Version]
- Mazagova, M.; Buikema, H.; van Buiten, A.; Duin, M.; Goris, M.; Sandovici, M.; Henning, R.H.; Deelman, L.E. Genetic deletion of growth differentiation factor 15 augments renal damage in both type 1 and type 2 models of diabetes. Am. J. Physiol. Renal. Physiol. 2013, 305, F1249–F1264. [Google Scholar] [CrossRef] [PubMed]
- Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeters, S.A.; Hanada, H.; Ishizaka, H.; Fukushi, T.; Kamada, T.; Okumura, K. Plasma levels of matrix metalloproteinase-2, -3, -10, and tissue inhibitor of metalloproteinase-1 are associated with vascular complications in patients with type 1 diabetes: The EURODIAB Prospective Complications Study. Cardiovasc. Diabetol. 2015, 14, 31. [Google Scholar] [CrossRef] [Green Version]
- Lazear, H.M.; Nice, T.J.; Diamond, M.S. Interferon-lambda: Immune Functions at Barrier Surfaces and Beyond. Immunity 2015, 43, 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, Y.J.; Choi, Y.S.; Kang, E.H.; Chung, J.H.; Cha, S.; Song, Y.W.; Lee, Y.J. Increased expression of interferon-lambda in minor salivary glands of patients with primary Sjogren’s syndrome and its synergic effect with interferon-alpha on salivary gland epithelial cells. Clin. Exp. Rheumatol. 2018, 36, 31–40. [Google Scholar]
- Chang, Q.J.; Lv, C.; Zhao, F.; Xu, T.S.; Li, P. Elevated Serum Levels of Interleukin-29 Are Associated with Disease Activity in Rheumatoid Arthritis Patients with Anti-Cyclic Citrullinated Peptide Antibodies. Tohoku J. Exp. Med. 2017, 241, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Dantas, A.T.; Gonçalves, S.M.C.; Pereira, M.C.; de Almeida, A.R.; Marques, C.D.L.; Rego, M.J.B.D.; Pitta, I.D.; Duarte, A.L.B.P.; Pitta, M.G.D. Interferons and systemic sclerosis: Correlation between interferon gamma and interferon-lambda 1 (IL-29). Autoimmunity 2015, 48, 429–433. [Google Scholar] [CrossRef]
- Wolk, K.; Witte, K.; Witte, E.; Raftery, M.; Kokolakis, G.; Philipp, S.; Schönrich, G.; Warszawska, K.; Kirsch, S.; Prösch, S.; et al. IL-29 is produced by T(H)17 cells and mediates the cutaneous antiviral competence in psoriasis. Sci. Trans. Med. 2013, 5. [Google Scholar] [CrossRef]
- Da Silva, J.; Hilzendeger, C.; Moermans, C.; Schleich, F.; Henket, M.; Kebadze, T.; Mallia, P.; Edwards, M.R.; Johnston, S.L.; Louis, R. Raised interferon-beta, type 3 interferon and interferon-stimulated genes—Evidence of innate immune activation in neutrophilic asthma. Clin. Exp. Allergy 2017, 47, 313–323. [Google Scholar] [CrossRef]
- Fedenko, E.S.; Elisyutina, O.G.; Filimonova, T.M.; Boldyreva, M.N.; Burmenskaya, O.V.; Rebrova, O.Y.; Yarilin, A.A.; Khaito, R.M. Cytokine gene expression in the skin and peripheral blood of atopic dermatitis patients and healthy individuals. Self 2011, 2, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Association, A.D. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, 13–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosner, B. Fundamentals of Biostatistics, 7th ed.; Brooks/Cole: Boston, MA, USA, 2011. [Google Scholar]
- ClinCalc.com. Available online: https://clincalc.com/stats/samplesize.aspx (accessed on 6 January 2020).
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Falkowski, B.; Rogowicz-Frontczak, A.; Grzelka, A.; Uruska, A.; Schlaffke, J.; Araszkiewicz, A.; Zozulinska-Ziolkiewicz, D. Higher free triiodothyronine concentration is associated with lower prevalence of microangiopathic complications and better metabolic control in adult euthyroid people with type 1 diabetes. Endocrine 2018, 458–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.H.; Feng, S.Y.; Yu, Y.; Liang, Z. Study on the relationship between the methylation of the MMP-9 gene promoter region and diabetic nephropathy. Endokrynol. Pol. 2018, 69, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Mrozikiewicz-Rakowska, B.; Łukawska, M.; Nehring, P.; Szymański, K.; Sobczyk-Kopcioł, A.; Krzyżewska, M.; Maroszek, P.; Płoski, R.; Czupryniak, L. Genetic predictors associated with diabetic retinopathy in patients with diabetic foot. Pol. Arch. Intern. Med. 2018, 128, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Association, A.D. 11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, D.; Laux, G.; Dannehl, K.; Spüler, M.; Mühlen, H.; Mayer, P.; Gries, F.A. Assessment of cardiovascular autonomic function: Age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabetes Med. 1992, 9, 166–175. [Google Scholar] [CrossRef]
- Pawlinski, L.; Gastol, J.; Fiema, M.; Matejko, B.; Kiec-Wilk, B. Is our treatment in type 1 diabetes mellitus (insulin therapy models, metabolic control) optimal for preventing cardiovascular autonomic neuropathy? Endokrynol. Pol. 2019, 70, 323–329. [Google Scholar] [CrossRef]
- Betz, B.B.; Jenks, S.J.; Cronshaw, A.D.; Lamont, D.J.; Cairns, C.; Manning, J.R.; Goddard, J.; Webb, D.J.; Mullins, J.J.; Hughes, J.; et al. Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes. Kidney Int. 2016, 89, 1125–1135. [Google Scholar] [CrossRef]
- De Boer, I.H.; Gao, X.; Bebu, I.; Hoofnagle, A.N.; Lachin, J.M.; Paterson, A.; Perkins, B.A.; Saenger, A.K.; Steffes, M.W.; Zinman, B.; et al. Biomarkers of tubulointerstitial damage and function in type 1 diabetes. BMJ Open Diabetes Res. Care 2017, 5, e000461. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Harris, R.C. Interaction of the EGF Receptor and the Hippo Pathway in the Diabetic Kidney. J. Am. Soc. Nephrol. 2016, 27, 1689–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perlman, A.S.; Chevalier, J.M.; Wilkinson, P.; Liu, H.; Parker, T.; Levine, D.M.; Sloan, B.J.; Gong, A.; Sherman, R.; Farrell, F.X. Serum Inflammatory and Immune Mediators Are Elevated in Early Stage Diabetic Nephropathy. Ann. Clin. Lab. Sci. 2015, 45, 256–263. [Google Scholar]
- Malik, T.G.; Ahmed, S.S.; Gul, R.; Ayesha, E. Comparative Analysis of Serum Proangiogenic Biomarkers between those with and without Diabetic Retinopathy. J. Coll. Physicians Surg. 2018, 28, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.T.; Bozkurt, B.; Kerimoglu, H.; Okka, M.; Kamis, U.; Gunduz, K. Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness. Mol. Vis. 2009, 15, 1906–1914. [Google Scholar] [PubMed]
- Patel, B.; Hiscott, P.; Charteris, D.; Mather, J.; McLeod, D.; Boulton, M. Retinal and preretinal localisation of epidermal growth factor, transforming growth factor alpha, and their receptor in proliferative diabetic retinopathy. Br. J. Ophthalmol. 1994, 78, 714–718. [Google Scholar] [CrossRef] [Green Version]
- Boulton, M.; Gregor, Z.; McLeod, D.; Charteris, D.; Jarvis-Evans, J.; Moriarty, P.; Khaliq, A.; Foreman, D.; Allamby, D.; Bardsley, B. Intravitreal growth factors in proliferative diabetic retinopathy: Correlation with neovascular activity and glycaemic management. Br. J. Ophthalmol. 1997, 81, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Lamb, D.J.; Modjtahedi, H.; Plant, N.J.; Ferns, G.A. EGF mediates monocyte chemotaxis and macrophage proliferation and EGF receptor is expressed in atherosclerotic plaques. Atherosclerosis 2004, 176, 21–26. [Google Scholar] [CrossRef]
- Adela, R.; Banerjee, S.K. GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. J. Diabetes Res. 2015, 2015, 490842. [Google Scholar] [CrossRef]
- Shiau, M.Y.; Tsai, S.T.; Tsai, K.J.; Haung, M.L.; Hsu, Y.T.; Chang, Y.H. Increased circulatory MMP-2 and MMP-9 levels and activities in patients with type 1 diabetes mellitus. Mt. Sinai J. Med. 2006, 73, 1024–1028. [Google Scholar]
- Rysz, J.; Banach, M.; Stolarek, R.A.; Pasnik, J.; Cialkowska-Rysz, A.; Koktysz, R.; Piechota, M.; Baj, Z. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J. Nephrol. 2007, 20, 444–452. [Google Scholar]
- Klysik, A.B.; Naduk-Kik, J.; Hrabec, Z.; Gos, R.; Hrabec, E. Intraocular matrix metalloproteinase 2 and 9 in patients with diabetes mellitus with and without diabetic retinopathy. Arch. Med. Sci. 2010, 6, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Dejonckheere, E.; Vandenbroucke, R.E.; Libert, C. Matrix metalloproteinases as drug targets in ischemia/reperfusion injury. Drug Discov. Today 2011, 16, 762–778. [Google Scholar] [CrossRef] [PubMed]
Inclusion criteria | European Caucasian origin Type 1 diabetes Age between 18 and 50 years Duration of the disease ≥ 5 years |
Exclusion criteria | eGFR below 30 mL·min−1·1.73 m−2 ALT or AST 1.5 times above upper limit of normal Acute inflammation (hsCRP > 10 mg/L or symptoms) Diabetic ketoacidosis or ketonuria Neoplasm |
Parameter | Value | |||
---|---|---|---|---|
All Participants (n = 100) | With Microangiopathy (n = 32) | Without Microangiopathy (n = 68) | p * | |
Age, years | 29 (25–34.5) | 29 (25.5–34.5) | 29.5 (25–34.5) | 0.695 |
Men, n (%) | 53 (53.0) | 19 (59.4) | 34 (50.0) | 0.381 ** |
Smokers, n (%) | 18 (18.0) | 9 (28.1) | 9 (13.2) | 0.071 ** |
T1DM duration, years | 12.5 (9–16) | 16 (14–18.5) | 11 (7–13.5) | <0.001 |
Abnormal creatinine/albumin ratio, n (%) | 10 (10) | 9 (28) | 1 (1) | <0.001 *** |
SBP, mmHg | 125 (120–130) | 130 (120–130) | 120 (120–130) | 0.449 |
DBP, mmHg | 80 (70–83) | 80 (80–90) | 80 (70–80) | 0.073 |
BMI, kg/m2 | 24.1 (22.1–26.8) | 24.6 (21.9–27.5) | 24.1 (22.2–26.4) | 0.851 |
HbA1c, % | 7.4 (6.8–8.3) | 7.55 (6.95–8.1) | 7.35 (6.7–8.3) | 0.900 |
hsCRP, mg/L | 1.08 (0.35–2.51) | 1.42 (0.66–2.34) | 0.97 (0.34–2.76) | 0.363 |
ALT, U/L | 17 (13–21) | 18.5 (13–26) | 15.5 (13–21) | 0.213 |
AST, U/L | 17 (15–20) | 18.5 (15–22) | 17 (14–20) | 0.273 |
TC, mmol/L | 4.69 (4.09–5.37) | 4.84 (4.38–5.26) | 4.65 (4.00–5.54) | 0.739 |
HDL, mmol/L | 1.68 (1.40–1.92) | 1.70 (1.37–1.98) | 1.68 (1.45–1.92) | 0.770 |
LDL, mmol/L | 2.78 (2.23–3.38) | 2.68 (2.34–3.17) | 2.82 (2.15–3.52) | 0.787 |
TG, mmol/L | 0.97 (0.70–1.27) | 1.07 (0.87–1.66) | 0.91 (0.66–1.20) | 0.058 |
eGFR, mL·min−1·1.73 m−2 | 109 (96–118) | 102 (89–119) | 109 (99–117) | 0.233 |
EGF, pg/mL | 36.5 (16–81.5) | 57.5 (28.5–100.5) | 28.5 (15–76) | 0.032 |
Log10EGF | 1.56 (1.20–1.91) | 1.75 (1.45–2.00) | 1.45 (1.18–1.88) | 0.028 |
Predictors | Odds Ratio (95% Confidence Interwal) | p-Value |
---|---|---|
Log10EGF | 3.84 (1.04–14.11) | 0.040 |
T1DM duration | 1.27 (1.13–1.44) | <0.0001 |
HbA1c | 1.05 (0.66–1.66) | 0.829 |
BMI | 0.98 (0.85–1.13) | 0.749 |
LDL | 1.06 (0.57–1.96) | 0.859 |
SBP | 0.99 (0.95–1.04) | 0.828 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkowski, B.; Rogowicz-Frontczak, A.; Szczepanek-Parulska, E.; Krygier, A.; Wrotkowska, E.; Uruska, A.; Araszkiewicz, A.; Ruchala, M.; Zozulinska-Ziolkiewicz, D. Novel Biochemical Markers of Neurovascular Complications in Type 1 Diabetes Patients. J. Clin. Med. 2020, 9, 198. https://doi.org/10.3390/jcm9010198
Falkowski B, Rogowicz-Frontczak A, Szczepanek-Parulska E, Krygier A, Wrotkowska E, Uruska A, Araszkiewicz A, Ruchala M, Zozulinska-Ziolkiewicz D. Novel Biochemical Markers of Neurovascular Complications in Type 1 Diabetes Patients. Journal of Clinical Medicine. 2020; 9(1):198. https://doi.org/10.3390/jcm9010198
Chicago/Turabian StyleFalkowski, Bogusz, Anita Rogowicz-Frontczak, Ewelina Szczepanek-Parulska, Aleksandra Krygier, Elzbieta Wrotkowska, Aleksandra Uruska, Aleksandra Araszkiewicz, Marek Ruchala, and Dorota Zozulinska-Ziolkiewicz. 2020. "Novel Biochemical Markers of Neurovascular Complications in Type 1 Diabetes Patients" Journal of Clinical Medicine 9, no. 1: 198. https://doi.org/10.3390/jcm9010198
APA StyleFalkowski, B., Rogowicz-Frontczak, A., Szczepanek-Parulska, E., Krygier, A., Wrotkowska, E., Uruska, A., Araszkiewicz, A., Ruchala, M., & Zozulinska-Ziolkiewicz, D. (2020). Novel Biochemical Markers of Neurovascular Complications in Type 1 Diabetes Patients. Journal of Clinical Medicine, 9(1), 198. https://doi.org/10.3390/jcm9010198